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Abstract 
 
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects 30% of the global population but 
is often underdiagnosed. To fill this diagnostic gap, we developed a digital score reflecting presence and 
severity of MASLD. We fitted a machine learning model to electronic health records from 37,212 UK 
Biobank participants with proton density fat fraction measurements and/or a MASLD diagnosis to 
generate a "MASLD score". In holdout testing, our model achieved areas under the receiver-operating 
curve of 0.83-0.84 for MASLD diagnosis and 0.90-0.91 for identifying MASLD-associated advanced 
fibrosis. MASLD score was significantly associated with MASLD risk factors, progression to cirrhosis, and 
mortality. External testing in 252,725 diverse American participants demonstrated consistent results, and 
hepatologist chart review showed MASLD score identified probable MASLD underdiagnosis. The MASLD 
score could improve early diagnosis and intervention of chronic liver disease by providing a non-invasive, 
low-cost method for population-wide screening of MASLD. 
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Introduction 
 
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty 
liver disease (NAFLD), is a preeminent cause of chronic liver disease on a global scale. Approximately 
30% of the worldwide adult population is estimated to have MASLD;1 of whom as many as 40% will 
develop metabolic dysfunction-associated steatohepatitis (MASH).2 A small percentage will further 

progress to advanced fibrosis, the major risk factor for adverse liver outcomes.3 
 
Despite its high prevalence, MASLD remains largely underdiagnosed due to its insidious onset; while 
limitations in current diagnostic practices hamper early intervention.4 Simple steatosis in early MASLD is 
largely asymptomatic, and although liver biopsy permits highly sensitive necroinflammation grading and 
fibrosis staging, it is costly and invasive. Non-invasive procedures like ultrasound, computerized 
tomography (CT), and magnetic resonance imaging (MRI) and their associated scores (e.g., FAST, 
MAST, MEFIB) can detect hepatic steatosis and/or fibrosis,5–7 but they have limitations in distinguishing 
between simple steatosis and MASH. Additionally, these procedures are inappropriate for large-scale 
population screening. Several laboratory-based scores are well suited for screening either the presence 
of MASLD or the degree of fibrosis;8–10 however, none accomplishes both tasks at once, potentially 
leading to unnecessary referrals and workup. 
 
Addressing these issues, we aimed to develop a machine learning model that simultaneously predicts the 
presence and severity of MASLD, providing a holistic representation of a patient's disease status. We 
used routine clinical and diagnostic data from 33,148 participants with proton density fat fraction (PDFF) 
measurements and 4,064 participants with diagnosed MASLD in the UK Biobank to construct the 
“MASLD score.” The score (a continuous spectrum from 0 to 3 with a higher score suggesting MASLD 
with more severe fibrosis) both captures the presence of MASLD and stratifies the degree of MASLD-
associated fibrosis into F0-F2, intermediate, or F3-F4 categories based on the FIB-4 index. Because most 
patients with severe fibrosis do not have MASLD, we design the model to differentiate MASLD-associated 
fibrosis from fibrosis due to other causes. We assessed the model's generalizability by testing on 252,725 
participants from three diverse external cohorts: Mount Sinai Data Warehouse, BioMe Biobank, and the 
All of Us Research Program. We also determined the model’s ability to identify underdiagnosis by 
performing chart review of 36 BioMe participants without a MASLD diagnosis. Once integrated into 
electronic health record (EHR) systems,11 this model could use existing clinical data to automatically 
identify potential MASLD patients and recommend high-risk patients for gastroenterology referral and 
early intervention. 
 

Methods 
 
Data sources 
 
We used data from four sources: UK Biobank, Mount Sinai Data Warehouse (MSDW), BioMe, and All of 
Us. The UK Biobank includes 502,411 participants from across the United Kingdom; participants aged 40-
69 were enrolled starting in 2006, and follow-up data was available for these participants until July 2022. 
The Mount Sinai Data Warehouse consists of Epic-derived electronic health records (EHRs) for more 
than 11 million patients, both inpatient and outpatient, from six facilities across the Mount Sinai Health 
System. BioMe consists of 57,805 selectively-enrolled participants from the Mount Sinai Health System. 
All of Us consists of 413,457 selectively-enrolled participants from across the United States. 
 
MASLD definition and scoring 
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For participants who had PDFF measurements available, we defined MASLD cases using PDFF ≥ 5% in 
addition to at least one of five cardiometabolic criteria.12 For participants without PDFF measurements, we 
defined MASLD cases using ICD-10 codes K75.8 and/or K76.0 in addition to at least one of five 
cardiometabolic criteria. We defined participants (n = 48) had an ICD-10-based diagnosis but a PDFF < 
5% as MASLD cases to account for temporal variations in steatosis. 
 
We established a true “MASLD score” that combines MASLD status with fibrosis severity. As “true” 
scores, we assigned participants with a PDFF < 5% and no MASLD diagnosis a score of 0, regardless of 
FIB-4 index. We assigned participants with a PDFF ≥ 5% or a MASLD diagnosis a score from 1 to 3 using 
their FIB-4 index: 1 for FIB-4 indices < 1.30, 2 for FIB-4 indices between 1.30 and 2.67, and 3 for FIB-4 
indices > 2.67. We selected the FIB-4 index due to its superior performance compared to several other 
non-invasive markers of fibrosis.13,14 We then constructed machine learning models using EHR data to 
predict MASLD scores. 
 
Participant selection 
 
Across all four biobanks, we employed a consistent filtering strategy (Figure 1). We removed patients 
with missing demographics (gender and age) from all datasets. In the UK Biobank, we selected only 
participants with clearly defined self-reported ethnicities (i.e., White, Asian, or Black), removing 
participants of mixed or undefined ethnicities due to ambiguous classification. In the other three datasets, 
we included all participants regardless of ethnicity and generated MASLD score predictions for 
participants not of White, Asian, or Black self-reported ethnicity (e.g., Hispanic or Native American) 
without ethnicity data. 
 
To ensure specificity of our model for MASLD, we excluded participants with cryptogenic steatotic liver 
disease (those who met PDFF or ICD-10 criteria for MASLD but not cardiometabolic criteria) and 
participants with ICD-10 codes corresponding to a predefined set of non-MASLD liver diseases, alcohol 
use disorders, and drug use disorders (Supplemental Table 1).15 To avoid ambiguous cause-effect 
relationships, we also excluded MASLD cases who had a MASLD-associated outcome (compensated or 
decompensated cirrhosis, liver transplantation, or liver cancer) prior to the earlier of their MASLD 
diagnosis or PDFF measurement date (Supplemental Table 2). 
 
We performed separate analyses either including or excluding participants meeting alcohol consumption 
criteria for MetALD. We defined these participants in the UK Biobank as those consuming more than 20 
g/day for women and 30 g/day for men; in All of Us as those consuming more than two drinks per day; 
and in MSDW and BioMe as those with daily alcohol consumption. 
 
Machine learning model 
 
Our model consists of 68 EHR-derived features, including 3 demographic variables, 35 laboratory 
measurements, 4 vital measurements, 2 social variables, 4 ATC codes, and 20 Elixhauser comorbidities 
(Supplemental Table 3-4). Processing of these features is described in Supplemental Methods. We 
used only EHR data from prior to each participant’s cutoff date, defined as follows: for UK Biobank 
participants, we used the date of the most recent set of laboratory and vital measurements as the cutoff 
date, while for Mount Sinai Data Warehouse, BioMe, and All of Us participants, we used the date of the 
last known diagnosis or patient care encounter. 
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We constructed the model using LightGBM (version 4.0.0), a gradient boosting framework. Training 
parameters for all models are listed in Supplemental Table 5, and detailed training procedures are 
available in Supplemental Methods. We trained models to minimize mean squared error (MAE) between 
predicted and actual MASLD scores, and evaluated them in the validation and holdout sets using MAE, 
root-mean-square error (RMSE), R2, and Spearman’s ρ. 
 
To assess model performance on classification tasks (differentiating MASLD cases from controls and 
differentiating MASLD cases with F3-F4 fibrosis from all other participants), we used area under the 
receiver-operating curve (AUROC), area under the precision-recall curve (AUPRC), sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value (NPV). When evaluating AUROC and 
AUPRC in cohorts without PDFF measurements (MSDW, BioMe, All of Us), we addressed the issue of 
severe MASLD underdiagnosis based on ICD-10 codes by creating balanced datasets with MASLD score 
distributions matching those of the training dataset. 
 
Statistical analyses 
 
We performed all statistical analyses in Python 3.11.4 and set the significance level to 0.05 for all tests. 
To evaluate clinical associations, we segmented participants’ predicted scores into quintiles separately for 
each biobank; we then used either statsmodels (version 0.13.5) to calculate odds ratios or lifelines 
(version 0.27.4) to perform Cox proportional hazards regression between the quintiles and each 
comorbidity or outcome. We also performed Cox regression to evaluate the association between quintiles 
and mortality in UK Biobank and BioMe; both MSDW and All of Us. In all analyses, we adjusted for age, 
gender, and ethnicity. Importantly, to prevent data leakage, we excluded all outcomes from the diagnoses 
used as inputs for machine learning models. 
 

Results 
 
Participants 
 
We trained machine learning models using EHRs from 37,212 participants in the UK Biobank: 33,148 with 
PDFF measurements, and 4,064 without PDFF but with a MASLD diagnosis. Of these participants, 
19,538 [52.55%] were female; 36,338 [97.7%] were White, 590 [1.6%] were Asian, and 284 [0.8%] were 
Black; the median age was 57.2 [IQR 12.3]; and 13,055 [35%] were MASLD cases (Supplemental Table 
6). For the 33,148 participants with PDFF measurements, the median was 3.0% [IQR 3.1%]. 
 
Subsequently, we used models to make predictions in four different cohorts with 635,364 total 
participants, including 252,725 participants from across the United States (Supplemental Table 7). The 
first cohort included 382,639 UK Biobank participants not included in the training set. Of these, 210,738 
[55.1%] were female; 367,427 [96.0%] were White, 8,974 [2.3%] were Asian, and 6,238 [1.6%] were 
Black; and the median age was 58.8 [IQR 13.2]. The second cohort included 112,514 participants from 
the Mount Sinai Data Warehouse. Of these participants, 64,730 [57.5%] were female; 77,184 [68.6%] 
were White, 23,414 [20.8%] were Black, and 11,202 [10.0%] were Asian; and the median age was 55.6 
[IQR 34.4]. The third cohort included 28,673 participants from BioMe. Of these participants, 17,780 
[62.0%] were female; 11,263 [39.3%] were White, 6,455 [22.5%] were Black, and 1,056 [3.7%] were 
Asian; and the median age was 59.3 [IQR 27.3]. The fourth cohort included 111,538 participants from All 
of Us. Of these participants, 72,690 [65.2%] were female; 68,200 [61.1%] were White, 15,987 [14.3%] 
were Black, and 3,269 [2.9%] were Asian; and the median age was 59.1 [IQR 27.8]. 
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Performance metrics 
 
Our machine learning models are gradient boosting regression models that assign participants a 
predicted MASLD score from 0 to 3. 0 suggests no MASLD, 1 suggests MASLD with F0-F2 fibrosis, 2 
suggests MASLD with indeterminate fibrosis, and 3 suggests MASLD with F3-F4 fibrosis. However, we 
explicitly aim for this score to be continuous, with a higher score suggesting MASLD with more severe 
fibrosis. 
 
Recognizing the overlap between and changing definitions of MASLD and MetALD, we trained separate 
models and performed separate analyses where participants meeting alcohol consumption criteria for 
MetALD were either included or excluded. Comparing predicted and actual MASLD scores in the holdout 
set, models showed minimal error rates with RMSEs of 0.61 (0.61-0.61) and 0.59 (0.59-0.59), as well as 
MAEs of 0.45 (0.45-0.45) and 0.43 (0.43-0.43) when MetALD participants were included or excluded, 
respectively (Supplemental Table 8). We observed that the distribution of predicted MASLD scores in 
external test sets closely mirrored those in the holdout set (Figure 2a-e). However, many participants 
assigned a MASLD score of 0 were predicted to have scores above 0.5 (192,253 [50.2%] in the UK 
Biobank prediction set; 56,299 [50.5%] in MSDW; 17,126 [62.9%] in BioMe; and 70,742 [68.6%] in All of 
Us, which may be attributed to MASLD underdiagnosis. 
 
We evaluated model performance on two classification tasks: (1) differentiating individuals with and 
without MASLD (i.e., score ≥ 1 from score < 1; hereafter, MASLD diagnosis), and (2) differentiating 
individuals with both MASLD and F3-F4 fibrosis from all other individuals (i.e., score = 3 from score < 3; 
hereafter, fibrosis identification). In the holdout set, our models achieved an AUROC of 0.83 (0.83-0.83) 
for MASLD diagnosis and an AUROC of 0.91 (0.90-0.92) for fibrosis identification (Table 1). They 
outperformed the hepatic steatosis index (HSI), which achieved an AUROC of 0.80 (0.80-0.80) for 
MASLD diagnosis and an AUROC of 0.61 (0.60-0.62) for fibrosis identification in the same holdout set 
(Supplemental Table 9). Notably, in all three FIB-4 classes (FIB-4 < 1.30, 1.30 - 2.67, and > 2.67), 
predicted MASLD scores were significantly higher (p < 0.001) for participants with MASLD compared to 
those without (Figure 2f), indicating the model distinguishes MASLD-associated fibrosis from fibrosis due 
to other causes. This is useful as the FIB-4 index alone does not discriminate between MASLD cases and 
controls, with an AUROC of 0.45 (0.45-0.45) and AUPRC of 0.33 (0.33-0.33) for MASLD diagnosis in the 
holdout set (Supplemental Table 10). 
 
We also evaluated task performance at different thresholds. A MASLD score threshold of 0.50 balances 
sensitivity and specificity for MASLD diagnosis, yielding 0.77 sensitivity, 0.74 specificity, 0.61 PPV, and 
0.85 NPV (Supplemental Table 11), whereas FIB-4 fails to accurately identify MASLD cases at either its 
1.30 or 2.67 thresholds. MASLD score thresholds between 0.75 and 1.25 offer balanced performance on 
both tasks and may be ideal for a clinical alert system, where patients with scores above the threshold 
are deemed high-risk and are recommended for referral and further workup. For fibrosis identification, at 
equivalent thresholds of 2.00 (MASLD score) and 2.67 (FIB-4 index), FIB-4 has higher sensitivity than 
MASLD score (1.00 versus 0.32), which is expected as we define fibrosis using the FIB-4 index in this 
study (Supplemental Table 12). However, FIB-4 has significantly lower PPV (0.37 versus 0.48) due to 
increased false positives (i.e., identifying F3-F4 fibrosis not due to MASLD); this is consistent with our 
model, but not FIB-4, being able to identify MASLD-associated fibrosis. 
 
Next, we analyzed model performance on these two classification tasks in participants without PDFF 
available. Because of the underdiagnosis of MASLD among these participants when relying on ICD-10 
codes, we created balanced cohorts for each biobank that matched the MASLD score distributions of the 
training set. Across all four biobanks, models achieved consistent performance in both tasks, with 
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AUROCs ranging from 0.73-0.80 for MASLD diagnosis and 0.89-0.92 for fibrosis classification (Table 1), 
despite there being large numbers of undiagnosed MASLD cases in each of these datasets. 
 
Because the UK Biobank has limited diversity, with participants being majority White and aged 40-69, we 
also examined the ability of our models to extrapolate to diverse populations by performing a subgroup 
analysis. In MSDW and All of Us, performance was generally consistent across different genders, 
ethnicities, and age groups (Supplemental Tables 13-15). However, there was reduced performance for 
certain subsets with limited representation in the training set, including Black participants (0.01-0.05 
decrease in AUROC in MSDW and All of Us) and participants over 69 years of age (0.05-0.13 decrease 
in AUROC in MSDW and All of Us). 
 
Feature importance 
 
SHAP analysis demonstrated that the 10 most important features for our model were well-known risk 
factors for MASLD (Extended Data Figure 1). BMI and triglycerides were the first and second most 
important features, while the four variables used in the FIB-4 index (platelet count, ALT, AST, and age) 
were the third to sixth most important features, respectively. Diagnostic history was also important, with 
hypertension, diabetes, obesity, and chronic pulmonary disease being the 6th, 9th, 11th, and 16th most 
important features, respectively. However, our model also identified several features not previously 
associated with MASLD, such as total protein, albumin, and monocyte count, all of which were positively 
correlated with SHAP values. 
 
Clinical associations 
 
Predicted MASLD scores were significantly associated with MASLD outcomes and MASLD comorbidities 
in all four biobanks, both when including and excluding MetALD participants. MASLD scores had 
significant associations with several major MASLD comorbidities, including ischemic heart disease, atrial 
fibrillation, heart failure, chronic kidney disease, type 2 diabetes, and obstructive sleep apnea (Table 2); 
associations with the latter four comorbidities were also present separately among cases and controls 
(Supplemental Tables 16-17). We observed the highest odds ratios (ORs) for type 2 diabetes, with ORs 
per quintile increase in predicted score ranging from 2.39 (2.35-2.44) in MSDW to 3.93 (3.87-4.00) in the 
UK Biobank. To determine the specificity of our model, we tested associations between predicted score 
and MASLD diagnosis based on ICD-10 coding. Here, each quintile increase in model score was 
associated with ORs ranging from 2.24 (2.19-2.26) in All of Us to 3.19 (2.97-3.44) in MSDW. 
 
We also examined the major outcomes of MASLD, including compensated and decompensated cirrhosis, 
liver cancer, and liver transplantation. Among all UK Biobank participants, over a 15-year follow-up 
period, each quintile increase in predicted MASLD score was associated with HRs of 1.10 (1.08-1.12), 
1.11 (1.09-1.13), and 1.15 (1.13-1.17) for a new diagnosis of compensated, decompensated, and any 
cirrhosis, respectively (Table 3); these associations were present separately among MASLD cases and 
controls. Among only MASLD cases, HRs for these outcomes increased to 1.54 (1.36-1.73), 1.37 (1.21-
1.54), and 1.53 (1.37-1.71), respectively. Similarly, among a subset of 48,619 MSDW participants with 
complete data from 3-6 years prior to the cutoff date, we observed that over a 3-year follow-up period, 
each quintile increase was associated with HRs of 1.10 (1.03-1.16), 1.08 (1.02-1.14), and 1.11 (1.05-
1.17) for new diagnoses of compensated, decompensated, and any cirrhosis, respectively 
(Supplemental Table 18). Likewise, these associations were present among both cases and controls, 
and among cases, HRs for these outcomes increased to 1.87 (1.13-3.08), 1.98 (1.10-3.56), and 1.91 
(1.15-3.15), respectively. 
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In BioMe and All of Us, we calculated ORs rather than HRs due to limited follow-up periods, comparing 
them to ORs in UK Biobank and MSDW. We examined whether a higher predicted MASLD score was 
associated with increased likelihood of a past diagnosis of a MASLD outcome, and observed that they 
were indeed significantly associated with all outcomes: ORs per quintile increase in predicted score 
ranged from 1.35 (1.30-1.39) in All of Us to 1.90 (1.79-2.03) in MSDW for any cirrhosis; 1.57 (1.35-1.81) 
in All of Us to 2.11 (1.86-2.39) in MSDW for liver cancer; and 1.65 (1.35-2.03) in All of Us to 2.14 (1.56-
2.93) in UK Biobank for liver transplant (Supplemental Table 19). Associations were also present 
separately among cases and controls, with higher ORs among cases for all outcomes (Supplemental 
Tables 20-21). 
 
Mortality associations 
 
MASLD patients are known to have significantly higher all-cause mortality, with an HR of 1.34 (1.17-1.54) 
across fourteen studies.16 Consistent with this, predicted MASLD scores were also significantly 
associated with all-cause mortality in the UK Biobank and BioMe, as well as disease-specific mortality in 
the UK Biobank. Examining all-cause mortality in the UK Biobank, each quintile increase in predicted 
score resulted in HRs of 1.26 (1.25-1.27) among all participants, 1.24 (1.10-1.39) among cases, and 1.26 
(1.25-1.27) among controls (Figure 3a-b; Supplemental Figure 1a-b). Furthermore, examining disease-
specific mortality, each quintile increase resulted in HRs of 1.33 (1.31-1.35) for mortality due to 
cardiovascular disease, 1.23 (1.20-1.25) for mortality due to diabetes, and 1.22 (1.21-1.24) for mortality 
due to extrahepatic cancer (Supplemental Table 22), all of which are known common causes of death in 
MASLD patients.17 Significant associations for all-cause mortality also present in BioMe, where each 
quintile increase in predicted score resulted in HRs of 1.13 (1.08-1.19) among all participants and 1.13 
(1.07-1.19) among controls (Figure 3c-d; Supplemental Figure 1c-d). 
 
Biomarker associations 
 
Several laboratory biomarkers not included in our model have been independently associated with 
MASLD. For example, increased GGT and decreased CCR are markers and/or predictors of advanced 
fibrosis in MASLD;18,19 inflammatory markers like ESR and CRP may reflect the chronic low-grade 

inflammation in MASLD patients;20 while estradiol which may be protective against MASLD.21,22 We thus 
performed linear regression analyses between predicted scores and these biomarkers in UK Biobank, 
MSDW, and All of Us, and observed consistent results across biobanks and between cases and controls 
(Supplemental Tables 23-25). For inflammatory markers, predicted scores were positively correlated 
with C reactive protein (CRP), with βs of 1.82 in UK Biobank, 2.42 in MSDW, and 1.40 in All of Us; as well 
as erythrocyte sedimentation rate (ESR), with βs of 18.75 in MSDW and 10.88 in All of Us. Other 
biomarkers included gamma glutamyltransferase (GGT), with βs of 32.25 in UK Biobank, 80.55 in MSDW, 
and 61.77 in All of Us; creatinine/cystatin C ratio (CCR), with a β of -62.92 in UK Biobank; and estradiol, 
with a β of -223.52 in UK Biobank. All correlations were significant to p < 0.001. 
 
Underdiagnosis identification 
 
We observed widespread underdiagnosis of MASLD based on administrative coding. Among the 33,148 
participants with PDFF measurements, 27.1% had either a MASLD diagnosis or a PDFF > 5%. In 
contrast, among the other four datasets, the percent of participants with a MASLD diagnosis ranged from 
7.5% in All of Us to 1.0% in MSDW (Supplemental Table 7), significantly below prevalence estimates of 
25-40% in the United States.1,7,23  
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To assess our model's efficacy in detecting MASLD underdiagnosis, a hepatologist specialized in MASLD 
reviewed charts of 36 BioMe participants without a MASLD diagnosis (Supplemental Table 26). We 
organized participants into 12 sets of three, matching participants in each set by age, gender, and 
ethnicity. Within each set, we selected participants with predicted MASLD scores closest to 0, 1, or 2. Of 
the 12 participants with scores ≈ 0, 11 had no evidence of MASLD, and one had possible MASLD without 
fibrosis. For those with scores ≈ 1, one had definitive MASLD based on ultrasound, and two had possible 
MASLD. Among participants with scores ≈ 2, one had MASLD with F0-F1 fibrosis based on elastography, 
one had MASLD with cirrhosis based on MRI, three had possible MASLD with fibrosis, and two had 
possible MASLD with undetermined fibrosis. Further, ordinal logistic regression indicated that predicted 
MASLD score was significantly associated with an increased confidence of hepatologist-identified 
MASLD, with an OR per unit increase in score of 4.99 (1.60-15.55) (Supplemental Table 27). 
 

Discussion 
 
In the pursuit of precision medicine, the application of computational models to large-scale EHR data can 
revolutionize our understanding of complex diseases. MASLD is one such disease: it has a wide 
spectrum of severity, from being asymptomatic to causing liver failure, and is severely underdiagnosed, 
which hampers optimal management strategies.24 Underdiagnosis of MASLD reflects broader issues in 
medical practice where conditions elude diagnosis due to difficulty of accessing diagnostic tools or a 
general lack of awareness. Addressing these issues, we described here a machine learning model 
trained and evaluated on four diverse biobanks to simultaneously assess both MASLD presence and 
severity. 
 
Our model was well-calibrated and performed well across four replication cohorts with varying health 
systems, ethnicities, population and disease ascertainment, and country of origin. This suggests 
robustness to these differences and versatility across different settings. Importantly, our model 
distinguished MASLD-associated fibrosis from fibrosis due to other causes: in all three FIB-4 index bins, 
MASLD cases had significantly higher predicted scores than controls. Although performance was slightly 
reduced in the replication cohorts compared to the holdout set, this could be due to the significant 
underdiagnosis of MASLD among these cohorts, resulting in inaccurate case/control definitions. Indeed, 
expert chart review demonstrated that our model could identify individuals without a recorded diagnosis of 
MASLD but had imaging-confirmed MASLD with fibrosis or cirrhosis. 
 
To enable population-wide screening, we designed our model to be portable across healthcare settings 
and use existing data. As such, it uses only commonly measured laboratory measurements (those part of 
a complete metabolic panel, complete blood count, and a lipid panel) and a limited number of Elixhauser 
comorbidities that can be readily extracted from patients’ diagnostic histories. This contrasts scores such 
as Hepamet, Fibrometer, and FibroMax, which require specialized labs (e.g., gamma glutamyltransferase 
and alpha-2-macroglobulin) that patients are unlikely to already have available. Our model can also be 
applied to patients with missing measurements because, just as we imputed missing data separately for 
each cohort, health systems can perform imputation using their own patient data.  
 
Further, given that 30% of the population has MASLD, it is important that clinicians can use our model to 
prioritize evaluation and treatment for patients with severe disease and/or who are most at risk for 
progression, with the goal of minimizing costs, labor, and unnecessary use of diagnostic equipment. To 
validate this ability of our models, we demonstrated that in both UK Biobank and MSDW, scores were 
significantly associated with higher hazards for newly developing both compensated cirrhosis and 
decompensated cirrhosis in a gradated manner; and that in both UK Biobank and BioMe, scores were 
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significantly associated with increased risk of all-cause mortality. Our model thus contrasts both existing 
steatosis scores like the HSI, which fails to capture fibrosis severity, and fibrosis scores like FIB-4, which 
identifies fibrosis but does not distinguish MASLD-associated fibrosis from other etiologies.  
 
As additional evidence of clinical validity, we found significant associations between predicted MASLD 
scores and prior diagnoses of several MASLD comorbidities associated with progression to MASH and 
fibrosis.25 In all four biobanks, increased scores were also significantly associated with prior diagnoses of 
cirrhosis and liver cancer, suggesting our model may be useful in identifying MASLD patients who have 
already progressed to advanced disease but have not yet been diagnosed. Surprisingly, there was also 
an association with prior liver transplant; this may reflect the persistence/recurrence of MASLD and 
metabolic dysfunction after transplantation.26 
 
Despite these strengths, our study has several limitations. First, we trained the model using a 
predominantly white European cohort, and while subset analyses suggested that the model generalizes 
well to diverse populations, there are nonetheless slight decreases in performance among demographics 
underrepresented in the training data, emphasizing the need for more diverse datasets. Second, for some 
MASLD patients who progress to cirrhosis, their liver fat percentage decreases below 5%; while rare, 
these patients may be underrepresented in our model, as we partially defined MASLD as PDFF ≥ 5%. 
Third, without elastography data, we used the FIB-4 index as a proxy for liver fibrosis among MASLD 
patients. The FIB-4 index is an imperfect but nevertheless excellent predictor of advanced fibrosis among 
MASLD patients: at the lower cutoff of 1.30 used in this study, the FIB-4 index has a negative predictive 
value of 0.90 for ruling out advanced fibrosis, while at the higher cutoff of 2.67, it has a positive predictive 
value of 0.80 for ruling in advanced fibrosis.13,14 We also note that the goal of our model is not to replace 
diagnostic tools (e.g., elastography, imaging, and biopsy), but rather to provide a more useful MASLD 
screening tool among the general population that increases access to and efficient usage of these tools. 
 
Data sharing statement: Further information about the MSDW and BioMe datasets is available at 
https://labs.icahn.mssm.edu/msdw/ and https://icahn.mssm.edu/research/ipm/programs/biome-biobank/, 
respectively. The UK Biobank dataset can be accessed by applying through the Access Management 
System at https://bbams.ndph.ox.ac.uk/ams/. The All of Us dataset can be accessed by applying through 
the All of Us Research Hub at https://www.researchallofus.org/. Code used for the analyses have been 
deposited at https://doi.org/10.17632/78gc6dpwvm.1. 
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Tables 
 
Table 1: Classification metrics for models evaluated on holdout and external validation sets 
 

Task Dataset AUROC AUPRC Proportion 

Holdout (MASLD and MetALD) 

MASLD diagnosis UK Biobank 0.83 (0.83-0.83) 0.71 (0.71-0.71) 0.35 

Fibrosis identification 0.91 (0.90-0.92) 0.36 (0.34-0.38) 0.01 

Predictions (MASLD and MetALD) 

MASLD diagnosis MSDW 0.79 (0.78-0.80) 0.62 (0.61-0.63) 0.35 

BioMe 0.74 (0.73-0.75) 0.56 (0.55-0.57) 

All of Us 0.74 (0.74-0.74) 0.55 (0.55-0.55) 

Fibrosis identification MSDW 0.89 (0.87-0.91) 0.37 (0.29-0.45) 0.01 

BioMe 0.92 (0.91-0.93) 0.30 (0.24-0.36) 

All of Us 0.89 (0.89-0.90) 0.24 (0.22-0.26) 

Holdout (MASLD only)     

MASLD diagnosis UK Biobank 0.84 (0.84-0.84) 0.71 (0.71-0.71) 0.34 

Fibrosis identification  0.90 (0.89-0.91) 0.40 (0.38-0.42) 0.01 

Predictions (MASLD only) 

MASLD diagnosis MSDW 0.80 (0.80-0.80) 0.61 (0.60-0.62) 0.34 

BioMe 0.73 (0.72-0.74) 0.53 (0.52-0.54) 

All of Us 0.74 (0.74-0.75) 0.54 (0.54-0.54) 

Fibrosis identification MSDW 0.91 (0.89-0.93) 0.38 (0.31-0.45) 0.01 

BioMe 0.90 (0.88-0.92) 0.24 (0.19-0.29) 

All of Us 0.89 (0.88-0.90) 0.26 (0.24-0.27) 

 
Interpretation: AUROC evaluates the trade-off between sensitivity (ability to identify true positives) and 
specificity (ability to avoid false positives) across multiple thresholds, with 1.0 denoting perfect 
discrimination and 0.5 denoting random performance. AUPRC evaluates a model's effectiveness at 
predicting positives over a range of thresholds by analyzing the balance between precision (correctly 
predicted positives out of all predicted positives) and recall (correctly predicted positives out of all actual 
positives). Abbreviations: AUROC: area under the precision recall curve. AUPRC: area under the 
precision recall curve. 
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Table 2: Odds ratios per quintile increase in predicted score for MASLD comorbidities among all 
participants 
 

Comorbidity UK Biobank MSDW BioMe All of Us 

MASLD and MetALD 

MASLD ICD-10 diagnosis 2.71 (2.63-2.81) 3.19 (2.97-3.44) 2.18 (2.07-2.29) 2.24 (2.18-2.30) 

Ischemic heart disease 1.56 (1.54-1.57) 1.50 (1.47-1.52) 1.55 (1.50-1.59) 1.50 (1.48-1.52) 

Atrial fibrillation 1.38 (1.37-1.39) 1.40 (1.37-1.42) 1.32 (1.27-1.37) 1.41 (1.39-1.44) 

Heart failure 1.76 (1.73-1.79) 1.66 (1.62-1.70) 1.66 (1.60-1.72) 1.80 (1.77-1.84) 

Chronic kidney disease 1.90 (1.87-1.93) 1.93 (1.88-1.98) 1.68 (1.63-1.73) 1.69 (1.66-1.72) 

Type 2 diabetes 3.93 (3.87-4.00) 2.39 (2.35-2.44) 2.82 (2.74-2.91) 2.59 (2.55-2.63) 

Obstructive sleep apnea 2.09 (2.04-2.14) 1.90 (1.85-1.95) 1.85 (1.80-1.92) 1.82 (1.79-1.84) 

MASLD only 

MASLD ICD-10 diagnosis 2.84 (2.73-2.95) 3.15 (2.92-3.39) 2.20 (2.09-2.32) 2.30 (2.23-2.36) 

Ischemic heart disease 1.56 (1.55-1.58) 1.49 (1.47-1.52) 1.53 (1.49-1.57) 1.48 (1.46-1.50) 

Atrial fibrillation 1.35 (1.34-1.37) 1.35 (1.32-1.38) 1.28 (1.23-1.33) 1.37 (1.35-1.40) 

Heart failure 1.73 (1.70-1.76) 1.59 (1.55-1.63) 1.59 (1.53-1.65) 1.74 (1.71-1.78) 

Chronic kidney disease 1.88 (1.85-1.91) 1.93 (1.88-1.98) 1.64 (1.59-1.69) 1.66 (1.63-1.69) 

Type 2 diabetes 4.33 (4.24-4.42) 2.60 (2.55-2.65) 2.97 (2.88-3.07) 2.73 (2.68-2.77) 

Obstructive sleep apnea 2.21 (2.15-2.27) 1.89 (1.84-1.94) 1.84 (1.78-1.90) 1.82 (1.80-1.85) 

 
Values represent odds ratios with 95% confidence intervals. 
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Table 3: Hazard ratios per quintile increase in predicted score for MASLD outcomes 
 

 Cases and controls Only cases Only controls 

Outcome Count HR (95% CI) Count HR (95% CI) Count HR (95% CI) 

MASLD and MetALD 

Compensated 
cirrhosis 

370352 1.10 (1.08-1.12) 11825 1.54 (1.36-1.73) 358527 1.07 (1.05-1.10) 

Decompensate
d cirrhosis 

370178 1.11 (1.09-1.13) 11827 1.37 (1.21-1.54) 358351 1.10 (1.08-1.13) 

Any cirrhosis 370120 1.15 (1.13-1.17) 11822 1.53 (1.37-1.71) 358298 1.13 (1.11-1.15) 

Liver cancer 370414 1.03 (1.00-1.05) 11823 1.34 (1.18-1.53) 358591 1.01 (0.99-1.03) 

Liver transplant 370419 1.03 (1.01-1.06) 11832 1.16 (1.01-1.34) 358587 1.03 (1.01-1.05) 

MASLD only 

Compensated 
cirrhosis 

257266 1.10 (1.07-1.13) 8165 1.59 (1.38-1.83) 249101 1.07 (1.04-1.10) 

Decompensate
d cirrhosis 

257135 1.11 (1.09-1.14) 8166 1.40 (1.21-1.62) 248969 1.10 (1.08-1.13) 

Any cirrhosis 257090 1.15 (1.13-1.17) 8162 1.57 (1.38-1.80) 248928 1.13 (1.10-1.15) 

Liver cancer 257316 1.03 (1.00-1.06) 8165 1.35 (1.14-1.58) 249151 1.01 (0.98-1.04) 

Liver transplant 257317 1.03 (1.00-1.06) 8171 1.15 (0.96-1.36) 249146 1.03 (1.00-1.05) 

 
“Count” represents the number of participants in each analysis. For each outcome, participants with an 
outcome prior to their cutoff date were excluded. Values represent hazard ratios with 95% confidence 
intervals. Abbreviations: HR: hazard ratio. CI: confidence interval. 
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Figures 
 
 
Figure 1: Participant selection procedures across the four biobanks 
 

 
 
†: The MASLD cohort in MSDW consisted of all 15,559 MASLD cases and 300,000 randomly selected 
controls. *: In the last step, we selected participants with at least 75% of 39 laboratory and vital 
measurements. 
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Figure 2: Distribution of predicted scores in holdout and external validation cohorts 
 

 
A-E: Density distributions of predicted MASLD scores for true MASLD scores in UK Biobank holdout sets 
(A), prediction set (B), MSDW (C), BioMe (D), and All of Us (E). F: Distributions of predicted MASLD 
scores for the three categories of FIB-4 indices, separated by MASLD status. 
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Figure 3: Association of predicted MASLD scores with mortality risk in UK Biobank and BioMe 
 

 
 
A-D: Results of Cox proportional hazards regressions between all-cause mortality and either MASLD 
status (A, C) or quintile of predicted MASLD score (B, D) in UK Biobank (A, B) and BioMe (C, D). 
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Extended Data 
 
Extended Data Figure 1: Analysis of important features for machine learning models 
 

 
A: Top 20 features for the medium model when evaluated in the UK Biobank holdout set. Feature 
importances were determined using SHapley Additive exPlanations (SHAP) analysis. Bars are colored 
according to the Spearman’s correlation coefficient (ρ) between feature values and SHAP values. B-G: 
Scatterplots of feature values against SHAP values for the top six features. Interpretation: SHAP 
analysis assigns each feature a value that represents its contribution to a particular prediction. A positive 
SHAP value indicates that the feature value increases the prediction output and vice versa. For 
correlation coefficients between feature values and SHAP values, a strong positive correlation indicates 
that as the feature value increases, its positive impact on the prediction also grows, whereas a strong 
negative correlation indicates an increasing feature value has a decreasing impact on the prediction.  
Abbreviations: BMI: body mass index. AST: aspartate transaminase. ALT: alanine transaminase. MAP: 
mean arterial pressure. HbA1C: hemoglobin A1C. 
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