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Abstract 

Background: Repetitive transcranial magnetic stimulation (rTMS) has shown efficacy for treating depression, 

but not for all patients. Accurate treatment response prediction could lower treatment burden. Research 

suggests machine learning trained with electroencephalographic (EEG) data may predict response, but only a 

limited range of measures have been tested. Objectives: We used >7000 time-series features to 

comprehensively test whether rTMS treatment response could be predicted in a discovery dataset and an 

independent dataset. Methods: Baseline EEG from 188 patients with depression treated with rTMS (125 

responders) were decomposed into the top five principal components (PCs). The hctsa toolbox was used to 

extract 7304 time-series features from each participant and PC. A classification algorithm was trained to 

predict responders from the feature matrix separately for each PC. The classifier was applied to an 

independent dataset (N = 58) to test generalizability on an unseen sample. Results: Within the discovery 

dataset, the third PC (which showed a posterior-maximum and prominent alpha power) showed above-chance 

classification accuracy (68%, pFDR = 0.005, normalised positive predictive value = 114%). Other PCs did not 

outperform chance. The model generalized to the independent dataset with above-chance balanced accuracy 

(60%, p = 0.046, normalised positive predictive value = 114%). Analysis of feature-clusters suggested 

responders showed more high frequency power relative to total power, and a more negative skew in the 

distribution of their time-series values. Conclusion: The dynamical properties of PC3 predicted treatment 

response with moderate accuracy, which generalized to an independent dataset. Results suggest treatment 

stratification from pre-treatment EEG may be possible, potentially enabling better outcomes than ‘one-size-

fits-all’ treatment approaches. 
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Introduction 

Repetitive transcranial magnetic stimulation (rTMS) has become an increasingly common treatment for 

treatment-resistant depression. However, meta-analyses suggest response rates to rTMS are <50% (Berlim et 

al., 2014; Cao et al., 2018; Sehatzadeh et al., 2019). Clinical observation data suggests that patients who 

respond to rTMS often show large improvements, while non-responders often show minimal change in 

depression severity, so that response patterns are of a bimodal distribution (Fitzgerald et al., 2016). This 

pattern provides motivation to investigate whether there is a way to predict treatment responses, and thus 

reduce the burdens to patients and clinical costs when patients would fall into the category of ‘non-responder’ 

(Kar, 2019). Achieving this goal could be a first step towards ‘stratified psychiatry’ for depression, where 

multiple predictive measures of response to a range of different treatments could guide treatment selection 

and lead to more successful depression treatment responses as patients are provided with the treatment they 

are most likely to respond to (Arns et al., 2022). 

Since depression is associated with underlying brain function (de Aguiar Neto & Rosa, 2019; Drevets et al., 

2008), it is sensible to assess neural activity as a potential predictor of treatment response, which is commonly 

measured using functional magnetic resonance (fMRI) (Ge et al., 2020). However, although baseline fMRI 

measures have sometimes been highly accurate at predicting responders (Cash et al., 2019; Drysdale et al., 

2017), replication attempts have suggested that prediction accuracy may have been due to data-processing 

artifacts, and replication attempts have not been successful (Dinga et al., 2019; Hopman et al., 2021). fMRI is 

also expensive, and as such fMRI measures may be clinically impractical for response prediction (Watts et al., 

2022). In contrast, EEG activity provides an attractive alternative as a potential predictive measure. EEG 

research has shown promise for detecting the differences in neural activity associated with depression (de 

Aguiar Neto & Rosa, 2019), and is cost-effective, practical, feasible, and scalable to implement in a clinical 

setting (Watts et al., 2022; Widge et al., 2019). The feasibility and practicality of recording EEG in a clinical 

setting has been demonstrated by the TDBRAIN dataset, where >1400 EEG recordings from a clinical practice 

have been made available, including EEG recordings obtained prior to rTMS treatment for depression (van Dijk, 

van Wingen, et al., 2022). In addition to its feasibility, EEG is recorded from the outer layer of the cortex where 

rTMS treatment is applied, and perhaps for this reason, meta-analysis has indicated rTMS response prediction 

to be more accurate than prediction of antidepressant response to other treatments (Watts et al., 2022). 
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Furthermore, there is preliminary evidence that prospective response predictions obtained from baseline EEG 

data can increase the efficacy of antidepressant treatment recommendations in a clinical setting (in an open 

label study; van der Vinne et al. (2021)). With the availability of large datasets like TDBRAIN, statistical 

classification models including machine learning hold promise for accurately predicting treatment response. 

Machine learning is an umbrella term for the set of techniques and algorithms that automatically learn 

patterns from data, without explicit programming for each application (Watts et. al., 2022). The classification 

subset of machine learning approaches then use the learned model to predict the label of unseen data (Watts 

et al., 2022). Meta-analysis of machine learning studies of the prediction of response to depression treatments 

has suggested an overall mean accuracy of 83.93% and an average sensitivity and specificity of 78% and 85% 

respectively, most commonly from single datasets without using a validation dataset, posing the risk that 

prediction accuracies are inflated by improperly handled data leakage between the algorithm training set and 

the accuracy test set (Watts et al., 2022). 

Despite these optimistic results, prediction research has not yet been applicable in clinical practice. This is 

likely because studies still suffer from small sample sizes and a lack of cross-validation and so positive results 

may simply reflect overfitting, and may not generalise well (Watts et al., 2022; Widge et al., 2019). Indeed, 

very few independent replications have been reported. When independent replications are reported, only a 

few have been successful (Corlier, Carpenter, et al., 2019; Roelofs et al., 2021). Replication attempts have 

often been unsuccessful (Widge et al., 2013), including our own research, (Bailey et al., 2021; Krepel et al., 

2018). One potential reason for non-replication is that the vast majority of the original studies have not used 

an independent dataset to verify the generalizability of their prediction model and, as such, the studies cannot 

rule out that the possibility that their results are due to the model over-fitting to characteristics specific to the 

dataset they were trained on (Arns et al., 2016; Squarcina et al., 2021; van der Vinne et al., 2021). That is, the 

prediction accuracy may depend on patterns in the discovery dataset, which may not generalise to another 

dataset, thus not providing the potential for clinical applicability (van Dijk, Koppenberg, et al., 2022; Watts et 

al., 2022). The lack of successful replications highlights the vital importance of verifying the generalizability of 

trained prediction models on independent samples (van Dijk, Koppenberg, et al., 2022). Prediction studies that 

have used a within-study replication or independent validation datasets have shown more modest (but more 

trustworthy) predictive accuracy (Krepel et al., 2020). 
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Additionally, while some of the most successful predictions have been produced by complex models with 

many parameters (such as deep-learning algorithms), these approaches have limitations, and these complex 

models are not always superior for providing accurate predictions (Mignan & Broccardo, 2019). In particular, 

the aspects of the data and inner workings of the algorithms that provide accurate predictions are often 

relatively opaque, and as such, difficult to implement and reproduce (Traut et al., 2022; Van Der Donckt et al., 

2022). Due to the large number of parameters that can be tuned, the risk of over-fitting is also high (Traut et 

al., 2022). Further, the opaque nature of the deep-learning approach means it is often difficult to interpret 

which aspects of the data lead to accurate predictions, leaving researchers and clinicians unable to understand 

how the algorithm discerns responders and non-responders (Squarcina et al., 2021; Van Der Donckt et al., 

2022). Given these limitations, a recent review of the literature identified only four potentially robust 

biomarkers for the prediction of response to non-invasive brain stimulation (two fMRI biomarkers and two EEG 

biomarkers) (Klooster et al., 2023). However, given the heterogeneity across individuals with depression, and 

the likely subtle relationship between any baseline marker and treatment response, it may be that single 

biomarkers will be unable to obtain the predictive accuracy required for clinical implementation. As such, it 

has been suggested that a multivariate approach, which takes into account many different characteristics of 

the data, might be necessary. As such, there is a “critical need for a systematic comparison of several types of 

features” (Watts et al., 2022).  

To address these issues, we used the highly comparative time-series analysis (hctsa) software to measure 

>7000 statistical properties (or features) of univariate EEG time-series data from responders and non-

responders to rTMS treatment for depression (Fulcher & Jones, 2017; Fulcher et al., 2013). We then trained a 

machine learning algorithm on these features to obtain a model that enabled out-of-sample predictions of 

responder and non-responders to rTMS treatment. Finally, we performed an individual feature analysis to 

provide an indication of both which analysis methods best separated responders and non-responders (Fulcher 

& Jones, 2017; Fulcher et al., 2013). In contrast to the relative opaqueness of deep-learning approaches, the 

time-series features analysed in the current study are the result of transparent algorithms grounded in 

interpretable time-series theory that can thus provide understanding of the types of time-series structures 

that best distinguish the EEG dynamics of responders and non-responders. Within EEG research, hctsa has 

previously been used to provide a data-driven sleep stage categorization from EEG data and to detect the 
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higher order features that separate those sleep stages, allowing researchers to gain new insights into how 

sleep stages differ (Decat et al., 2022). It has also been used to detect seizure activity (Fulcher et al., 2013), and 

to provide novel understanding of how brain activity differs in long-term meditators (Bailey et al., 2023), as 

well as being applied in other fields such as in fMRI research, astrophysics, and in energy monitoring. The 

toolbox includes features derived from the Fourier power-spectrum, and other linear correlation-based 

statistics that are commonly used in EEG research, but also includes a much broader range of methods that 

quantify entropy, fractal scaling, stationarity, and many other types of features (Fulcher & Jones, 2017; Fulcher 

et al., 2013). hctsa computes features from a single time-series from each participant as its input, and EEG data 

is typically recorded as many time-series (from many electrodes). As such, we used a principal component 

analysis (PCA) dimensionality-reduction technique to extract a smaller number of components explaining a 

maximum amount of variance from time-series for analysis, while preserving the majority of the variance in 

the full multivariate time-series dataset (Bailey et al., 2023). 

Given the aforementioned background, our aim was to use hctsa to determine whether a simple feature-based 

time-series classification model applied to a comprehensive feature set from EEG time-series data (without 

any hyperparameter tuning) could accurately predict response to rTMS treatment for depression from pre-

treatment data. We aimed to test the approach using leave-one-participant-out cross-validation in a discovery 

dataset, and verify its generalizability to an unseen, independent validation dataset. For the independent 

validation dataset test we implemented a recommended “blinded” approach, whereby the primary author 

(NWB) submitted the prediction response categories for the validation dataset to other authors (MA and HvD) 

for them to calculate the prediction accuracy results, such that NWB is still not aware of the response 

categories of the out-of-sample dataset (Arns et al., 2022). Based on the conservative view of previous 

research, we hypothesized that we would obtain modest prediction accuracy. Additionally, we aimed to use 

the interpretability of the hctsa approach to characterise the best predictive features from the baseline EEG 

data. Since no previous research has used such a comprehensive list of time-series analyses as is provided by 

hctsa, we hypothesized that the analysis would provide us with a novel list of the features that could be 

predictive of rTMS response, and that this list might contain features that have not previously been used in 

EEG analysis e.g., that may be more commonly used in fields like seismology or economics. 

Methods 
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Data 

We used a subset of the full publicly available TDBRAIN dataset that contained participants over 18 years of 

age (N = 968), to optimize pre-processing parameters for the application of hctsa to EEG data (referred to as 

the ‘parameter-testing’ dataset, with the full explanation of this is reported in the supplementary materials). 

Then, for our primary analysis, we used a subset of the TDBRAIN dataset which included 196 participants who 

had been treated with rTMS to the DLPFC (98 male, 18 to 78 years of age, M = 43.62, SD = 12.82). Participants 

within this dataset had a diagnosis of non-psychotic major depressive disorder or dysthymia and a Beck 

Depression Inventory (BDI-II-NL) > 14 at baseline. Participants were treated with either 10Hz left hemisphere 

rTMS (N = 74), 1Hz right hemisphere rTMS (N = 115), or bilateral rTMS, applied as both 10Hz left and 1Hz right 

hemisphere rTMS (N = 7) (Donse et al., 2018, Van Dijk et al. 2022). Participants received treatment with at 

least 10 sessions of rTMS over the DLPFC or until response within these 10 sessions. Exclusion criteria for the 

rTMS sample were prior ECT treatment, epilepsy, traumatic brain injury, a current psychotic disorder, wearing 

a cardiac pacemaker, metal parts in the head, or pregnancy. Mean BDI-II-NL score at baseline was M = 31.26 

(SD = 10.02). EEG recordings were obtained with participants seated in a sound and light attenuated room at 

an ambient temperature of 22oC. EEG data were acquired from 26 electrodes: Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, 

FCz, FC4, T3, C3, Cz, C4, T4, CP3, CPz, CP4, T5, P3, Pz, P4, T6, O1, Oz and O2 (using either Quikcap or ANT 

WaveGuard caps; NuAmps; 10-20 electrode international system). EOG and ECG electrodes were also applied, 

but for the current study these were removed from the data prior to pre-processing. Two minutes of EEG data 

was recorded while participants rested with their eyes closed (EC). The operator did not intervene when 

drowsiness patterns were observed in the EEG. Data were referenced to averaged mastoids with a ground at 

AFz. Skin resistance was <10kΩ for all electrodes, and data were recorded at a sampling rate of 500Hz, and 

low-pass filtered at 100 Hz prior to digitization. After exclusion of eight participants during pre-processing 

(explained below), 188 participants were present in the data, 125 of whom were classified as responders, 

defined as a 50% reduction in BDI-II-NL scores from the baseline timepoint until the end of treatment. After 

exclusions, the final sample of participants included those treated with 10Hz left hemisphere rTMS (N = 71), 

1Hz right hemisphere rTMS (N = 110), or bilateral 10Hz left and 1Hz right hemisphere rTMS (N = 7). All 

participants received the EEG as part of their routine care and provided informed consent for their data to be 

recorded and shared for the purposes of research.  
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EEG pre-processing 

To estimate suitable EEG pre-processing steps prior to submitting the rTMS data to the hctsa, we tested how 

accurately we could predict the sex of participants of using a larger parameter-testing dataset (N = 968, also 

obtained from TDBRAIN) by varying the pre-processing parameters and performing a manual search of sex 

prediction accuracy outcomes as the target to be optimized. This helped us determine effective artifact 

cleaning, epoch length, EEG sampling rate, PCA decomposition and PCA component inclusion parameters for 

predictions based on EEG data prior to implementing hctsa for prediction of response to rTMS. We have briefly 

reported the options and results of these parameter tests in our supplementary materials. 

To pre-process the EEG data, we used the automatic EEG cleaning toolbox RELAX to clean the data (Bailey et 

al., 2022a; Bailey et al., 2022b). First, data was high-pass filtered using a fourth-order Butterworth filter at 1Hz, 

and a notch filter was applied from 47 to 53Hz. PREP’s automatic bad electrode detection and removal method 

was used (Bigdely-Shamlo et al., 2015), followed by RELAX’s default bad electrode detection and removal 

approach. Extreme outlying data periods were marked for exclusion from the Multi-channel Winer Filtering 

(MWF) (Somers et al., 2018) and were rejected from the data prior to independent component analysis (ICA) 

using RELAX’s default method. Two rounds of MWF were applied using a delay period of 12 (so that 24 

samples or 48ms surrounding each timepoint were taken into account when constructing the artifact and 

clean data templates and when applying the spatial-temporal MWF cleaning to the data), first cleaning muscle 

activity, then horizontal eye movements and drift together (since data were recorded while participants had 

their eyes closed, no blink cleaning was required) (Somers et al., 2018). Low-pass filtering was then applied to 

the data at 80Hz, and robust average re-referencing was applied to the data (as independent component 

analysis performs better under these conditions). Fast Independent Component Analysis (ICA) was performed 

on the data to separate the data into its underlying independent components (Hyvarinen, 1999). Wavelet 

enhanced ICA (Castellanos & Makarov, 2006) was used to reduce artifactual components identified by ICLabel, 

before data were reconstructed into the scalp space (Pion-Tonachini et al., 2019).  

After this pre-processing, we epoched the data prior to feature computation with hctsa. This step required the 

selection of an epoch length appropriate to both the data and to the application of hctsa to the data. In 

particular, the hctsa feature set requires regularly sampled time-series data without any missing data points 

(such as the discontinuities created by removing extreme artifacts during EEG pre-processing artifact rejection 
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steps). Previous research has successfully used 30s epochs of EEG data with hctsa to characterise sleep stages 

(Decat et al., 2022). To ensure that as many participants as possible could be included without any data 

discontinuities, and to ensure data from all participants were consistent in length, 30s epochs (7500 samples) 

were selected for the current study, with the first artifact free 30s epoch from each participant’s recording 

used in the analysis. Removed electrodes were reconstructed using spherical spline interpolation (Perrin et al., 

1989) to ensure that the same set of electrodes were present in all data. As many 30s epochs as possible were 

extracted from the cleaned data from each participant, starting from the start of the EEG file, with another 

epoch extracted starting from every subsequent 10s mark throughout the EEG data (so epochs were 

constructed with a 20s overlap). Participants that did not provide a single 30s epoch without any data 

discontinuities from their clean data were excluded from further analysis. 

Data from each electrode from all epochs were baseline corrected to the average amplitude over the entire 

epoch and RELAX’s default epoch rejection settings were then applied, with the exception that an epoch was 

only rejected if the voltage shift within the epoch exceeded 120 microvolts (as visual inspection of the data 

showed that some participants had alpha oscillations that exceeded the typical 80 microvolt threshold). This 

first artifact-free 30s epoch was selected from each participant for inclusion in the analysis. Eight participants 

were excluded at this stage for not providing any artifact-free 30s epoch. Finally, the first epoch that remained 

after each of these steps was down-sampled to 250Hz to enable faster computation of the hctsa features, 

while still providing a sampling rate well above the 80Hz low-pass filter so that patterns can be detected even 

in the highest frequencies remaining in the data. 

hctsa extracts features from a univariate time-series, whereas EEG data are multivariate (with data recorded 

from many electrodes simultaneously). To address this, we used PCA to reduce the multivariate dataset to 

components that explained significant variance within the EEG data, providing highly explanatory time-series 

from these principal components (PCs) (Bailey et al., 2023). To prevent the potential for class imbalance in EEG 

amplitudes to bias the PCA components towards individuals with larger amplitude EEG signals, we z-

transformed each participant’s 26 electrode x 7500 timepoint data based on all values in the 30 s electrode x 

timepoint matrix. This normalised the overall voltage amplitude of each participant’s EEG data prior to the PCA 

but preserved potential relationships between electrodes (for example, occipital electrodes generally produce 

larger amplitude alpha activity). Next, we concatenated all participant data together across the time axis into a 
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single 26 electrode x 1,410,000 time-samples matrix, performed a PCA decomposition on this matrix, and 

extracted the top components, which explained >85% of variance in the data (5 components). Concatenating 

all data prior to the PCA ensured all participants had the same PCA weights applied to their data, which were 

obtained from performing the PCA on the overall dataset. Using this consistent set of PCA loadings across 

participants, five PC time courses were extracted from each participant’s epoch for hctsa feature extraction. 

This resulted in a 5 principal component x 7500 sample multivariate time-series for each participant, reflecting 

a 30s extract of their cleaned data. 

hctsa computations and normalisation 

Version 1.07 of hctsa, which includes implementations of 7729 time-series features, was used with MATLAB 

(2022b) to extract features and then fit and evaluate the classification models. The hctsa feature set includes 

time-series analysis methods developed in a range of scientific fields, including, physics, seismology, and 

economics (Fulcher & Jones, 2017; Fulcher et al., 2013). Each feature was computed for each participant and 

PC to produce a single value for each feature (two examples of features included in hctsa are the 

autocorrelation at a 3-sample lag, and the power in the lowest fifth of sampled frequencies in a Fourier power 

spectrum). Any non-real values or errors that were returned (due to an algorithm being inappropriate for a 

given dataset) were excluded. The time-series of the 188 participants who remained in the dataset after the 

artifact cleaning steps provided output values for more than 80% of the features as a real and non-error value, 

so all of these 188 participants were included in the analysis. Features were excluded if they did not produce 

real and well-behaved outputs across all participants. For example, feature computation for PC3 resulted in 

the removal of 425 features (out of 7729), with 7304 features remaining for subsequent analysis (represented 

as a 188 x 7304 participant x feature matrix). 

Since the scale of each feature was specific to the time-series analysis performed, we normalised the hctsa 

feature data by performing a z-score transform across all participants within each feature separately, to enable 

more straightforward comparison of features measured on different scales and with different distributions. 

After normalisation, we used a linear support-vector machine (SVM) learning algorithm to classify ‘responder’/ 

’non-responder’ categories from the time-series features obtained from each PC component separately 

(represented as a 188 participant x 7304 feature matrix) (Fulcher & Jones, 2017; Fulcher et al., 2013). To 

account for class imbalance (with 66.5% responders), we used inverse probability class reweighting for the 
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SVM training, and used leave-one-out cross-validation to obtain a balanced accuracy score to evaluate 

performance (Fulcher & Jones, 2017). To assess the potential clinical utility of our findings, we also report the 

normalised positive predictive value, which indicates the potential increase in response rates if treatment is 

provided only to patients who the algorithm predicts will respond (normalised by the response rate of the 

sample) (Krepel et al., 2019). To assess the statistical significance of our prediction accuracy, we used model-

based permutation tests, with 1000 permutation-based null samples. This involved shuffling the 

‘responder’/’non-responder’ labels prior to null model construction to create a distribution of null prediction 

accuracies for comparison to the balanced accuracy resulting from the model obtained from the real data 

(Henderson & Fulcher, 2022). This allowed us to derive a p-value as the proportion of null prediction 

accuracies that exceeded the real prediction accuracy (Fulcher & Jones, 2017). We controlled for multiple 

comparisons across the tests of the five tested PCs (from PCs 1-5) using the false discovery rate (FDR) 

(Benjamini & Hochberg, 1995), and report FDR corrected p-values (pFDR). Finally, we assessed the potential to 

differentiate responders and non-responders provided by individual features, to determine which features 

were providing any accurate predictions. This step is explained in the following section. 

Feature interpretation 

As mentioned in the introduction, a considerable advantage of the hctsa method is that it highlights the types 

of interpretable time-series analysis methods that are informative for a given problem, in this case in 

distinguishing responders from non-responders from their EEG dynamics. While the SVM classification 

approach described above leverages thousands of time-series features simultaneously, for PC components 

with significant classification accuracy, we also wished to determine whether any time-series features were 

individually discriminative of responders and non-responders. To this end, we calculated the Mann–Whitney U 

test statistic (Mann & Whitney, 1947) for the differences between the responder and non-responder groups 

for each feature from any principal component that showed statistically significant classification accuracy. The 

Mann–Whitney U test is a non-parametric test that is robust to violations of normality, making no assumption 

about any specific distribution (McKnight & Najab, 2010). Due to the computation time involved in using the 

exact Mann–Whitney U test, we used the approximate test to begin with, which approximates the p-value 

from a Gaussian approximation of the distribution of the sum of ranks, an approach that is highly accurate for 

large samples (Cheung & Klotz, 1997). We then verified the accuracy of the approximate tests using the exact 
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test (which computes the sum of ranks from the data without any approximation) for the 500 features that 

provided the strongest differentiation between the two groups (detected using the approximate test) to 

ensure the accuracy of the statistical tests of individual features with the strongest effect at separating the two 

groups. This allowed us to interpret which types of dynamical changes contained within a PCA component 

might underpin the classification accuracy. While the multivariate classifier using all hctsa features used 

normalized data from each feature (described above), in our individual feature analysis we analysed the raw 

(non-normalized) feature values to enable clearer interpretation of how each feature differed between the 

groups. We applied a FDR correction to control for multiple comparisons across all features using the method 

provided by Benjamini and Hochberg (1995). We note that this multiple comparison correction approach is 

likely to underestimate true feature significance, given the substantial correlations (and non-independence) 

between features (Fulcher et al., 2013). 

Given this non-independence, we investigated the comparison of a reduced set of features by grouping highly 

correlated features using clustering, which reduced the number of required feature comparisons. We used k-

medoids to cluster the features into an optimal number of clusters that reduced the substantial redundancy in 

the hctsa feature library and performed between-group comparisons of the principal variance within these 

clusters (Fulcher et al., 2013). To cluster the features, we used absolute Spearman correlation distances 

(Fulcher et al., 2013). The k-medoids algorithm initially assigned random data points as cluster centres, then 

iteratively assigned data points to their nearest cluster centre, re-computing cluster centres each time, and 

repeating this procedure until the algorithm converges on a stable solution (Park & Jun, 2009). This iterative 

process was performed across 100 iterations with 100 repeats to obtain the cluster that minimized the sum of 

distances of points to their nearest cluster centre. We implemented this approach for each possible number of 

k-medoid derived clusters from 2 to 100, then plotted the sum of the point-centroid distances for each cluster 

output from each of these potential number of clusters and selected the elbow in this plot as the number of 

clusters to test. The elbow suggested that 11 clusters was the optimal number of clusters to optimally 

represent the dataset (see Supplementary Materials Figure S5). After we obtained the list of features within 

each of these 11 clusters, we performed a PCA on the participant x feature matrix obtained by restricting the 

matrix to features identified as belonging to each cluster feature set separately, and extracted the component 

that explained the largest amount of the variance from within each cluster. This was used as the 
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representative feature of each cluster, since taking the mean across the features within the cluster would not 

effectively represent the cluster due to anti-correlations between features within each cluster. We then 

compared the values from each of these 11 cluster-extracted components between the two groups using the 

Mann–Whitney U test and controlled for multiple comparisons across these 11 clusters using the method of 

Benjamini and Hochberg (1995). 

Sub-sample testing and independent validation dataset analysis  

To determine whether our prediction accuracy was driven specifically by a particular sub-sample of the data, 

we performed a number of post-hoc tests where we examined the model’s balanced accuracy when restricted 

to only a sub-sample of the participants. Firstly, we tested balanced accuracy within only the participants who 

received left-hemisphere 10Hz rTMS treatment, and also within only the participants who received right-

hemisphere 1Hz rTMS treatment. Secondly, we separately tested balanced accuracy within only the female 

and only the male participants.  

After each of the previously described analyses were performed, we tested response prediction from using the 

PC and model that showed accurate prediction in the tests conducted on the full (N = 188) dataset applied to 

an independent validation dataset (N = 65, after pre-processing, N = 58, 30 responders). This independent 

validation dataset of participants was also from the TDBRAIN dataset, but only included participants who had 

been treated with 1Hz right hemisphere rTMS at a later date than our discovery dataset. Both the classification 

algorithm and the analyst (NWB) were blinded to the actual treatment outcome for this independent 

validation dataset. To obtain the model used for testing on the independent validation dataset, we trained the 

classification model on all participants in the discovery dataset. We applied the same RELAX data cleaning, 

epoching, baseline correction, z-transform and PCA weights from the full 188-participant discovery dataset to 

each of the participants in the validation dataset, so this data was transformed from raw data into processed 

data in exactly the same manner as the discovery dataset. We also applied the hctsa feature exclusions and z-

score weightings from individual features in the discovery dataset to the independent validation dataset 

before using the model to predict the responder or non-responder identity of each participant from the 

independent validation dataset. Following these steps, individual responder and non-responder predictions 

were provided by the primary author (NWB) to HVD and MA who provided the balanced accuracy and 

positive/negative predictive values of the predictions. The primary author (NWB) then performed a 
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permutation test to assess the statistical significance of the independent validation dataset balanced accuracy. 

This was performed by comparing the real balanced accuracy against a random (null) distribution of balanced 

accuracies. The random distribution was obtained by calculating the balanced accuracy from the prediction 

model applied to 1000 permutations of the labels from the independent validation dataset (with labels 

allocated in the same ratio as the real validation dataset). 

Results 

Leave-one-out cross-validation tests 

PCs 1 to 5 explained 88.17% of the variance in the data (see Table 1 for the variance explained by each PC). PCs 

1, 2, 4, and 5 did not show accurate prediction of treatment response (all balanced accuracies in the range of 

45 to 55%, and all p and pFDR > 0.10). However, the model that was trained on the PC3 time-series showed a 

balanced accuracy of 68.07% across the leave-one-out cross-validations (pFDR = 0.005, see Figure 1 for a plot of 

the topography and power spectrum of PC3). The PC3 component contained a prominent alpha oscillation 

frequency peak, and a central-posterior maximum. The sensitivity was 85% and the specificity was 46%. The 

normalised-positive predictive value (PPV) was 114%, which reflects the increase in response rates if our 

classification algorithm had been used to select likely responders for treatment (Figure 2). This indicates a 

predicted increase of 14% in response rate compared to the observed response rate if participants had been 

allocated to receive rTMS based on the predictions made by our approach. 
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Figure 1. The topography and power spectrum for PC3. Left: The topographical map of PC3. Right: The power 

spectrum for PC3 averaged across all participants after a Welch transform within each participant individually, 

with the error bars reflecting 95% confidence intervals. The peak frequency after the power spectrum was 

averaged across all participants was 9.76Hz. 

 

Principal Component Variance Explained 

1 50.07% 

2 16.61% 

3 13.45% 

4 4.36% 

5 3.68% 

Table 1. The amount of variance explained by each of the first five principal components. 

 

Figure 2. A confusion matrix of the predicted responder category from the leave-one-out cross-validation tests 

against true response or non-response categories in the discovery dataset. 

Which features of the time-series provide the response prediction? 

Although PC3 showed above-chance classification accuracy, our analysis of individual features using the 

Mann–Whitney U test statistic showed that no single individual feature exceeded the FDR-corrected threshold 

for significance (all pFDR > 0.05). This may be in part due to the substantial correlations between features, 

meaning that a much smaller number of independent tests were performed than our multiple comparison 
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controls controlled for (Fulcher et al., 2013). In contrast, the results of our analysis of a reduced set of the 

primary variance from 11 clusters of features (representing 11 distinct concepts, with features within each of 

these 11 clusters providing highly related information, likely all representing a measure of a single underlying 

concept) indicated that two of these cluster extracted components were significant (pFDR = 0.0379 and pFDR = 

0.0391). The first of these clusters contained features that indicated responders showed a negatively skewed 

distributional shape of their time-series values compared to non-responders, and the second cluster contained 

features indicating responders showed more high frequency power relative to low frequency power (see the 

supplementary materials for details). For the curious reader, we have provided a list and cluster plot of the top 

50 features that showed the strongest effects for the difference between responders and non-responders in 

our supplementary materials, along with violin figures depicting a small number of representative features 

from these clusters. Similar to our cluster-based analysis of the full 7304 features restricted to 11 clusters of 

features, the cluster plot of the top 50 features showed two primary clusters. These clusters also represented 

features measuring the skew of the distributional shape and the high frequency power relative to low 

frequency power. 

Independent validation dataset 

To assess the replicability of the prediction accuracy from the classification model described above we applied 

the overall model trained on all participants in the discovery dataset (N = 188) to the unseen independent 

validation dataset (N = 58, all treated with right-hemisphere 1Hz rTMS). The model predicted treatment 

response in the discovery participants with a balanced accuracy of 60% (permutation test p = 0.046). Given the 

predictions for the independent validation dataset, the normalised-PPV was 114%, a value that was identical 

to the value provided by our analysis of the discovery dataset. This normalised-PPV indicated a predicted 

increase of 14% in response rate compared to the observed response rate if participants had been allocated to 

receive rTMS based on the predictions made by our approach. This demonstrates the predictive accuracy of 

the model replicates in an independent dataset. 

Testing on sub-samples  

In addition to the main tests above (conducted on the full sample) we also conducted some additional 

exploratory analyses to investigate whether our predictions were specific to one type of treatment, or might 
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apply to one sex but not the other (as has been demonstrated in antidepressants by some previous research 

(Arns et al., 2016). 

rTMS protocol  

Within the 71 participants who received left-sided 10Hz DLPFC treatment the time-series feature based 

classifier showed a mean balanced accuracy of 69.98% (p = 0.001). Within this left-sided 10Hz treatment 

population the normalised-PPV was 115%. The predictions for the 110 participants who received right-sided 

1Hz DLPFC treatment yielded a mean balanced accuracy of 65.73% (p = 0.002). Within this right-sided 1Hz 

treatment population the normalised-PPV was 113%. This result demonstrates that the prediction accuracy 

from the overall discovery dataset classifier provided accurate predictions for both 1Hz right and 10Hz left-

hemisphere treatments, rather than being specific to one treatment type. 

Sex differences 

Within the 92 female participants the time-series feature based classifier showed a mean balanced accuracy of 

71.04% (p < 0.001). Within the female sub-sample the normalised-PPV was 116%. The predictions for the 96 

male participants showed a mean balanced accuracy of 65.33% (p = 0.006). Within the male sub-sample the 

normalised-PPV was 110%. This result demonstrates that the prediction accuracy from the overall discovery 

dataset classifier provided accurate predictions for both sexes, rather than being specific to one sex. 

Discussion 

Our results indicate that a simple time-series feature-based classifier can predict rTMS treatment for 

depression from just 30s of baseline EEG data, using a posterior-central PC that was characterised 

predominantly by alpha activity and explained 13% of the variance in the data. This prediction ability was 

generalizable, remaining statistically significantly in an out-of-sample dataset (114% normalised-PPV, 60% 

balanced accuracy, p = 0.046), demonstrating modest potential of the approach for future clinical utility. 

Furthermore, our results showed this prediction accuracy was present for both 10Hz left-hemisphere rTMS 

treatment, and 1Hz right hemisphere rTMS treatment, and could be applied to both sexes. 

The classification accuracy reported here is lower than other studies using baseline EEG to predict response to 

rTMS for depression. However, most previous research has not used an independent validation dataset to 
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assess whether the accuracy obtained from the discovery dataset generalised to an independent dataset. 

Without this crucial step, we cannot determine the clinical utility of results – if the accuracy does not replicate 

out of sample, it will not provide accurate prospective prediction in the clinic. It is worth noting that our 

accuracy is within a similar range to previous research that has used an independent validation dataset test set 

to assess prediction accuracy from psychological symptoms and personality factors (Krepel et al., 2020). 

Furthermore, due to the comprehensive nature of hctsa, a vast range of potentially predictive single time-

series EEG measures (including measures that were similar to those used in previous research) were assessed 

in the current study, which used a large dataset as well as an independent validation dataset test. Although 

our prediction accuracy was modest, we note that it was obtained from only 30 seconds of EEG data recorded 

from only 26 electrodes. Longer data periods with more electrodes may provide improved prediction accuracy. 

Interestingly, and in contrast to the majority of previous studies examining prediction of response to 

depression treatment research (Watts et al., 2022), our results showed better prediction of response to rTMS 

treatment for depression (sensitivity) than non-response (specificity). This might be clinically useful in 

providing a “go” signal to recommend rTMS treatment, providing a potential benefit over the typical ‘one-size-

fits-all’ treatment recommendation approach, even in the context of modest prediction accuracy (Arns et al., 

2022). The model reported in the current study might also be useful in combination with other high specificity 

models as an “ensemble” approach. 

In addition to the response prediction accuracy, several points are worth noting. Firstly, our sub-sample 

analysis showed that responses to 10Hz left DLPFC treatment and 1Hz right DLPFC treatment could both be 

predicted accurately (balanced accuracy was 70% and normalised-PPV was 115% for 10Hz left DLPFC 

treatment compared to a balanced accuracy of 66% and normalised-PPV of 113% for 1Hz right DLPFC 

treatment). This is valuable, as it suggests our model works as a predictor of response to both commonly 

applied rTMS treatment approaches. However, further research could also explore the possibility of 

discriminant predictive measures. While our model was only trained on the dataset that included patients 

treated with rTMS applied to either left or right hemisphere, it may be that explorations of models and 

individual features that predict the right and left treatment responses separately could provide indications that 

patients will be more likely to respond to treatment to one hemisphere than the other. Patients could then be 

stratified to either 1Hz or 10Hz treatment based on which of the two sets of predictive measures provides the 
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highest prediction of response (Arns et al., 2022; Garnaat et al., 2019). Since different treatments are likely to 

work via different mechanisms, measures that provide successful prediction for one treatment may predict 

non-response to another treatment. In this ideal situation, patients could be individually stratified based on 

their biotype to the treatment that best suited their biotype (Salomons et al., 2014). This stratification based 

on opposing patterns of response prediction has been demonstrated for attention deficit hyperactivity 

disorder, where low individualised alpha peak frequency predicted response to neurofeedback and high 

individualised alpha peak frequency predicted response to methylphenidate (Voetterl et al., 2022). 

Additionally, with specific regards to the 10Hz left hemisphere treatment prediction accuracy, it is interesting 

to note that the principal component that provided the prediction accuracy was largely comprised of alpha 

activity, with an oscillatory frequency peak near to 10Hz. Previous research has indicated that the proximity of 

a patient’s peak alpha frequency to the 10Hz stimulation frequency relates to the response to left hemisphere 

10Hz rTMS treatment (Roelofs et al., 2021), a finding that has been replicated (Voetterl et al., In Press). It may 

be that the relationships between the measures reported in the current study and treatment response are 

mediated by a similar underlying mechanism to the relationship between a patient’s peak alpha frequency and 

treatment response. Additionally, the results indicate that accurate response prediction was possible both 

within the female and male subgroups (although with slightly lower accuracy for males, with a normalised-PPV 

was 116% for females and 110% for males), suggesting generalisability to both sexes. It is not clear at this stage 

why prediction might be more accurate within females. However, we note that other research has also found 

higher predictive accuracy from EEG to antidepressant treatment within female participants (Arns et al., 2016).  

In addition to our overall prediction accuracy, our analysis of the individual features suggests three conceptual 

points. First, when all individual features were compared between the groups and conservative multiple 

comparison controls were applied, none of the single features were able to provide statistical significance at 

distinguishing responders from non-responders. Inspection of the distributions for the highest performing 

individual features provided an explanation for this – the distributions of the two groups overlap, such that 

only a small minority of participants from each group fall outside of the distribution of the other group. As 

such, we could not extract statistically significant differentiation of responders and non-responders from 

individual features acting in isolation. Given the likely complex and subtle relationship between neural activity 

and response to rTMS treatment, this is perhaps unsurprising – it is unlikely that responders and non-
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responders differ in any specific quality such that they could be categorically separated without error, even if 

multimodal measurement techniques were to fully characterize each individual. This subtle relationship 

between neural activity and response to rTMS treatment may also explain why PC3, which only explained 13% 

of the variance in the EEG signal, provided prediction accuracy, while PC1 and 2 did not (despite containing 

much more of the variance). This suggests that the more dominant neural activity (reflected in PC1 and PC2) 

does not differ between responders and non-responders. 

Second, the results indicate that the machine learning model could distinguish responders from non-

responders with reasonable accuracy, even though no single feature could differentiate the two groups. This 

demonstrates the advantage of multivariate approaches that are trained on a large number of features such as 

hctsa or deep learning for accurate predictions over approaches trained on only a small number of features. To 

obtained clinically useful predictive accuracy, it seems important that many features of the data are used, with 

different weights provided to each feature based on the ability of the feature to distinguish the two groups. 

Predictions can be made for each individual based on the combination of the individuals’ feature values and 

the weightings, with the use of many measures providing the subtlety and a potential robustness in prediction 

accuracy that is not available from just a single feature.  

Third, although no individual feature passed our conservative multiple comparison control, a restricted 

analysis of 11 clusters of highly correlated features (computed from these data using k-medoids clustering) 

indicated that two clusters were significant, passing our multiple comparison control threshold. These feature 

clusters suggested that within PC3, responders showed a pattern of more high frequency power relative to low 

frequency power, and a distribution of time-series values skewed towards negative deflections (with larger 

amplitude negative deflections) compared to non-responders. These types of features may be usefully 

explored by future research. In particular, the pattern whereby responders showed a distribution of time-

series values that was skewed towards negative values is novel to TMS response prediction research, and is 

not typically examined in EEG research. 

Finally, the modest prediction accuracy we detected is also consistent with our expectation that the true 

difference in EEG activity between responders and non-responders is small, and as such the modest accuracy 

reflects the plausibility of our results – highly accurate prediction of response would suggest a strong 

dependence between the baseline EEG measures (and only EEG measures) and the treatment response, in a 
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manner that seems unlikely given the complexity and heterogeneity across individuals with depression in 

factors that might influence treatment response (Olbrich et al., 2015; Watts et al., 2022). While the hctsa 

model that showed significant classification accuracy may reflect a multivariate pattern that can provide 

modestly accurate prediction of response to rTMS, the relationship between this signal and treatment 

response may be variable, moderated by other (currently unknown) factors, and the relationship may not be 

present for all participants. Given the complexity and likely subtle relationship between potentially predictive 

baseline measures and response (Watts et al., 2022), even modest (above chance) prediction accuracy that 

translates to an out-of-sample dataset might still reflect a valuable contribution that could be developed with 

further research. It is worth noting here that prediction accuracy might be enhanced by using multimodal 

models that include behavioural or fMRI data in addition to the EEG data included in the current study. 

Limitations 

The primary limitation of the current study is that the data was collected in the context of an uncontrolled 

open-label study. Previous research has demonstrated that fMRI-based connectivity can predict response to 

sham rTMS treatment, so it is possible our results are affected by non-specific effects (Wu et al., 2020). 

Participants were also medicated in many cases, which is likely to have affected the baseline brain activity 

sampled in our data. However, on the other hand, these aspects are also an advantage of the current study, as 

the design of the current study aligns with how rTMS treatment response prediction would be applied in the 

clinic (i.e., a naturalistic model), suggesting the translation of these findings into practice is plausible. The 

computation approach required to obtain the predictions in the current study also makes the translation of 

our results into practice plausible, as both the RELAX EEG pre-processing pipeline (Bailey et al., 2022a; Bailey et 

al., 2022b) and hctsa are freely available software (Fulcher et al., 2013), and the EEG data can be processed 

and hctsa feature set computed within 3-5 minutes per participant. However, although the pre-processing and 

prediction algorithm could be fully automated, clinics would still require access to EEG equipment and staff 

trained in the collection of EEG data. 

Additionally, the independent validation dataset was collected across more recent years than the discovery 

dataset. Interestingly, the response rate to rTMS treatment for depression was lower in this more recent data, 

perhaps as a result of reductions in the non-specific effects aspect of the response as rTMS becomes more 

well-known and perhaps less novel for patients. As such, the independent validation dataset prediction 
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balanced accuracy may have been lower than if our discovery dataset and our independent validation dataset 

were obtained during the same time period, although we note that the normalised PPV for the discovery and 

independent dataset were identical, indicating that the potential to improve rTMS response rates by predicting 

which participants would respond successfully generalised to the independent dataset. The overall model also 

performed worse at predicting response to right hemisphere 1Hz rTMS in our leave-one-out cross-validation 

tests, and the independent validation dataset only contained patients treated with right hemisphere 1Hz rTMS 

treatment. Prediction accuracy in our independent validation dataset may have been higher if the independent 

validation dataset contained participants treated with left-hemisphere 10Hz rTMS. 

An additional limitation is that the EEG data analysed were only recorded at a single timepoint (before the 

start of rTMS treatment), and only the first 30s of artifact free EEG were analysed, so we did not assess the 

consistency of the EEG features across multiple recordings on different days, nor whether prediction accuracy 

might be provided by changes in time-series features during the course of treatment. Previous research has 

suggested that the change in non-linear dynamics within the alpha band from the first minute to the second 

minute of resting-state EEG data might predict non-response to rTMS treatment, and change in EEG 

connectivity after the first rTMS treatment predicts response, so predictions based on change in hctsa features 

across time may be worth exploring (Arns et al., 2014; Corlier, Wilson, et al., 2019). However, despite the 

minimal EEG data included and single timepoint measured, our predictive accuracy was significantly better 

than chance, suggesting that the EEG data provided features that were coupled with response to treatment 

weeks later. This indicates that there is a practical consistency across time in the data – the hctsa features 

must provide at least some information that relates across time to later treatment response. Another 

limitation is that the patients in the TDBRAIN dataset received psychotherapy concurrently with rTMS 

treatment, so our results might predict response to the combination of these two treatments rather than 

response to rTMS treatment alone, (although since patients presented to the clinic for TMS treatment suggests 

that the majority of participants were non-responders to prior psychotherapy alone). Data were also collected 

using a single model of EEG system, so it is not clear that results would generalise to data collected using other 

EEG systems. 

One final limitation is that response prediction was implemented for a binary treatment response classification 

only, and only implemented for the end of the treatment. We note that there is a lack of consensus in how 
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response should be defined (Watts et al., 2022). Some research has also suggested that different groups of 

response trajectories are apparent, with both fast and slow responder groups, and as such more fine grain in 

response prediction may improve predictive accuracy (Kaster et al., 2019). Alternatively, the maintenance of 

response prediction until a later follow-up period would be more clinically valuable, providing more confidence 

for treatment recommendations that might lead to lasting improvement (Ge et al., 2020; Hopman et al., 2021). 

Future Research and Conclusions 

We would like to note that within our parameter selection steps (which were aimed at optimising our 

approach on EEG data), our attempts to predict the sex of participants from EEG data were outperformed by 

deep learning methods (Van Putten et al., 2018). One potential reason for this could be that the deep learning 

approach incorporated all electrodes into its training steps, rather than reducing the data to a separate single 

time-series as is required by the hctsa approach. As such, the deep learning approach may have benefitted 

from the inclusion of relationships or interactions between electrodes in its model, whereas hctsa did not. In 

support of this suggestion, some research has shown that relative levels of oscillatory power between different 

electrodes, or measures of alpha asymmetry between the hemispheres is predictive of depression treatment 

response (Arns et al., 2016; van der Vinne et al., 2021; Watts et al., 2022). Additionally, research that has used 

measures of neural connectivity (across both EEG and fMRI) have shown predictive accuracy (Corlier, Wilson, 

et al., 2019; Klooster et al., 2020; Salomons et al., 2014), and increasing evidence suggests depression is a 

disorder involving dysregulated connectivity (Ge et al., 2020). Indeed, meta-analysis of fMRI research has 

suggested that rTMS response prediction from connectivity measures obtained both from within and to the 

default mode network is more accurate than for other treatments, with responders showing higher baseline 

connectivity (Long et al., 2020). Even though the PCs measured in the current study are distributed 

components, they do not provide a measure of the interactions between brain regions. If connectivity 

measures improve prediction accuracy, then future work examining the interaction between pairs of time-

series from brain regions implicated in depression may lead to better performance than our approach of 

reducing the data to a single time-series and examining that time-series across a comprehensive set of 

features. We note that a highly comparative approach to comparing pairwise interactions in time-series was 

recently developed, as the pyspi toolbox, which has been applied to EEG data (Cliff et al., 2022). 
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Additionally, we applied the hctsa toolbox only to test response prediction from rTMS treatment. It would be 

useful to determine if the toolbox is useful in predicting antidepressant medication response, and whether the 

same features or a different feature set provides accurate prediction in that case. As mentioned earlier with 

reference to 1Hz vs 10Hz rTMS, the ideal situation would be to find mutually exclusive predictive features so 

participants could be stratified to the optimal treatment for their characteristics, based on their baseline 

profile (Arns et al., 2022). The hctsa could also usefully be applied to examining potential mechanisms of rTMS 

treatment response – research could test which features differentiate baseline and post rTMS treatment EEG 

data to provide a data driven indication of which features are altered by successful treatment. 

Further, it may be useful to combine the EEG predictors with other measures that have shown predictive 

promise. These might include previous treatment resistance, duration of current episode, age, cognitive 

measures, self-reported psychological symptoms, depression severity measures, benzodiazepine use, heart 

rate, and genetics (Beuzon et al., 2017; Brakemeier et al., 2007; Garnaat et al., 2019; Holtzheimer III et al., 

2004; Kaster et al., 2019; Krepel et al., 2020; Lacroix et al., 2021; Rostami et al., 2017; Toffanin et al., 2022; 

Voetterl et al., 2021). The proximity of a patient’s peak alpha frequency to the 10Hz stimulation frequency has 

also been demonstrated to relate to response to left hemisphere 10Hz rTMS treatment (Roelofs et al., 2021), a 

finding that has been replicated (Voetterl et al., In Press). Combining multiple predictors in this way might 

further enhance predictive accuracy. We note here that both early change in cognition and early change in 

depression provide predictive potential (independently of each other) and combining these measures with 

those reported in the current study might provide very high predictive accuracy (Feffer et al., 2018; Hoy et al., 

2012; Mirman et al., 2022; Mondino et al., 2020; Toffanin et al., 2022). However, to ideally minimize patient 

and clinical burden, accurate response from baseline (rather than after 1 week of treatment) would be 

optimal. Another alternative that might enhance predictive accuracy could be to restrict participants included 

in the model to specific depression subtypes, to reduce the heterogeneity of the sample and provide more 

consistent neural data on which to train the machine learning algorithm (Widge et al., 2019). However, this 

depends on effective subtyping of depression, an outcome that may be feasible but has not yet been reliably 

achieved (Widge et al., 2022). 

Finally, with regards to potential clinical application, the current results should be replicated in a sample 

collected from an independent research group. Two replication approaches would be important to test. Firstly, 
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using an identical EEG system and recording parameters as were used in the current study, to directly test 

whether our results replicate. Secondly, using a different EEG system and similar recording parameters to test 

generalisability to other hardware. If the first approach were to provide a positive result but the later does not, 

it may be important to use the specific hardware implemented in the current study for successful response 

prediction. If both replications show positive results, our approach could be generalised to other EEG systems 

for broad clinical application. We note that the PCA weightings used in the current study could not be applied 

to alternative EEG montages, so the PCA computation step would need to be performed separately for 

alternative EEG montages. Future research may also consider whether prediction accuracy could be obtained 

using only a small number of electrodes to reduce the potential clinical burden of the EEG. Electrodes of focus 

could be extracted from the PC weightings provided in the current study. An independent replication attempt 

could be performed in a naturalistic sample, in clinics that already perform rTMS treatments, if EEG data is 

collected at baseline over several years to assess a large dataset similar to the data reported in the current 

study.  

In conclusion, our results indicate that a comprehensive set of time-series feature obtained from a brief period 

of baseline eyes-closed resting-state EEG data provided modestly accurate predictions of responses to rTMS 

treatment for depression in both leave-one-out cross-validation and an independent validation dataset 

dataset. Predictions were statistically superior to chance for both left and right hemisphere rTMS treatments, 

and for both sexes. These results were in the context of a priori selected analysis parameters and no hyper-

parameter tuning of the classification algorithm. We suggest multiple avenues for future research to test for 

improved prediction accuracy, which we hope might lead to useful treatment stratification in the clinic.   
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Supplementary Materials 

Parameter testing 

In order to determine the EEG pre-processing and hctsa parameters for optimal application to predicting 

response to rTMS treatment for depression, we first tested which parameters were best suited to classifying 

the sex of each participant from the baseline EEG recordings from the more complete subset of the TDBRAIN 

dataset containing participants who were over 18 years old, using the catch22 subset of hctsa (Lubba et al., 

2019). catch22 is a 22 feature subset of the full hctsa feature set that contains a representative sample of the 

features contained in the full hctsa feature set, and is comprised of features that are both minimally redundant 

and provide a minimal reduction in classification performance across a range of applications compared to the 

full hctsa feature set (Lubba et al., 2019). This parameter-testing subset of the TDBRAIN dataset contained N = 

968, with 476 female participants, after excluding participants who were under 18 and excluding a number of 

files for noisy data. This provided us with an indication of which parameter settings were best for enabling 

accurate classification of different groups in EEG datasets, giving us a rationale for the methodology used in 

our primary study. We provide a brief description of the different parameters tested and their outcomes 

below, with each processing step and parameter configured to the same as the methods described in the main 

manuscript, except for the parameter being tested. 

Firstly, we assessed which principal component would provide accurate classification of sex. We found the first 

principal component provided accurate (above chance) classification of sex in our initial test, and that this 

classification was more accurate than PC2 and PC3, so we conducted the rest of our tests using PC1. 

Following this, we tested which EEG pre-processing pipeline provided better classification results. We tested 

RELAX (Bailey et al., 2022a; Bailey et al., 2022b) and the pre-processing approach provided as the default with 

the TDBRAIN dataset (van Dijk, van Wingen, et al., 2022), assessing prediction accuracy from the first three 

principal components. We found that the RELAX pipeline provided 60% (+/- 5.43%) balanced accuracy in 10-

fold cross validation tests, while the default approach provided 55% (+/- 8.62%) balanced accuracy. We note 

that many hctsa features are sensitive to artifacts, and that RELAX aims to clean all artifacts from the 

continuous data (including eye movements, muscle activity and all other biological and non-biological artifacts) 

while the default TDBRAIN artifact cleaning focuses only on cleaning drift and eye movements from the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.24.23297492doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.24.23297492
http://creativecommons.org/licenses/by-nc-nd/4.0/


continuous data (with other artifacts intended for rejection in the epoching step). As such, while the default 

TDBRAIN artifact cleaning approach is likely to be suitable for many applications, RELAX performed better in 

combination with hctsa so was applied in the current study.  

Next, we used the RELAX pre-processing approach, and tested different epoch lengths: 20, 30 and 45 seconds. 

We found that 45 second epochs required excluding more participants, as the data from 73 participants did 

not have a 45 second epoch without any extreme artifact. The 45 second epochs also did not provide higher 

classification accuracy than the 30 second epochs, with a balanced accuracy of 59% (+/- 4.26%) compared to 

the 60% (+/- 5.43%) for the 30 second epochs and 58% (+/- 4.47%) for the 20 second epochs. As such, we 

selected to use the 30 second epochs for our primary comparisons of interest. 

Next, we tested whether down sampling the data from 500Hz to 250Hz (to enable faster computation of the 

hctsa features) would adversely affect the classification accuracy. We found that down sampling the data 

provided essentially the same classification accuracy as the 500Hz sampling rate, with the 250Hz down 

sampled data providing classification accuracy of 59% (+/- 4.26%) and the 500Hz data providing classification 

accuracy of 59% (+/- 4.42%). It is also worth noting here that RELAX applied a low-pass filter to the data at 

80Hz (since the vast majority of neural activity is contained below the 80Hz range), so down sampling to 250Hz 

focuses hctsa more appropriately on the neural dynamics that are likely to be detected. As such, we selected 

to down sample our data to 250Hz for our primary analyses. 

Finally, we tested whether eyes-open resting-state recordings might provide higher classification accuracy for 

sex than eyes-closed resting-state recordings. We found that eyes-closed recordings provided higher accuracy 

(59% +/- 4.26%) compared to the eyes-open recordings (57% +/- 4.12%). We also found that more participants 

had to be excluded when using eyes-open recordings (an extra 43 participants from the sex prediction 

dataset). As such, we selected to use eyes-closed recordings in our primary analysis to maximise our sample 

size and potential prediction accuracy. Given these tests, the pre-processing parameters that enabled the 

highest prediction accuracy of sex in the parameter testing dataset were using RELAX (Bailey et al., 2022a; 

Bailey et al., 2022b) to pre-process the data, using 30s epochs, down sampling the data to 250Hz, and using 

eyes-closed EEG recordings. 

Individual feature analysis 
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As mentioned in the text of our main manuscript, our analysis of individual features using the Mann–Whitney 

U test statistic showed that no single individual feature exceeded the FDR-corrected threshold for significance 

(all pFDR > 0.05). This may be partially explained by the fact that the assumption of independence of the tests 

intrinsic to multiple comparison control methods is violated given the substantial correlations between 

features, so the multiple comparison controls likely underestimated the number of significant features in the 

data (Fulcher et al., 2013). In addition to the reduction of the meaningful feature to 11 features based on 

clustering from the original 7304 features, we have provided a cluster plot of the 50 features that showed the 

strongest effects for the difference between responders and non-responders (Figure S1). We have also 

provided violin plots for representative and clearly interpretable exemplar features from these primary 

clusters to aid with interpretation. To determine which types of time-series properties these features 

measured, we organised them using linkage clustering based on absolute Spearman correlations (||) 

between the values provided for each individual feature, implementing a cluster threshold of || > 0.75, which 

yielded groups of features that showed similar behaviour within our dataset. The cluster plot in Figure S1 

depicts two primary clusters of highly correlated features. 

First, the distributional shape of the values was negatively skewed in responders, suggesting their negative 

voltage deflections within PC3 were larger compared to non-responders. A representative feature from within 

this cluster was DN_Moments_3, which was within the top 100 most discriminative features, and measured 

skewness after a z-score transform is applied to the time-series data. This feature indicated that the responder 

group showed a distribution of their time-series values that was more negatively skewed than the non-

responder group. Another representative feature for this cluster is skewness_pearson, which was present in 

the top 50 most discriminative features, and provides a measure of the extent and direction of the skew of the 

data (with the responder group on average showing a more negative skew compared to the non-responder 

group). While skewness_pearson can be influenced by the centre location (overall mean) of the time-series 

data, interpretation of the skewness_pearson feature in the context of DN_Moments_3 indicates the higher 

negative skew in the responder group was the driver for the difference (rather than differences in the mean of 

the data). See Figures S2 and S3 for violin plots depicting the distribution of these features for each group. 

Second, features that represented the computation of the Fourier power spectrum (using the periodogram 

with a Hamming window), followed by the measurement of normalized power in the higher frequencies (i.e., 
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relative to total power) indicated that responders showed greater relative high-frequency power compared to 

non-responders. See Figure S4 for a representational feature from within this significant cluster when 

clustering was performed by k-medoids across all individual features. 

While features measuring these concepts showed the largest effect sizes in comparisons between the two 

groups, none of these features passed our (stringent) multiple comparison control threshold. Therefore, while 

it is likely that the combination of these features was driving the successful multivariate classification, we 

cannot be confident that any individual feature differentiated the two groups. However, we note that when 

the full feature set was reduced to 11 independent clusters, and the meaningful variance from each of these 

clusters were compared between the groups, our results showed that two of these clusters were significant 

(pFDR < 0.05), and that these two clusters contained features similar to those reported from our top 50 features 

(and therefore likely represented the same concepts).  
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Figure S1. Top: A cluster plot of the top 50 features, with features clustered using absolute Spearman 

correlations and a threshold of || = 0.75 for forming clusters, and the primary clusters labelled by the 

concept they represent, enabling visualisation of how strongly the different clusters are related to each other. 

Bottom: The same cluster plot with individual feature labels provided. 
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Figure S2. A violin plot for the DN_Moments_3 feature, which is a measure of skewness after a z-score 

transform is applied to the time-series data. This feature indicated responders showed a negative skew in their 

time-series data. While this feature did not pass our stringent FDR correction based multiple comparison 

controls, it was within a significant cluster after all features were separated into 11 representational clusters to 

reduce the redundancy in the hctsa feature list. 
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Figure S3. A violin plot for the measure of Pearson skewness. This feature indicated responders showed a 

negative skew in their time-series data. While this feature did not pass our stringent FDR correction based 

multiple comparison controls, it was within a significant cluster after all features were separated into 11 

representational clusters to reduce the redundancy in the hctsa feature list. 
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Figure S4. A violin plot for the power in the upper half of the frequencies measured using a periodogram with a 

Hamming window relative to the power in the lower half of the frequencies measured. This feature indicated 

responders showed a higher proportion of power in the upper half of frequencies measured than non-

responders. While this feature did not pass our stringent FDR correction based multiple comparison controls, it 

was within a significant cluster after all features were separated into 11 representational clusters to reduce 

the redundancy in the hctsa feature list. 
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Figure S5. The sum of the point-centred distances between each feature and the centre point across each 

cluster for each number of clusters tested by k-medoids clustering. Note the elbow in the graph at 

approximately 11 clusters. 
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