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Abstract  

Single-cell transcriptome data can provide insights into how genetic variation influences biological processes 

involved in human biology and disease. However, the identification of gene-level associations in distinct cell 

types faces several challenges, including the limited reference resource from population scale studies, data 

sparsity in single-cell RNA sequencing, and the complex cell-state pattern of expression within individual cell 

types. Here we develop genetic models of cell type specific and cell state adjusted gene expression in mid-brain 

neurons in the process of specializing from induced pluripotent stem cells. The resulting framework quantifies 

the dynamics of the genetic regulation of gene expression and estimates its cell type specificity. As an application, 

we show that the approach detects known and new genes associated with schizophrenia and enables insights into 

context-dependent disease mechanisms. We provide a genomic resource from a phenome-wide application of our 

models to more than 1500 phenotypes from the UK Biobank. Using longitudinal genetically determined 

expression, we implement a predictive causality framework, evaluating the prediction of future values of a target 

gene expression using prior values of a putative regulatory gene. Collectively, this work demonstrates the insights 

that can be gained into the molecular underpinnings of diseases by quantifying the genetic control of gene 

expression at single-cell resolution. 
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Introduction 

Recent years have seen a dramatic increase in the use of single-cell datasets to investigate biological 

mechanisms of complex diseases1. These developments offer new mechanistic insights by facilitating the study 

of the cellular and phenotypic consequences of genetic variants at high resolution. For example, these advances 

have allowed interrogation of expression quantitative trait loci (eQTL) at the cellular level1,2,3. One notable finding 

from these studies is the role of dynamic eQTLs with transient and condition-dependent effects1,4.We hypothesize 

that developing in silico models of lineage-specific dynamic regulatory effects on gene expression will extend 

our understanding of the molecular basis of complex diseases. 

Bulk-tissue eQTL analysis such as from GTEx and eQTLGen have highlighted the tissue-specific  manner 

by which genetic variants may regulate gene expression4,5. However, analyses based on these reference panels, 

despite their range of tissues (as in GTEx) or their sample size (as in eQTLGen), may be confounded by cellular 

heterogeneity. The expression differences seen at a tissue level could be attributed to either cell proportion 

difference or intrinsic transcriptome level difference in specific cell types6. This limitation can hinder the 

discovery of a risk gene, as its expression changes may be linked to a confounder or transient phenotype. 

Therefore, it is necessary to analyze gene expression in isolated cell types from a given condition to get an 

unbiased approach and capture context specificity7. This observation has prompted recent efforts to use 

population-scale single-cell-based eQTL analysis in different conditions1,2,8. Using colocalization methods, these 

studies have mapped disease-associated variants to cell-specific eQTLs and reported novel disease associations 

that were not detected at the tissue level8,9. However, single-variant colocalization analyses may limit the power 

to identify underlying mechanisms. Indeed, this approach ignores aggregate effects, which may be driving the 

observed condition specificity.  

For highly polygenic traits, GWAS variants typically have modest phenotypic effects, hence a 

methodology that investigates the joint impact of multiple variants may enhance genetic association analysis10,11. 

Through aggregation, methods such as PrediXcan have demonstrated that gene expression can be imputed using 
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local genetic variants12,13. In Transcriptome Wide Association Studies (TWAS), the imputed expression is used to 

identify disease-associated genes12,13. Causal inference on the gene’s effect on disease can be performed, 

leveraging multiple genetic variants as instrumental variables13.  

Here we develop models of cell-type specific gene expression to further our understanding of context-

dependent gene regulation. The approach leverages single-cell sequencing datasets involving diverse cell types 

and differentiation stages8. The method trains prediction models of gene expression, using genetic variants as 

features, to capture gene expression’s cell-type or temporal specificity. Cellular state, a transient phenotype for a 

given cell type, can create heterogeneity within the cell type, which can limit the detection of context-dependent 

eQTLs9,14,15,16. Therefore, we also train additional prediction models after adjusting for cell state. By applying the 

in silico genetic models to reference individual genotype and GWAS summary data from large-scale studies, we 

further identify genes and regulatory networks associated with broad range of complex disease.   

Results 

Building models of gene expression from single-cell data 

We developed cell-type-specific, genetic-variation-based gene expression models in induced pluripotent 

stem cell (iPSC) differentiated dopaminergic neuronal cells (Methods)17. We used single-cell transcriptomes of 

eight different cell types differentiated across three time points. The scRNA-Seq data contains transcriptome of 

cells captured at day 11 (D11), day 30 (D30), and day 52 (D52). The D11 dataset contains early progenitor cell 

types such as floor plate progenitors and neuroblasts. At D30 and D52, the scRNA-Seq data contains more 

specialized midbrain neurons.  For some cell types (progenitors, dopaminergic, and ependymal), we have scRNA-

Seq data at multiple time points (D30 and D52 or D11 and D52), and we trained models for each time point 

independently. After quality control (QC), normalization, and clustering analysis, we created a pseudo-bulk 

transcriptome matrix by aggregating the expression profile for each gene across individual cells within a specific 

cell type at a specific time point (Methods).  Cell types, with cell count ranging from 9779 to 134084, were used 

for downstream analysis. For individuals with matching genotype data, we trained a set of “cell type specific 
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models” for 8 different cell types (Methods). To account for heterogeneity within a cell type, we also generated 

a second set of models, “cell state adjusted models”. A schematic diagram of the methodology is described below 

in Fig 1.  

 

 
 

 

Fig. 1. Training models of gene expression in cell types at various differentiation time points using single-cell transcriptome 
datasets. The workflow illustrates gene expression model building in cell types at various time points. The training dataset consists of 
single-cell transcriptome profiling for cells undergoing differentiation at three time points as well as matching genotype data. We created 
two sets of gene expression prediction models: cell type specific models and cell state adjusted models using a machine learning method. 
For the latter, we used principal components as covariates to adjust for continuous cell states (see Methods).  
 

 

Prediction performance of cell type specific and cell state adjusted models 

We identified imputed genes (iGenes) across the 8 cell types and 3 time points. The number of detected 

iGenes varied depending on the cell type as well as the time point (Fig. 2a). The mean number of iGenes was 

1486 at D11, 1398 at D30, and 1194 at D52.  For the cell types with models at different time points, such as the 

floor plate progenitors (FPP) and proliferating floor plate progenitors (PFPP), the number of iGenes decreased 

(from 1662 to 1243) as the cells became more specialized. The decrease in the number of iGenes with 

differentiation time mirrors the decrease in the number of discovered eQTLs observed in the previous work using 
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the same dataset2. We also observed a greater number of iGenes and improved performance with increased sample 

size (Fig 2b.). We compared the number of iGenes that are cell type specific with those genes that are shared 

between cell type models of the same time point. Our results show that a greater percentage of the iGenes were 

imputed only at specific cell types; this is evident in all time points (Supplementary Figure S1).  

We evaluated the prediction performance (R2 values) of the cell type specific and the cell state adjusted 

models at three time points, D11, D30 and D52 (Fig. 2e). For the cell type models, we observed an average R2 of 

0.15 at D11, 0.13 at D30, and 0.12 at D52. The median performance was 0.11 for the gene expression prediction 

models at D11 and D30, a median of 0.10 for D52 (Fig. 2d). We further compared the correlation of the prediction 

performance among the different cell type models. We observed strong correlation (rho = 0.56) between the cell 

type models at the same time point (Fig. 2c). 

Next, we compared prediction performance between time points in the same cell type. We observed that 

some genes showed improved prediction performance at a specific time point (Supplementary Figure S2). We 

further examined the performance of early lineage cell type models (D11) in their ability to predict late gene 

expression (D30 or 52) in a cross-validation framework. To quantify the accuracy of the prediction, we tested the 

correlation of the genetically predicted expression at the earlier time point with the measured transcriptome for 

that cell type18. To account for the bias that may arise due to sample overlap, we compared the R2 calculated using 

the actual expression dataset and the R2 calculated using randomly selected gene expression datasets in up to 1000 

permutations. Those genes with an empirical p-value of < 0.05 were deemed significantly predicted. We observed 

that earlier time point modes (D11 or D30) were only able to predict smaller portion of the iGenes at the later 

time point (D30 or D52), emphasizing that gene expression prediction is sensitive to cellular developmental stage. 

The significantly predicted genes also have higher baseline mean expression than the remaining genes 

(Supplementary Figure S9).  
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Characterizing cell state adjusted models of gene expression. 

Aggregating cells into discrete clusters during model training imposes limitations on capturing the 

continuous transcriptional landscape8,15,16,19. Using a dimensionality reduction method, the single-cell 

transcriptome data can be decomposed to multiple functional cell states. Following quality control procedures, 

we initially computed Principal Components (PCs) to characterize cell states across all cell types at each time 

point. Subsequently, we accounted for the influence of the top 10 PCs, by regressing them out from the normalized 

expression data and utilizing the residuals for model training (Fig. 2e). By employing this approach, we were able 

to construct prediction models that are independent of continuous cell states. In contrast to the cell type models 

we developed above, these new models offer the potential to examine the influence of cell state independence on 

model training9,15,16. We observed that individual PCs correlated with lineage specific cell type marker genes (Fig. 

2e), suggesting a notable relationship between cell type identity and cellular state (Fig. 2g, Supplementary Figure 

S4)20. 

We analyzed the performance of the cell state adjusted models. As in the cell type specific models, the 

number of iGenes decreased at later time points (Fig. 2f). In addition, some genes were predicted with higher 

accuracy using the cell state adjusted models whereas for other genes, the performance was enhanced using the 

cell type models (Supplementary Figure S8). We investigated whether the improved performance from the cell 

state adjusted models for certain genes was due to their low expression levels in the cell type. Our analysis 

revealed that there was no significant association (Fisher exact p-value 0.514) between low expression (defined 

as the lowest 25% mean log expression) and cell state specificity, suggesting that the performance gain could not 

be attributed to the genes’ expression levels in the cell type. As TWAS power to detect trait associations depends 

on model performance (reflecting the extent to which the models capture the (cis) heritability of gene expression), 

we make available both sets of models for downstream applications (see Data Availability).  
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Fig. 2. Comparison of prediction performance between cell type and cell state adjusted models. a, The number of imputable genes 
(iGenes) for the 8 cell types across three developmental time points. b, Sample size and prediction performance R2 across the three time 
points. c, Correlation of prediction R2 between the different cell type models. d, Similar empirical distribution of prediction performance 
observed across gene expression models in each cell type. e, UMAP plots of the set of dopaminergic neurons at D11 and principal 
components (PCs) representing continuous cell states. g, Correlation of calculated PCs with expression of marker genes for the 
Neuroblast (NB) cell types at D11. f, Number of iGenes for cell state adjusted models by differentiation time point. FPP = Floorplate 
progenitors, PFPP = Proliferating floorplate progenitors, NB= Neuroblasts, DA = dopaminergic neurons, Epen = Ependymal cells, Ser 
= Serotonergic cell types, Astro = Astrocyte -like cell types, Neur1 = Neurons. D11 = day11, D30 = day 30, D52 = day 52, PC = 
Principal Component, UMAP = Uniform Manifold Approximation and Projection 
 

 

 

a. b. c.

d. e.

f. g.
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Cell-type and time profile specificity of gene expression 

To quantify gene expression specificity across time points, we calculated the 𝜏 statistic from  the log 

normalized cell-type specific RNA sequence21 (Methods). The value of 𝜏 ranges between zero and one. As 𝜏 

approaches one, gene expression becomes more highly cell type specific. As expected, we found that with 

differentiation, there was an increase in the 𝜏 value, which moved increasingly closer to one (Fig. 3, 

Supplementary Table 14 &15). We also compared 𝜏 for each gene between pairs of time points. We observed the 

highest shift or difference in 𝜏 between D11 and D30 as compared to between D30 and D52 (Fig. 3a & 3b), 

indicating that change in cell type specificity between time points is itself dynamic. We examined whether genes 

exhibiting high cell type specificity, as indicated by a high 𝜏 value, also displayed elevated predicted performance 

in the cell type models. Our findings, based on the D30 cell type prediction R2 and 𝜏 value, demonstrate a negative 

correlation between performance and cell type specificity (Fig 3e). To determine the functions of the broadly 

expressed genes, we performed a gene ontology enrichment analysis using the bottom ten percentile of 𝜏.  Eighty 

percent of these genes were also predicted in at least one brain tissue PrediXcan model. Moreover, these genes 

were enriched in basic biological processes such as cytoplasmic translation, gene expression, cellular respiration 

(Supplementary Figure S5). However, we also observed that some genes with high τ (for example, WFDC3, 

RPL12) displayed improved performance in certain cell types, strengthening the premise that context dependence 

is important for gene expression prediction.  
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Fig. 3. Gene expression breadth and cell type specificity across single cells at different time points. a-c, The tau (τ) index as a 
measurement of gene expression similarity between cell types at the three time points (D11, D30, and D52). Each dot in the scatter plot 
represents the 𝜏 value for a specific gene. A value of τ close to one shows high cell type specificity of gene expression, while a value of 
τ close to zero shows less specificity and wider breadth of expression across different cell types d, Distribution plot for 𝜏 values across 
time points. e, The correlation between 𝜏 and prediction performance R2  for cell type models at D30.  The curve was fitted with a locally 
weighted smoothing (LOESS) regression.  
 

Application to SCZ GWAS   

We applied the models of gene expression in the 8 available cell types to the latest schizophrenia (SCZ) 

GWAS from the Psychiatric Genomics Consortium (PGC3)22. We leveraged the GWAS summary statistics data 

to identify gene-level associations with SCZ susceptibility. Notably, we identified genes that were associated with 

SCZ in only one cell type as well as SCZ associated genes shared among all the cell types (Table 1). Thus, some 

disease associations were highly cell type-specific while some were common across all the cell types. 

Interestingly, we also observed differences in associations for a given cell type model at different time points 

(Supplementary Table 2,3), highlighting the dynamics of implicated genes.  

We asked whether each significantly associated gene in a cell type model would have been detected using 

the standard tissue-level PrediXcan models12. Out of the 76 SCZ associated genes across all cell type models, we 
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observed that 25 were indeed also significant in the tissue models. Of the remaining genes, 37 were predicted in 

at least one cell type or a tissue brain model, and 14 genes were predicted only in the cell type models 

(Supplementary Table 2). We examined the genes that were predicted by both tissue and cell type models and 

assessed whether there was any improvement in prediction performance for the cell type models. Some genes did 

indeed show improvement in the cell type models but others had better performance at the tissue level 

(Supplementary Figure S3, S10). The latter would be expected, for instance, if the tissue was an imperfect proxy 

for a causal non-represented cell type.  

We tested whether the set of genes predicted at an earlier time point displayed a greater departure from 

null expectation than the set of genes predicted at a later time point. We observed that the degree of departure 

from the null depended on cell type and time point, indicating strong context specificity of the associations of 

GReX with SCZ (Supplementary Figure S6). 

Table 1. GReX associations with schizophrenia that are unique to cell type models 

Cell type Time point  Gene  Ensemble gene pvalue  prediction R2  

Floor plate progenitors (FPP) day 11 ZFP57 ENSG00000204644 1.41E-14 0.07752337 

Floor plate progenitors (FPP) day 11 ARL17B ENSG00000228696 3.15E-11 0.34033268 

Floor plate progenitors (FPP) day 11 ZNF165 ENSG00000197279 2.01E-08 0.09104885 

Floor plate progenitors (FPP) day 11 CHRNA3 ENSG00000080644 3.15E-06 0.23994094 

Floor plate progenitors (FPP) day 11 HYI ENSG00000178922 1.17E-05 0.34983064 

Neuroblasts (NB) day 11 DHX16 ENSG00000204560 5.07E-14 0.07225118 

Neuroblasts (NB) day 11 WDR82 ENSG00000164091 3.85E-06 0.074624159 

Neuroblasts (NB) day 11 CS ENSG00000062485 7.29E-06 0.146730957 

Neuroblasts (NB) day 11 TNXB ENSG00000168477 3.56E-05 0.073614859 

Neuroblasts (NB) day 11 SMDT1 ENSG00000183172 6.52E-05 0.1111063 

Proliferating FPP (PFPP) day 11 BOLA1 ENSG00000178096 1.80E-08 0.08429438 

Proliferating FPP (PFPP) day 11 HSPA1B ENSG00000204388 1.19E-07 0.16794496 

Proliferating FPP (PFPP) day 11 ZFP57 ENSG00000204644 2.58E-07 0.10862589 

Proliferating FPP (PFPP) day 11 SMDT1 ENSG00000183172 8.38E-06 0.54342332 

Floor plate progenitors (FPP) day 11 DUSP7 ENSG00000164086 2.43E-05 0.14350724 
Floor plate progenitors (FPP) day 30 SF3B4 ENSG00000143368 1.16E-09 0.171576909 

Floor plate progenitors (FPP) day 30 PITX3 ENSG00000107859 2.03E-07 0.155739762 

Floor plate progenitors (FPP) day 30 XPNPEP3 ENSG00000196236 2.45E-06 0.190724139 

Floor plate progenitors (FPP) day 30 RPL12 ENSG00000197958 2.23E-05 0.344603902 

Floor plate progenitors (FPP) day 30 CIAO1 ENSG00000144021 2.65E-05 0.136599462 

Floor plate progenitors (FPP) day 30 FAM72C ENSG00000203817 2.83E-05 0.111795563 

Proliferating FPP (PFPP) day 30 GABBR1 ENSG00000204681 8.99E-07 0.066050948 

Proliferating FPP (PFPP) day 30 RPL13 ENSG00000167526 4.63E-06 0.101211532 

dopaminergic (da) day 30 MPHOSPH9 ENSG00000051825 6.07E-13 0.25087399 
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dopaminergic (da) day 30 NELFE ENSG00000204356 6.51E-08 0.16189148 

dopaminergic (da) day 30 KCNB1 ENSG00000158445 6.54E-08 0.14616822 

dopaminergic (da) day 30 ZNRD1 ENSG00000066379 1.28E-06 0.06704342 

dopaminergic (da) day 30 SHC1 ENSG00000160691 2.69E-06 0.08372363 

dopaminergic (da) day 30 IFT81 ENSG00000122970 9.08E-06 0.06511382 

dopaminergic (da) day 30 CAMKK2 ENSG00000110931 1.20E-05 0.58603189 

dopaminergic (da) day 30 RPL12 ENSG00000197958 3.16E-05 0.10602019 

Ependymal -like  day 30 PHF7 ENSG00000010318 7.45E-07 0.166881888 

Serotonergic  day 30 MPHOSPH9 ENSG00000051825 7.67E-19 0.271484955 

Serotonergic  day 30 NT5DC2 ENSG00000168268 3.91E-07 0.066129462 

Serotonergic  day 30 LSM2 ENSG00000204392 3.25E-05 0.077044896 

Floor plate progenitors (FPP) day 52 SLC39A4 ENSG00000147804 4.04E-06 0.063752163 

Floor plate progenitors (FPP) day 52 ZSCAN12 ENSG00000158691 5.35E-06 0.119364051 

Proliferating FPP (PFPP) day 52 TRIM39 ENSG00000204599 1.24E-13 0.09216467 

Proliferating FPP (PFPP) day 52 SFMBT1 ENSG00000163935 9.87E-07 0.06778971 

Proliferating FPP (PFPP) day 52 LY6G5B ENSG00000240053 4.77E-06 0.07762385 
Proliferating FPP (PFPP) day 52 ECM1 ENSG00000143369 5.07E-05 0.11326657 
Proliferating FPP (PFPP) day 52 CRYBB2 ENSG00000244752 8.08E-05 0.33644001 

dopaminergic (da) day 52 HEPN1 ENSG00000221932 1.03E-06 0.089131099 

dopaminergic (da) day 52 ZBTB18 ENSG00000179456 1.06E-06 0.073885592 

dopaminergic (da) day 52 LRRC4 ENSG00000128594 6.44E-06 0.054088373 

Ependymal -like  day 52 NPIPB13 ENSG00000198064 2.57E-11 0.137869485 

Ependymal -like  day 52 RAP1A ENSG00000116473 3.35E-06 0.072117707 

Ependymal -like  day 52 ATP23 ENSG00000166896 1.01E-05 0.099310659 

Ependymal -like  day 52 HLA-DRA ENSG00000204287 1.11E-05 0.110777535 

Ependymal -like  day 52 HSPA1B ENSG00000204388 1.31E-05 0.140574217 

Neurons day 52 HIST1H2BN ENSG00000233822 7.10E-10 0.09508357 
Neurons day 52 ADSL ENSG00000239900 9.46E-09 0.06582031 
Neurons day 52 C6orf136 ENSG00000204564 4.15E-05 0.12737249 

Neurons day 52 DAXX ENSG00000204209 5.38E-05 0.10967416 
Astrocyte- like day 52 DESI1 ENSG00000100418 1.68E-08 0.114742637 

Astrocyte- like day 52 NCEH1 ENSG00000144959 1.69E-05 0.134359495 

 

Gene level PheWAS of SCZ-associated genes 

For the genes significantly associated with SCZ in just the cell type models (Table 1), we sought to 

characterize their effects on the disease phenome by performing phenome-wide association studies (PheWAS). 

We applied our cell-type specific and cell state adjusted models to > 1500 UK Biobank GWAS summary data to 

obtain gene-level associations (Fig. 4). As an example, we chose the genes that were significantly associated with 

SCZ and outside the MHC region (CHRNA3, ARL17B, and HYI) when using the model for floor plate progenitors 

at D11. The traits implicated by these genes in the PheWAS analysis highlight the enrichment for blood cellular 

traits such as erythrocyte and leukocyte count as well as red blood cell distribution width. The link between blood 
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cell traits and SCZ has been previously noted, as well as the role of immune system in the disease etiology23,24,25.  

For another cell type model example, see Supplementary Figure S7.  To enable downstream applications, we 

provide the full list of associations from the application of the cell type models to GWAS summaries of UKBB.  

 
Fig. 4. PheWAS of genes associated with SCZ using the FPP models at D11. Each data point in the Manhattan plot represents the 
association of a SCZ-associated gene that was significant only using the floor plate progenitors derived cell models at D11.  The x-axis 
is the list of phenotypes grouped by category.  The y-axis is the negative log10 of p-value from the association. The color coding of the 
data points represents disease classes, red horizontal line represents the Bonferroni threshold, and blue horizontal line represents p-value 
threshold of 0.05. 
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Post-TWAS analysis: Identifying regulatory networks for SCZ associated genes  

The identification of regulatory mechanisms that act on individual genes can provide context-specific 

understanding of transcriptional regulation and shed light on the role of dysregulation in disease26-28. Here, we 

sought to identify genes that are putative targets of significantly associated SCZ genes in the cell type models. 

Analyzing time-series data for gene networks provides a holistic view of the evolving transcriptome in complex 

biological systems29. Towards this end, we performed Granger causality inference, to test the predictive ability of 

the expression profile at a putative regulator at a given time point (D11 or D30) with the expression level of a 

hypothesized target gene at a later time point (D30 or D52) (see Methods). Our framework assumes the following 

properties of a causal gene: 1) temporal precedence (i.e., the expression of a causal gene precedes the effect 

[expression] on a target gene) and 2) informativeness (i.e., the expression of a causal gene harbors information 

about the future expression values of the target gene). Applying the cell type models to individual level reference 

genotype data from 1000 Genomes European-ancestry samples, we leveraged the genetically determined 

expression to identify regulatory genes that were Granger-causal on their targets. For significant Granger-causal 

pairs, we further performed motif enrichment analysis using the HOMER method (Fig. 5a) to identify a potential 

(transcription-factor-mediated) mechanism underlying the observed Granger-causal relationships. For 

illustration, we show the Granger causality output for the SCZ associated gene HLA-DQB1 in dopaminergic cell 

type model at D52 (p-value = 6.25e-07) (Fig. 5b), including, at D30, NELFE, a subunit of the NELF complex, 

which negatively regulates the elongation of transcription by RNA polymerase II.  

 The QQ plot of the association results for the genes from the application of the D30 models displayed a 

departure from the null expectation (Fig. 5c). Furthermore, to confirm whether these associations were driven by 

a common transcription factor (TF), we tested whether the promoters of these genes were enriched for the same 

motif using the HOMER method (Methods). Notably, our results showed an enrichment for both known and de 

novo motifs (Fig. 5d-e, Supplementary Figure S11). In summary, we identified a list of enriched transcription 
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factors which can potentially regulate a network of disease relevant genes upstream. The full list of results for 

other cell types can be found in Supplementary Tables 16-19. 

 
Fig. 5. Identifying regulatory networks using Granger causality inference on longitudinal genetically determined expression 
data. a, The diagram illustrates the Granger causal inference framework for testing the effect of a putative regulatory gene on a target 
gene. The framework incorporates two cell type models at different time points and reference individual level genotype data. b, 
Prioritized regulatory genes obtained from the Granger causality inference for the gene HLA-DQB1, which is associated with 
schizophrenia using the cell type model for DA52. c, Q-Q plot showing the gene-level associations for the genes at D30 that are 
Granger-causal on a SCZ-associated gene at D52. d, Top enriched de novo and known transcription factor motifs for the prioritized 
genes found to be Granger-causal on the gene HLA-DQB1. e, Motif network showing the relationship between the transcription factor 
HNF4a and the other genes at D30, which are Granger-causal on HLA-DQB1 at the later time point D52. Node color represents SCZ 
association p-value at D30. 
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Discussion 

Our study investigated the dynamic regulation of gene expression using single-cell transcriptome data 

from differentiating cell types. We trained genetic models for eight distinct mid-brain neuronal cell types derived 

from iPSCs. Through this, we identified genes whose effects on disease risk were discernible during specific 

developmental stages. Our methodology enables the exploration of context-dependent genetic control of gene 

expression. 

Despite the smaller sample size used in training the cell type models compared to the tissue models, we 

identified iGenes with count roughly of the same order as the number discovered using the PrediXcan tissue 

models. For example, the number of iGenes identified in brain hippocampus and hypothalamus (n= 81 and 82, 

respectively) in the earlier GTEx v6 release is 3441 and 3641, respectively; for the cell type models such as floor 

plate and proliferating progenitors (n=60 and n=64, respectively), the count is 1662 and 1884, respectively. This 

suggests that enhancing the training set sample size can lead to improved prediction in the cell type models, as 

also previously observed in the tissue models. Additionally, we detected many iGenes that were specific to 

individual cell types. By adjusting for cellular state, we were able to identify genes whose expression could not 

be imputed in the baseline cell type models. We also predicted more genes at an early stage, despite the lower 

sample size, than at a later stage; this finding is similar to that from the previous study, where more eQTLs were 

detected at the progenitor (earlier) cellular stage compared to later time stages. This observation could potentially 

be explained by our result that revealed a negative correlation between prediction performance and the cell type 

specificity of gene expression, as quantified by τ. As genes exhibit broader expression and possess less specialized 

functions in initial developmental stages, they may be more readily imputable using our model assumptions. 

However, we also observed that some genes with high τ (i.e., not broadly expressed) can have improved prediction 

performance in specific cell types or time points. This suggests that, though performance for these genes may be 

lower than for broadly expressed genes, leveraging the right context will improve prediction performance. In sum, 

these results indicate that training models using single-cell RNA sequencing data derived from cells in the process 
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of specializing allows incorporation of dynamic eQTLs in gene prediction, identifying new iGenes that were not 

well predicted at the tissue level.  

When applied to the SCZ GWAS data, the cell type models detected 51 significant associations that are 

unique to this class of models. This gain in association count can be attributed to new predicted genes (e.g., 

MPHOSPH9, HEPN1, PITX3, TRIM19).  Another reason for the gain in the number of associations was improved 

prediction performance such as in the case of these genes (CUL3, PHF7, LSM2, CS, WBP1L). Generally, we 

observed improved prediction performance for the HLA genes in the cell type models (HLA-C, HLA-B, HLA-

DMB, HLA-DMA). Importantly, some genes were found to be uniquely associated with SCZ at the tissue level 

but were neither imputed nor passed the significance threshold at the cell type level. This suggests that we may 

not have the relevant cell type and further highlights the need for more comprehensive single-cell transcriptome 

data. Overall, our approach shows that incorporation of cell type and differentiation time specific eQTLs in 

TWAS, can identify disease gene associations not accessible via the tissue models, hence uncovering one of the 

sources of missing regulation. By collectively using cell type, time point, and context specific genetic prediction 

models, these findings provide important insights into context-specific genetic regulation of gene expression and 

provide a strategy to enhance the identification of new disease associations.  

We also implemented a causal inference framework, leveraging the time series single-cell transcriptomic 

data to identify a wider network of disease relevant genes. In contrast to previous methods such as SINGE, LEAP, 

and SINCERITIES, our approach does not depend on pseudo-time ordering of cells37,38,39. Moreover, most of these 

methods calculate gene correlation within each pseudo-time window, while some methods further generate the 

correlation matrix across time points. Here, we implemented a bivariate regression approach, to test for the 

Granger-causal effect of the expression of a putative regulator at an initial time point on the expression of a target 

gene at a later time point. Even though the number of time points is limited, we found that the type I error was 

well calibrated. In addition, rather than using directly measured gene expression, our approach used the 

genetically determined expression, which, by design, reduces the environmental confounding, as an input.12 By 
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selecting genes Granger-causal on an SCZ associated gene, and subsequently conducting motif enrichment 

analysis using HOMER, we identified transcription factors (TFs) and co-regulated genes that may play a role in 

the development of the disease. Our results showed that we can capture transcription-factor-mediated regulation, 

opening new possibilities for connecting dynamic gene regulation with disease mechanism. 

The framework presented here has certain limitations. Given the dataset's emphasis on differentiation, the 

initial time point primarily consists of progenitor cells, while the subsequent time points exhibit a higher 

prevalence of mature neuronal cell types. It is worth noting that certain cell types have only one available time 

point for RNA sequencing data, leading to the training of a single time point model. Consequently, we conducted 

separate investigations to examine the influence of cell type and time point specificity on gene expression 

prediction. A more comprehensive analysis of time sensitivity would be feasible if data were accessible to track 

multiple cell types at multiple time points. Moreover, lack of similar datasets makes replication studies 

challenging. Nevertheless, we cross-validated the prediction performance as well as GWAS association results 

using well established tissue level models from PrediXcan. We expect that increasing sample size in similar 

datasets will improve prediction and facilitate improved performance. Although the models were not trained using 

cells directly obtained from human patients, the utilization of induced pluripotent stem cells (iPSCs) and derived 

neurons has proven valuable as they have been employed to identify target genes for subsequent functional 

validation1,17.  

Methods 

HipSci genotype processing  

We obtained the genotype data for the human induced pluripotent cell lines (iPSCs) derived from dermal 

fibroblasts generated by the HipSci consortium17.  The samples were of European ancestry. The genotype data 

had been imputed and phased using reference panels from the 1000 Genomes Phase 1 and rare variants from 

UK10K. Individual-level genotype data were retrieved through the European Nucleotide Archive (ENA)17. 

Single-sample VCF files were merged using BCFtools and subsequent QC was performed using plink v.1.9. SNP-
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level. Using the --geno and --mind functions in plink respectively, we removed SNPs and individuals that are 

missing in a large proportion of the data. Variants and individuals with missing genotype data were removed. 

Moreover, variants were filtered based on the minor allele frequency (MAF) threshold of 0.05 and Hardy-

Weinberg equilibrium (HWE) value of 1e-630. Only autosomal variants were chosen for the subsequent steps. 

Around 6,505,755 variants passed quality filters and were used as input for training models.   

Single-cell data preprocessing and model training 

For the single-cell datasets, processed 10x genomics data for cell clusters of each of the time points were 

downloaded2. The processed data were normalized to the total number of counts per cell and cell clusters were 

annotated based on marker genes manually curated from literature. We used the scanpy python package (version 

1.4) for downstream analysis steps and QC of cell by gene matrices31. We followed QC steps as outlined in the 

Theis protocol32.  We filtered out dying cells based on their mitochondrial fraction level (> 20%) and gene counts 

lower than 2000 and removed cells with lower than 500 genes expressed. For the cells that passed QC, we used 

counts per million (CPM) to normalize and log transformed the data. To prepare the pseudo-bulk gene by sample 

matrices, we aggregated the gene expression measures for each cell type at a given time point, across individuals, 

following the recently published report by Cuomo et al. (2020) that shows that mean aggregation results in the 

discovery of a maximal number of eQTLs relative to other methods such as median and sum33. We applied 

quantile normalization and used PEER to adjust for hidden covariates34. Following the GTEx eQTL 

recommendation to use 15 PEER factors for sample size less than 100, we  performed PEER to adjust for hidden 

covariates34. We used the residual expression data to train the cell type specific models. We applied elastic net 

machine learning implemented in the R package glmnet12, on matching genotype and normalized gene expression 

data for each cell type to train the gene expression prediction models.  The SNPs located within 1Mb distance of 

a gene’s transcription start site were used as potential features in the model training.  
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Modeling cell state adjusted models 

To train models that account for transitional cellular states, we extracted the scaled gene expression for 

cells at each time point. Following Nathan et al. (2022) and Gupta et al, (2023), we first calculated the top 10 

PCs using the scaled expression8,16. We then regressed out the effect of the 10 PCs, treating them as covariates 

against the scaled expression in linear regression analysis8,15,16. We used the residual expression output to generate 

a pseudo bulk data matrix by aggregating cells for individuals. We further quantile normalized and adjusted for 

unknown covariates using PEER34. We used the resulting data as input for training models that are agnostic of 

cell state for each time point.  

Measuring gene expression specificity in cell types  

To quantify gene expression similarity across cell types in specific time points, we used the τ index 21:  

𝜏 =#
1− 𝑥!'
𝑛 − 1

"

#$%

 

where, 

𝑥!' =
𝑥#

max
%&'&"

{𝑥'}.  

and 𝑥# is the expression level of the gene in tissue or cell type 𝑖 and 𝑛 is the number of cell types. For this analysis, 

the aggregated sc RNAseq data was normalized by CPM and log transformed. Genes not expressed in any of the 

cells at a time point were excluded. The τ index was then calculated for the cell types for each time point. When 

τ is zero, the gene is expressed similarly across the cell types during the time point. When τ is one, the gene is 

expressed in only a particular cell type21. We calculated the Pearson correlation between prediction performance 

and the τ value.  

Cell type and bulk tissue TWAS of schizophrenia GWAS 

We downloaded the GWAS summary statistics dataset for SCZ from the Psychiatrics Genomics 

Consortium (PGC) and applied the models from the current study35. Using the summary-based S-PrediXcan 

approach, we also applied the 13-brain tissue (GTeX) PrediXcan models to the GWAS summary data and 
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compared the tissue-level results and the cell-type level results36. We chose significantly associated genes based 

on Bonferroni correction of (0.05/#of gene in model in each cell type). In addition, the QQ plot of association p-

values was generated for each cell type with multiple time points. Moreover, the effect size of select genes was 

compared across cell types.  

Gene level PheWAS of schizophrenia-associated genes 
 

For the genes significantly associated with SCZ in the cell type models only, we sought to characterize 

their broad effects on the disease phenome by performing phenome-wide association (PheWAS). We applied the 

cell type specific models to > 1000 UK Biobank GWAS summary data using S-PrediXcan to obtain gene-level 

associations. We present the PheWAS results in Zenodo. To facilitate investigation of the phenome wide 

associations for the imputed genes, we further developed a complementary software package called “sctwas”. 

Leveraging the cell type model application to the UKBB GWAS data, the package allows users to investigate the 

list of phenome wide associations for a set of genes.  

Causal inference framework in single-cell time series 

Our framework trains models of gene expression in cell types using single-cell transcriptomic 

measurements; these models are then applied to GWAS data to identify trait-associated genes. The framework 

has all the benefits of TWAS and may be extended via Mendelian Randomization, as previously implemented in 

JTI, to utilize genetic instruments to evaluate the causal effect of a gene (seen as exposure) on an outcome13. 

Here we develop a complementary “causal” inference framework, leveraging the time series single-cell 

transcriptomic data. A causal gene on a target gene is characterized by a) temporal precedence (whereby the 

causal gene is prior to the effect on the target gene) and b) informativeness (whereby the causal gene holds 

information on the future values of the target gene). Let 𝑔 be a causal gene for the target gene 𝑦. Let 𝑔( and  𝑦( 

be their expression level at the “current” time point 𝑡. A univariate model of 𝑦 formulates the expression level 𝑦( 

in terms of the expression level 𝑦) from 𝑛 previous time points, 1 ≤ 𝑠 ≤ 𝑛, plus a residual term 𝛿( at time point 

𝑡: 
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𝑦( = 𝑎* +#𝑎#𝑦(+#

"

#$%

+ 𝛿( 

Here, for each time point 𝑖 (where 1 ≤ 𝑖 ≤ 𝑛), 𝑎# is the coefficient representing the marginal effect of 𝑦 at that 

given time point on 𝑦 at the current time point. Next, we model the effect of the causal gene 𝑔 as follows: 

𝑦( = 𝑎* +#𝑎#𝑦(+#

"

#$%

+#𝑏'𝑔(+'

,

'$-

+ 𝜀( 

We note that this model explicitly implements the two conditions of temporal precedence and informativeness 

described above. When these conditions are met, we say 𝑔 is Granger-causal  on 𝑦. In the model, the expression 

level of the causal gene 𝑔 at a previous time point 𝑡 − 𝑗, where 𝑢 ≤ 𝑗 ≤ 𝑣, determines the expression level 𝑦(, 

with marginal effect 𝑏'. If the marginal effect 𝑏' is nonzero, for some time point 𝑗, then 𝑔 is Granger-causal on 𝑦. 

We test the null hypothesis of Granger causality that the lagged values of 𝑔 do not contribute to the variation in 

𝑦, i.e., 𝑏' ≠ 0 for each 𝑗.  

To perform Granger causality inference on genetically determined expression, we first applied the cell 

type models to individual level genotype data from the European population of 1000 genomes (n=496).  We 

restricted this analysis to the cell types that have multiple time points such as FPP, EPEN, DA, and PFPP. Using 

the bivariate regression approach mentioned above, we calculated the F-stat value for each gene pair across time 

points to identify significantly correlated genes. 

Motif enrichment using HOMER 
 

The Granger causality framework can be used to generate a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of 

vertices and 𝐸 is the set of edges, from the single-cell time series transcriptomic data. The graph structure 

encodes the functional (Granger causality derived) relationships between pairs of genes, which are represented 

by the adjacency matrix 𝐴 = [𝐴#,']: 

𝐴#,' = H1, if	gene	𝑗	is	GC	on	gene	𝑖
0, otherwise																									 
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We examined whether Granger causality of a potential regulatory gene on a SCZ-associated gene could 

be explained by transcription-factor-mediated regulation. In effect, for SCZ-associated genes (represented as a 

subset of the rows of the adjacency matrix 𝐴), we considered the set of potential regulators (represented as a 

subset of the columns of 𝐴) with 𝐴#,' = 1. We obtained preconfigured human promoter sets from the HOMER 

website (http://homer.ucsd.edu/homer/index.html).  Using the command line function findMotifs.pl, we searched 

for motifs enriched in the putative target genes. This tool performs promoter based-motif analysis for both de 

novo and known TFs.  

Data availability  

The cell type and cell state adjusted prediction models are available on Zenodo at (to be provided up on 

publication). Single-cell transcriptome data across dopaminergic neuron differentiation can be found on Zenodo 

(https://zenodo.org/record/4333872). The individual level genotype data are downloadable from the Human 

Induced Pluripotent Stem Cells Initiative (HipSci) website (https://www.hipsci.org/data ). The summary statistics 

for the PGC data are available on the consortium’s online data repository (https://pgc.unc.edu/for-

researchers/download-results/ ). Summary statistics for the UKBB GWAS are available at the Neale Lab online 

data repository (http://www.nealelab.is/uk-biobank). The tissue-specific PrediXcan gene expression models 

leveraged here are available for download from the JTI repository (https://doi.org/10.5281/zenodo.3842289). 

Phased individual level genotype data from the 1000 Genomes project can be downloaded from 

(https://www.internationalgenome.org).  

Code availability  

All code for the QC of single-cell sequencing data set, model training, and reproduction of figures is 

hosted at our GitHub repository (https://github.com/gamazonlab/SingleCellPrediXcan). The code for performing 

transcription factor motif enrichment is available at the HOMER website (http://homer.ucsd.edu/homer/motif/). 

We also provide a complementary R package to allow phenome wide investigation of gene associaitons from the 
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application of cell type models to UkBB GWAS summary statistics. The latest version of the package and details 

can be found in the github link mentioned above. Work-flow diagrams are created with BioRender.com. 
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