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Abstract 
Genetic correlation refers to the correlation between genetic determinants of a pair of traits. 

When using individual-level data, it is typically estimated based on a bivariate model 

specification where the correlation between the two variables is identifiable and can be estimated 

from a covariance model that incorporates the genetic relationship between individuals, e.g., 

using a pre-specified kinship matrix. Inference relying on asymptotic normality of the genetic 

correlation parameter estimates may be inaccurate when the sample size is low, when the genetic 
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correlation is close to the boundary of the parameter space, and when the heritability of at least 

one of the traits is low. We address this problem by developing a parametric bootstrap procedure 

to construct confidence intervals for genetic correlation estimates. The procedure simulates 

paired traits under a range of heritability and genetic correlation parameters, and it uses the 

population structure encapsulated by the kinship matrix. Heritabilities and genetic correlations 

are estimated using the close-form, method of moment, Haseman-Elston regression estimators. 

The proposed parametric bootstrap procedure is especially useful when genetic correlations are 

computed on pairs of thousands of traits measured on the same exact set of individuals. We 

demonstrate the parametric bootstrap approach on a proteomics dataset from the Jackson Heart 

Study.  
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Introduction 

Genetic correlation measures the relationship between a pair of traits through their shared genetic 

variability (1). It is a related concept to heritability, which measures the overall genetic 

contribution to a trait (2). Specifically, genetic correlation is defined as the correlation between 

the genetic effects of two traits. It can be estimated using individual-level data, or using 

summary statistics from genome-wide association studies (GWAS) (3). Scientific papers 

studying genetic architecture of health and behavioral phenotypes now routinely report genetic 

correlation estimates between phenotypes, sometimes as a step preceding follow up analysis, e.g. 

with polygenic risk scores or Mendelian randomization analyses (4–7).  Genetic correlations are 
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further being studied at the local genomic region level (local genetic correlations), or stratified 

by genetic annotations, to localize sources of shared genetic underpinning of phenotypes (8–12).  

 

Methods for estimating heritability and genetic correlations based on summary statistics from 

GWAS (3,13,14) became popular in recent years due to their computational tractability and the 

access to many phenotypes that were interrogated in GWAS by the research community. 

However, in diverse populations and in small datasets it is still preferable to estimate 

heritabilities and genetic correlations using individual-level data, rather than based on GWAS 

summary statistics (15). Methods using individual-level data typically rely on an underlying 

linear mixed model (LMM) formulation, where a genetic relationship matrix is used to model the 

relationship, or degree of similarity, between the phenotype levels of different individuals 

(16,17). When estimating genetic correlation between two phenotypes, a bivariate normal model 

is usually used. Common algorithms for estimating heritability and genetic correlation include 

Restricted Maximum Likelihood (REML)-based normal likelihood models (18), and method of 

moment estimators such as the Haseman-Elston approach (15). Estimation of standard errors 

(SEs), confidence intervals (CIs), and p-values, often relies on asymptotic normal approximation. 

However, both heritability and genetic correlations have a limited support: heritability is 

bounded on the [0,1] interval, and genetic correlation on the [-1,1] interval. This means that 

asymptotic normal approximation may not be appropriate when estimates are close to the 

boundary of the parameter space, and the problem is more severe with smaller datasets. Previous 

publications addressed the problem of confidence interval estimation in the context of heritability 

(19,20), but, although the distribution of genetic correlations has been studied (21–23), methods 

for confidence interval computation in the era of large-scale genomic studies have not been as 
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developed. Notably, we previously proposed a Fisher’s transformation-based approach and a 

blocked bootstrap, relying on resampling from the data, by blocks of related individuals (15). 

The blocked bootstrap worked better than the Fisher’s transformation approach, but was 

computationally more intensive and we therefore only allowed for a small number of resamples, 

limiting the potential coverage of the confidence intervals as well as application at scale (i.e., for 

millions of traits). Here, we build on a prior work by Schweiger et al. (19), in the context of 

heritability. We expand their parametric bootstrap test-inversion method which eliminates the 

dependency on asymptotic approximation. 

 

In this paper, we develop a parametric bootstrap approach to construct CIs for genetic 

correlations to better model the unknown distribution of genetic correlations. The procedure 

requires simulating pairs of phenotypes using existing correlation structure between individuals 

in a given dataset, based on sets of values of heritabilities and genetic correlation between the 

phenotypes. The results from the simulation study are used to construct CIs for the genetic 

correlation parameter based on triplets of estimated heritabilities and genetic correlation of a pair 

of phenotypes, using the conditional empirical probability mass function (PMF) of the genetic 

correlation parameter. We demonstrate and compare, through simulations, the performance of 

two variations of the parametric bootstrap procedure, and further compare them with 

construction of CIs based on the Fisher’s transformation of the estimated genetic correlation, and 

estimated standard errors (SEs) of the correlation parameter from asymptotic normal assumption 

on restricted maximum likelihood estimates. Despite being a resampling method, typically 

requiring many computations and thus computationally costly, our approach is very useful when 

estimating genetic correlations between thousands of traits measured on the same dataset, 
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because the simulation study used to construct PMFs is performed once and may be used many 

times. Thus, we demonstrate the application of the parametric bootstrap approach to study 

genetic correlations between a high-dimensional set of proteins and to develop protein-protein 

networks based on the genetic correlations estimated in the Jackson Heart Study dataset.  

 

Methods 
 

Linear Mixed Model (LMM) formulation 
 
Let � be an � � 1 phenotype outcome vector and � be an � � � matrix containing values of � 

covariates measured on � participants. Let � be an � � 1 vector of residuals, or errors, which we 

assume are potentially correlated across participants due to shared genetic effects. Suppose that 

the � � � matrix � models the genetic relationship between individuals, such that its 	, � entry 

��,� is, for example, (twice) the kinship coefficient between individual 	 and �, and is equal to 

��,� 
 ��,� (i.e., this is a symmetric matrix). Note that genetic relationship could be estimated by 

various quantities (24), without loss of generality, we here assume that we use a kinship matrix 

using identity by descent estimates. Following standard linear mixed model formulation of 

heritability, we model the outcome as  

� 
 �� � �, 

where � are the regression coefficients of the covariates, here treated as nuisance parameters. 

Suppose that the total variance is decomposed to a genetic variance and remaining residual 

variance. Let ��� be the genetic variance component, and ��� be the residual variance component, 

so that  

� ~ ����, ���� � ������. 
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The narrow-sense heritability, defined as the proportion of total variance explained by additive 

genetic factors is: 

�� 
 ��
�

��
�	��

� . 

 

Here, we assume, without loss of generality, that ��� � ��� 
 1. Therefore, we have ��� 
 ��, 

meaning that the genetic variance is equal to the heritability. Under this assumption, the variance 

of the phenotype can be written as 

������ 
 ���� � �1 � ������. 

 

Given two � � 1 vectors �
, ��, their covariance can be modelled as 

�����
,  ��� 
 ��,���,�  � � � ��,���,� ���, 

where ��,��  is the genetic variance for phenotype 	 ! "1,2$, ��,��  is the residual variance for 

phenotype 	,   � is the genetic correlation between the two phenotypes, and   � is the residual 

correlation between the two phenotypes (15). Alternatively: 

 �����
,  ��� 
 ��,���,�  � � �  %1 � ��,��  %1 � ��,��   � �� 
 (1) 

If we further plug in ��� 
 ��, then, for a single and for two phenotypes, we can write the 

variance model as:  

 ������ 
 ��� � �1 � �����  (2) 

 �����
,  ��� 
 ����  � � �  %1 � ��� %1 � ��
�  � �� 

(3) 
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which is the form that we will use to simulate outcomes in the following parametric bootstrap 

section. 

 
 

Parametric Bootstrap 
 
We use a parametric bootstrap approach to compute confidence intervals. In brief, we simulate 

data for each set of potential values of heritabilities �&��, �&�� and genetic and residual 

correlation  '�,  '� between two phenotypes based on the existing genetic relationship between 

individuals in the dataset of interest. Next, we compute confidence intervals by inferring ranges 

of potential values of  � (integrated over potential values of ���, ��
�, as the true values are not 

known) that resulted in realized (estimated) values �(��, �(��,  )�. In practice, to limit 

computational burden, we fix  '� 
 0 (and we assess the use of  '� 
 0.2, 0.4 also as fixed 

values in simulations).  

 

Step 1: Random sampling of genetically correlated outcomes 

For every given combination of the potential heritability of phenotype 1 (�&��), potential 

heritability of phenotype 2 (�&��), and potential genetic correlation ( '�), we draw � (e.g., 10,000) 

pairs of phenotype vectors (�
, ��) from the multivariate normal distribution 

  

-�
��
. ~ � /0�
��,   1 �����
� �����
,  ��������
,  ��� ������� 23,  

where 
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456
57 �����
� 
 �&��� � �1 � �&����
������� 
 �&��� � �1 � �&����


 �����
,  ��� 
 �&��&�  '� � � %1 � �&�� %1 � �&��   '� �

8 

 

 where �&��, �&�� ! 90, 1: and  '� ! 9�1,1:. We note here that  � may take potential value in the 

interval 9�1,1:, but we choose just one value as mentioned earlier. We used 10 settings for �&��, 

10 settings for �&��, and 20 settings for  '� as follows: 

�&� = {0.05, 0.15, 0.25, …, 0.85, 0.95} 

�&� = {0.05, 0.15, 0.25, …, 0.85, 0.95} 

 '� = {-0.95, -0.85, …, -0.05, 0.05, 0.15, …, 0.85, 0.95}. 

 

Under this setup, there are 2,000 distinct combinations of triplets (�&��, �&��,  '�) in total. We note 

that while developing this procedure we compared using finer grids of values, with sequences 

with differences of 0.01 between each two consecutive values, but the results remained 

essentially the same while the computational burden was substantially higher. Because the grid 

size determines the accuracy level of potential confidence interval coverage, we later offer a 

solution to increase coverage without simulating a finer grid of values.  

 

Step 2: Genetic Correlation and Heritability Estimation 

Next, based on each sampled pair of phenotype vectors (�
, ��) we estimate �(��, �(��,  )�. While 

the procedure is in principle naïve to the specific formula used, we are using the closed-form 

Hasemen-Elson formulas we previously derived (15,20):  
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 �(��= 
��
����

������
, ; ! "1,2$ 

(4) 

  )� 
 �

�<��

%�

�<�
%��

�<��

 (5) 

 

Where < is either the kinship matrix with all diagonal values set to zero, or, a weighted sum of 

the kinship matrix � and the matrix modelling the random error (here, an identity matrix) with 

weights related to the relationship between the kinship matrix and the identity matrix. See (15) 

for more details, including the potential use of multiple matrices modelling correlations between 

individuals. In practice, it is appropriate to use the kinship matrix with diagonal value set to zero 

when only the kinship matrix is used to model relationship between individuals. Using these 

formulas rather than likelihood-based procedures is computationally quicker as no iterations are 

required.  

 

Step 3: PMF estimation for Pr(=�|?@

�, ?@�

�, =A�
�� 

We now derive the expression for the conditional probability of  � given the estimated 

parameters. Because the support of ���, ��
�,  � are continuous where ��, �� ! 90, 1: and  � !

9�1, 1:, while the results from simulations are discrete values, we divide these ranges into bins, 

e.g., of size 0.1, i.e., forcing them into a discrete distribution: 

 � ! "B�
� 
  9�1, �0.9�, B�

� 
 9�0.9, �0.8�, … , B��
� 
  90.8, 0.9�, B��

� 
  90.9, 1:$. 

��, �� ! "B�
� 
  90, 0.1�, B�

� 
 90.1, 0.2�, … , B�
� 
  90.8, 0.9�, B��

� 
  90.9, 1:$. 
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When estimating CIs for genetic correlations, we are given the estimates �(��, �(��,  )� and we want 

to identify a region B such that Pr� '� ! B|�(� ! B�
�, �(� ! B�

�,  )� ! B�
�� 
 1 � H  (e.g. 1 �

H = 95%). Therefore, we want to estimate the probabilities Pr � '� ! B�
�|�(�� ! B�

�, �(�� !
B�

�,  )� ! B�
�� for 	 
 1, … , 20 in order to create an empirical probability mass function (PMF) 

and use it to generate confidence intervals, which can be derived using Bayes theorem. The 

derivation below uses the probabilities 

Pr��(�� ! B�
�I�&�� ! B�

�� , Pr��(�� ! B�
�I�&�� ! B�

�� , Pr � )� ! B�
�|�&�� ! B�

�, �&�� ! B�
�,  '� !

B�
��, which are the probabilities of �(�, �(�,  )� being in given regions conditional on the fixed 

values of �&��, �&��,  '� (note that the probabilities of the estimated heritabilities do not depend 

heritabilities of other traits on of the genetic correlation between them). Moving forward, we 

drop the notations showing that values refer to bins (regions) for brevity, with the understanding 

that all probabilities refer to parameters being in bins. Therefore, we will denote 

Pr � '�| )�, �(��, �(��� instead of Pr � '� ! B�
�| )� ! B�

�, �(�� ! B�
�, �(�� ! B�

��, etc. 

 

We first note that Pr� '�| )�, �(��, �(��� 
 ������,���,� ��,� ���

������,� ��,� ���
, and therefore, we need to estimate 

Pr� '�,  )�, �(��, �(��� and Pr� )�, �(��, �(���.  
 
Estimating JK�=A�, ?@�


, ?@�
��  

We estimate Pr� )�, �(��, �(��� based on the following: 

Pr� )�, �(��, �(��� 
 L L L Pr� )�, �(��, �(��,  '�, �&��, �&���
�!�



�!����

 


  L L L Pr� )�, �(��, �(��|  '�, �&��, �&��� Pr � '�, �&��, �&���
�!�



�!����
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 �


�
�
� ∑ ∑ ∑ Pr� )�, �(��, �(��|  '�, �&��, �&����!��!���� , 

where, for bins of length 0.1, �� = 20, ��  = 10. 

 

Estimating JK�=N�, =A�, ?@�

, ?@�

��  
We estimate Pr� '�,  )�, �(��, �(��� based on the following: 

 

Pr� '�,  )�, �(��, �(��� 
 Pr� )�, �(��, �(��| '��Pr � '�� 
 1�� Pr� )� , �(��, �(��| '�� 
 


 1�� L L Pr� )�, �(��, �(��, �&��, �&��I '��
�!�



�!�

 


 1�� L L Pr� )�, �(��, �(��I '�, �&��, �&���Pr ��&��, �&��| '��
�!�



�!�

 


 1�� L L Pr� )�, �(��, �(��I '�, �&��, �&���Pr ��&���Pr ��&���
�!�



�!�

 


 1����
� L L Pr� )�, �(��, �(��| '�, �&��, �&���

�!��!�

 

 

Putting these together: 

Pr� '�| )�, �(��, �(��� 
 Pr� '�,  )�, �(��, �(���Pr� )�, �(��, �(��� 
  ∑ ∑ Pr� )�, �(��, �(��| '�, �&��, �&����!��!�∑ ∑ ∑ Pr� )�, �(��, �(��| '�, �&��, �&����!��!���
 

 

 

Pr� �| )� , �(��, �(��� (computed for each pre-defined region) is then the empirical probability 

mass function of  � obtained by parametric bootstrap.  
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Computing confidence intervals from the PMF 
 
After obtaining the empirical PMF from parametric bootstrap, we can now derive the CIs for any 

given genetic correlation estimate  )� with a coverage probability of 1 � H (e.g., 95%). Because 

the parameters are bounded, constructed confidence intervals may be asymmetric in both the 

distance between the estimated  )� to the low and high values of the confidence interval, and in 

the cumulative probability between provided by the two “sides” (around  )�) of the confidence 

interval. We address this by considering the following three cases depending on the cumulative 

probability 

��� 
  L Pr� �| )� , �(��, �(��� .
��"���

 

Here ��� denotes cumulative probability of potential  � values lower or equal to the estimated 

 )�. Denote the low and the high values of the confidence interval for  )� by   )$ and   )%. Then a 

1-H confidence interval news to include all potential values  '� such that:  

 L Pr� '�| )�, �(��, �(��� .
��	"���"��


 (6) 

 

Case 1: If ��� O �&'

�
  

Here,  )$ corresponds to the first potential value  '� (i.e. a point in the first considered bin, where 

bins are considered by order B�
�, B�

� …) where Pr� '�| )�, �(��, �(��� P 0.  )% corresponds to the 

smallest potential value  '� satisfying equation (6).  
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Case 2: If 1 � ��� O �&'

�
  

In this case we first identify  )% as the highest  '� (i.e. a point in first considered bin, where bins 

are considered by order B
�
� , B
�&�

� …) with Pr� '�| )�, �(��, �(��� P 0.  )$ corresponds to the 

highest potential value  '� satisfying equation (6). 

 

Case 3: Both ��� P �&'

�
 and  1 � ��� P �&'

�
 

Here we require  )$ to be the largest value and  )% to be the lowest such that  

L Pr� '�| )�, �(��, �(���
��	"���

, L Pr� '�| )�, �(��, �(���
���(��


Q 1 � H2 . 
When the upper bound or lower bound of CIs obtained from the above procedure lies somewhere 

inside the bins defined by the grid of considered values, which is often the case, we use linear 

interpolation to get a position for upper and lower bound as point within the bins.  

 

Empirical Beta Approximation to the PMF for CI estimation 

Because the PMF is discrete, it limits the potential coverage of constructed CIs and the potential 

computation of accurate p-values. Thus, we study a continuous beta approximation to the 

empirical PMF from parametric bootstrap. Since the range of genetic correlation is [-1, 1], and 

the range of beta distribution is [0, 1], we first map the [-1, 1] range of genetic correlations to [0, 

1] range of beta distribution through a location-scale transformation. After finding the 100*(1 �
H)% CIs of  )� on the beta scale using a similar approach to that reported based on the discreate 

PMF, we apply the inverse location-scale transformation from [0, 1] to [-1, 1] to retrieve the CIs 

of genetic correlations. 
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The Jackson Heart Study  
 
The Jackson Heart Study (JHS) is a longitudinal study following 5,306 individuals of African 

American background from Jackson Mississippi (25,26). The study population included 2,050 

related and unrelated JHS participants who had whole genome sequencing (WGS) through the 

Trans-Omics for Precision Medicine (TOPMed) program, proteomics data, and available body 

mass index (BMI). The TOPMed Data Coordinating Center used TOPMed WGS data from the 

TOPMed freeze 8 release and computed kinship matrix, tabulating the genetic relationship 

between TOPMed participants. We subsetted this matrix into JHS participants. Concentration 

levels of 1,317 proteins were measured using the SomaScan platform (27). The JHS study was 

approved by Jackson State University, Tougaloo College, and the University of Mississippi 

Medical Center Institutional Review Boards, and all participants provided written informed 

consent.  

 

We excluded 5 proteins with more than 80% missing values. The remaining dataset had no 

missing protein measurements. Protein measurements were adjusted for batch effect by rank-

normalizing each protein separately in each batch and then aggregating the data across batches. 

Next, the protein measurements were regressed over (1) only intercept, and (2) over age, sex, and 

BMI. The residuals from each of these regressions were extracted and were used for estimating 

heritabilities and genetic correlations between all protein pairs using Haseman-Elston estimators 

provided in equations (4) and (5), in addition to heritabilities and genetic correlations estimated 

using the rank-normalized protein levels (without regressing them on covariates). Also, we 

compared the estimates of genetic correlations to estimated Pearson correlations calculated using 

stats R package (version 3.6.2). 
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Simulation Studies 
 
 
We used the kinship matrix from the JHS data to perform simulations. To study methods’ 

performance in larger sample sizes, we also created simulated datasets mimicking the JHS in 

which we used block matrices, with blocks being the original JHS kinship matrix using n = 2,050 

individuals. We used 2 and 3 times the original sample size to form block diagonal kinship 

matrices with n = 4,100 and n = 6,150. We referred to simulations using the kinship matrix, and 

the 2- and 3-times block matrices as Setting A, B, and C. Thus, we used these kinship matrices to 

(1) perform simulations for the parametric bootstrap procedure, where in the primary we fix  '� = 

0.2 as a conservative potential high value of  �. We also performed simulations comparing the 

choice of  '� ! "0, 0.2, 0.4$. Next, (2) we generate new simulated data that used the results of the 

parametric bootstrap simulations (1) to construct CIs. We performed 10,000 simulations for each 

combination of potential ����, ��
�,  ��, with ���, ��

� ! "0.05, 0.15, … , 0.95$ and 

 � ! "�0.95, �0.85, … , �0.05, 0.05, … , 0.095$. We constructed CIs for the estimated  )� in each 

simulation.  

 
 
 
Comparison: four approaches of constructing CIs 

 
We estimated the coverage and the width of the CIs constructed using a few approaches: (a) 

percentiles of the empirical PMF constructed using the parametric bootstrap approach; (b) beta 

approximation to the empirical PMF; and two existing methods: (c) Fisher’s transformation; and 

(d) normal approximation to the distribution of the estimated genetic correlation implemented in 

the GCTA package (29).  
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The Fisher’s transformation method assumes that genetic correlations follow the same 

distributions as Pearson correlations (30). More specifically, they are normally distributed after 

Fisher’s transformation. For genetic correlation  �,  

S 
 �

�
ln -�	��

�&��
. ~ N(V, � ), where 

V 
 �

�
ln -�	��

�&��
., � 
 �

)*���&+
 , 

With ��,,  being the “effective sample size”, previous proposed to be W���X��&�&�, with �& 

being the kinship matrix with diagonal values set to zero (15). We can then construct the CIs of z 

by the standard approach assuming asymptotic normal distributions. For example, the 95% CI of 

z would be [V � 1.96�, V � 1.96�]. After finding the 100*(1 � H)% CIs of  )� on the Fisher’s 

transformed (S� scale, we apply the inverse Fisher’s transform to retrieve the CIs of the genetic 

correlation  �. 

 

To compute CIs based on existing approach that rely on a normal approximation, we estimate 

both the genetic correlation and its standard error using the bivariate REML procedure 

implemented in the GCTA package. We apply the [ ) � 1.96 Z[,  ) � 1.96 Z[] formula to 

construct 95% CIs. Due to the high computational resources required by GCTA, we focus only 

on the four scenarios when true  � equals {0.05, 0.15, 0.45, 0.95} with the original-size kinship 

matrix.  

 

Performance evaluation metrics  

We used coverage probabilities and CI widths as the metrics to evaluate and compare the 

performance of the four approaches for CI construction. In primary results, for a given true value 
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of genetic correlation  � we calculated both the coverage probability and the average width of 

95% CIs using the constructed CIs for the estimated  � over all the 100 true heritability 

scenarios (10 for ���, and 10 for ��
�). Ideally, the coverage probabilities would be at or above 

95% across different  �, and also having small CI widths. The coverage probability was 

estimated as the proportion of simulations in which the true  � was contained in its CI.  

 

P-value estimation  
 

We evaluated the use of the CI inversion method to obtain p-values for hypothesis testing. Here, 

our null hypothesis H0 is  � 
 0, and our alternative hypothesis H1 is  � \ 0. Given any 

realization (�(�, �(�,  )), we can estimate the CIs for  � using the parametric bootstrap procedure, 

focusing on the continuous beta approximation to the empirical PMF because smaller accurate p-

values can be obtained if the underlying distribution is continuous. To determine the p-values of 

genetic correlation estimates, we use the CI inversion methods. Suppose that we construct a 

100� �1 � H�% CI. Then, we can determine that the p-value is smaller than H if the constructed 

CI does not cover 0. For computational efficiency, we implemented a method that constructs CIs 

using a binary search approach to the H value, stopping when a pre-defined sensitivity level is 

reached. 

 

Type 1 error 

For each combination of potential heritability values (�&��, �&��), we simulated 10,000 pairs of 

phenotype vectors (�
, ��) under the null, i.e.,  
 0, estimated their genetic correlations, and 

calculated their p-values as described above based on the beta approximation to the PMF. After 

obtaining the p-values for all the 10,000 simulated data, we estimated the type 1 error rate, also 
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called the size of the test, by checking the percentage of these simulation rejecting the null given 

an H value.  

 

Results 
 
Simulation studies 
 
In primary results, for a given true value of genetic correlation  � we calculated both the 

coverage probability and the average width of 95% CIs by averaging the corresponding estimates 

over all the 100 true heritability scenarios (10 for ���, and 10 for ��
�). Supplementary Table 1 

provides estimated coverage by all combinations of (true)  �, ���, ��
�. Figure 1 provides the 

estimated coverage probabilities for the compared methods in simulations, and Figure 2 provides 

the averaged CI widths. The PMF approach provides appropriate coverage across the three 

settings defined by the kinship matrices. The beta approximation to the PMF results in under-

coverage across the simulated  � values setting A, but improved substantially in settings B and C 

when the simulated sample size increased. Still the average width of the CIs was lower when 

using the empirical PMF. In setting A, GCTA had an appropriate coverage only when  � was set 

to 0.05. The Fisher’s transformation tended to result in under-coverage.  

 

Figure 3 compares coverage and CI widths when using the empirical PMF approach to compute 

CIs and settings  � 
 0, 0.2, or 0.4 in the simulations generating data. It demonstrates that there 

is essentially no difference in the results. 

 

We also used the simulations to estimate type 1 error when using the confidence interval 

inversion methods with the beta approximation to the PMF to compute association p-values. The 
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results are visualized in Figure 4. Here, we also estimated type 1 error by combinations of 

specific ���, ��
� values. With H 
 0.05, the type 1 error was controlled across heritability 

combinations in settings B and C, but not in setting A. While it is unsurprising that the type 1 

error is not controlled when heritability values of either one of the two traits are very small, the 

test was also somewhat inflated in setting A when the two heritabilities were fairly high.  Over 

all, the beta approximation method to the PMF is promising for computing high coverage CIs 

and p-values when the sample size is sufficiently large.  
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Figure 1: Estimated coverage of 95% confidence intervals of genetic 
correlations in the primary simulations. 

 

The columns represent different kinship matrix sizes: Setting A denotes the use of original-
size kinship matrix (n=2,050), Setting B denotes the use of the double-size kinship matrix 
(n=4,100), and Setting C denotes the use of the triple-size kinship matrix (n=6,150). The rows 
represent the four approaches for constructing CIs, including parametric bootstrap PMF, beta 
approximation for parametric bootstrap PMF, Fisher’s transformation, and GCTA package use 
of normal distribution approximation. Only parts of the analyses were carried out on the 
GCTA package due to the high computational resources required.  
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Figure 2: Average width of the confidence intervals of the genetic correlations 
in the primary simulations. 

 

The columns represent different kinship matrix sizes: Setting A denotes the use of original-
size kinship matrix (n=2,050), Setting B denotes the use of the double-size kinship matrix 
(n=4,100), and Setting C denotes the use of the triple-size kinship matrix (n=6,150). The rows 
represent the four approaches for constructing CIs, including parametric bootstrap PMF, beta 
approximation for parametric bootstrap PMF, Fisher’s transformation, and GCTA package. 
Only parts of the analyses were carried out on the GCTA package due to the high 
computational resources required.  
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Figure 3: Setting environmental correlation between error terms  has no 
effect on genetic correlation estimates. 

 

Comparison of coverage and CI widths when using the empirical PMF approach to compute 
CIs and settings  or  in the simulations generating data.  
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Figure 4: Type 1 error estimates when using the confidence interval inversion 
method and the Beta approximation to perform association testing 
 

 
 
 
 
Visualization of type 1 error ( ) when using the CI inversion approach coupled with the 
Beta approximation to the PMF to generate CIs. The results are provided for each simulation 
settings and by values of . 
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Application to genetically-determined protein-protein networks in JHS 
 

We estimated heritabilities and genetic correlations for every pair of proteins among the 1,317 

proteins available in JHS, in an analysis adjusted to age, sex, and BMI (in which protein 

measures were first regressed over these covariates prior to estimation of genetic correlations 

based on the resulting residuals), and in an unadjusted analysis. Characteristics of the JHS 

dataset are provided in Table 1. Of the study participants, 61% were women. Individuals were 55 

(male)-56 (female) on average, and were mostly overweight. Some individuals were close 

relatives. For example, there were 341 pairs of individuals with estimated coefficient of 

relationship Q 0.48, and 1,113 pairs of individuals with coefficient of relationshipQ 0.12 

(considering the total number of unique pairs of individuals, this corresponds to 0.05% of all 

pairs of participants). 

 

Table 1: JHS dataset characteristics stratified by sex. 
 
 

Characteristic Female Male 

N 

Age1 

1,252 

57 (46, 65) 

798 

55 (45, 65) 

BMI1 32 (27, 37) 29 (26, 32) 

1Median (IQR) 

 

Supplementary Tables 2 and 3 provide the estimated heritabilities of all proteins in the dataset 

from analysis unadjusted and adjusted to covariates (age, sex and BMI) respectively. Based on 

the simulations using this specific dataset, we removed from consideration proteins with 
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estimated heritabilities �(� O 0.3, as genetic correlations and p-values using the beta 

approximation method are less reliable compared to higher values of (real, not estimated) 

heritabilities. We also excluded proteins with estimated  �(� P 0.9, because such high may 

suggest a problem with the measurement and/or genetic characterization of a protein (e.g., 

technical issue with the platform, genetic variants segregated to a few families, etc.). After the 

above filtering, there were 403 and 431 proteins, or 81,406 and 93,096 protein-protein pairs, 

available for genetic correlation analysis in the covariate-adjusted and unadjusted analyses, 

respectively. For each set of the proteins (adjusted and unadjusted), it took around 2.5 hours to 

estimate the genetic correlations and around 12 minutes to construct the CIs, based on the 

previously-constructed parametric bootstrap reference results, for all the protein-protein pairs on 

a MacBook Pro laptop with an M1 chip. Full results from genetic correlation estimates for these 

sets of proteins are provided in Supplementary Tables 4 and 5.  Figure 5 visualizes the 

comparison between estimated phenotypic (Pearson) and genetic correlations across these 

phenotype pairs. The figure suggests that, for this set of highly-heritable proteins, genetic 

correlations tend to be higher than Pearson correlations (to see this, one needs to focus in Figure 

5 on the bright hexbins because they represent many more protein pairs compared to dark 

hexbins). 
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Figure 5: Estimated Pearson versus genetic correlations between heritable 
proteins. 

 

The figure compares the sample Pearson correlation to the estimated genetic correlation   )� 
for all protein pairs for which the estimated heritability  �(� P 0.3 for each of the proteins. The 
color of each hexbin represents the number (count) of protein pairs with x- and y- axis values 
falling under the hexbin.  
 

Protein-Protein Network 

We visualize the results in a protein-protein network. Due to the large number of protein pairs, 

we focused the network resulting from protein-protein genetic correlations passing a p-value 

threshold. We computed p-values for the genetic correlations between the limited set of heritable 

and “valid” proteins (with heritability estimates that are not egregiously high) using the beta 

approximation to the PMF, and applied a False Discovery Rate (FDR) correction using the 

Benjamini-Hochberg procedure (31). The considered pairs of proteins are those with FDR-

adjusted genetic correlation p-value<0.01. This corresponds to 253 and 294 pairs of genetically-

correlated proteins in adjusted and unadjusted analysis, respectively. Figure 6 visualizes these 

results. The size of each node represents its degree, with larger ones being “hub nodes/proteins”, 
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(genetically) associated with a large number of proteins. See Supplementary Tables 6 and 7 for 

estimated genetic correlations between pairs of proteins selected based on the criteria described 

above. Supplementary Table 8 contains a list of the top 10 hub nodes/proteins and their 

connections, i.e., the list of proteins connected to each of these hub nodes, both in covariate 

adjusted and unadjusted analyses. Visually, the network appears to be less connected (and we 

also know that the number of connections decreased) in analysis that adjusted for age, sex, and 

BMI. It is likely that genetic correlations decreased because BMI has strong effects on proteins, 

and the genetic effects on BMI are also strong, so when BMI was adjusted for, genetic effects 

inducing correlations between proteins were reduced.  
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Figure 6: Network constructed from top pairs of genetically-correlated proteins. 

 

 

b 

a 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.24.23297474doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.24.23297474
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 

 

29

Panel (a) visualizes the protein-protein genetic correlation network using the age, sex, BMI-
adjusted proteins; panel (b) visualizes the corresponding network based on unadjusted 
analysis. The blue edges represent positive genetic correlations, and the grey edges represent 
negative genetic correlations. Larger nodes are hub proteins where multiple proteins have 
strong genetic correlations with each other both in covariate adjusted and unadjusted analyses. 
Some of the hub proteins include APO_D, PREKALLIKREIN, NOTCH_3, HPV_E7_TYPE18, 
CARBONIC_ANHYDRASE_IV, CDK5_P35, DKK_4, PAK3, TRKC, MIS, C5A , OMD, JAG1, 
HEPARIN_COFACTOR_II, BFGF_R, and MMP_2, GDF_11_8. 
 
 

Discussion 
 

We developed a parametric bootstrap procedure to estimate confidence intervals for the genetic 

correlation estimator, studied it in simulations, and applied it to learn a protein-protein network 

using a set of heritable proteins measured in the Jackson Heart Study. Our bootstrap procedure 

was inspired by a similar approach developed for heritability confidence intervals (19). 

Compared to the previous publication focusing on heritability, our approach is complicated by 

the need to simulate pairs of traits, including their heritabilities and genetic correlation between 

them, i.e., a grid of three parameters rather than one. Indeed, confidence intervals for genetic 

correlation depend on trait heritability, and are wider when at least one of the traits has low 

heritability. Thus, the computation burden of our procedure is higher. Especially, it is important 

to recognize that this procedure, like that of Schweiger et al., is dataset dependent, because it 

uses the kinship matrix of the specific dataset. However, our procedure is realistic and useful 

when many genetic correlations are estimated for the same dataset, as in this work. In this case 

the parametric bootstrap simulation step is performed once but is applied many times. A 

limitation for the high dimensional number of parameters (many genetic correlation parameters) 

is the limited level of coverage due to the discreteness of the bootstrap procedure: we cannot use 

the estimated conditional PMF of  � (conditional on the estimated genetic correlation and 
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heritabilities) as it is to obtain confidence intervals at the 1-H level when H is very small (e.g., 

10&-). To address this, we proposed the beta approximation, after local-scale transformation, to 

the PMF. The beta distribution has two parameters that can be fit to many distribution functions 

that are on a bounded interval. Based on our simulations, CIs based on the beta approximation 

tend to be wider than those using the PMF directly, and they can still undercover the desired 

distribution in low sample sizes. However, for larger sample sizes their performance improves. 

Overall, we think that for larger sample sizes, e.g., 6,000 individuals, the beta approximation to 

the PMF will be very useful in providing reliable confidence intervals and, using the inversion 

method, p-values. It is important to point out that while we performed simulations with a “triple 

size” JHS kinship matrix, i.e., of n=6,150 individuals, the effective sample size corresponding to 

it is much lower than that of real potential datasets with 6,150 individuals. That is because we 

simulated a block diagonal matrix. Realistic kinship matrices will have non-zero off diagonal 

values throughout (unless forced to be zero for computational efficiency purposes (32)).  

 

Existing methods that compute confidence intervals for genetic correlations typically utilize an 

asymptotic normal distribution argument, at either the untransformed or Fisher’s transformation 

level. This is appropriate depending on the combination of four factors: sample size, underlying 

(true) heritabilities of each of the pair of traits, and the underlying genetic correlation. For any 

given pair of traits and a dataset, any one of these factors may be suboptimal, potentially leading 

to poor performance of confidence intervals that rely on asymptotic normality. The bootstrap 

procedure addresses this shortcoming. However, this procedure too does not produce perfect 

confidence intervals: for low values of heritability of either one of the two traits, the coverage 

may still be lower than desired in low sample sizes. Note that in reality we do not know the true 
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heritability, we only have estimated heritability. Therefore, we cannot tell whether a CI may not 

be reliable according to the values of the estimated heritabilities. That is why our main results are 

provided at an aggregate level, across simulated values of potential heritabilities.  

 

We demonstrated the use of genetic correlations to infer genetically-determined protein-protein 

networks. However, we acknowledge that our analysis is limited by the relatively low sample 

size, which led to posing a stringent filter requiring at least 0.3 protein heritability for inclusion 

in the downstream analysis. While we chose to include only edges with estimated FDR-adjusted 

p-value<0.01 (with p-values estimated using the beta approximation), other statistical network 

approaches may generate sparsity using penalized multivariant regression techniques (33,34). It 

would be interesting to extend such approaches to genetic (rather than phenotypic) correlation-

based networks. In future work we will apply the existing framework on larger datasets and 

develop approximation methods to further speed up the simulations required for the parametric 

bootstrap and the estimation of heritabilities and genetic correlations, for example, following 

(35).  
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