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Introduction: Clinicians iteratively adjust treatment approaches to improve outcomes but to date, automatable 

approaches for continuous learning of risk factors as these adjustments are made are lacking. We combined a 

large-scale comprehensive real-world Learning Health System infrastructure (LHSI), with automated statistical 

profiling, visualization, and artificial intelligence (AI) approach to test evidence-based discovery of clinical 

factors for three use cases: dysphagia, xerostomia, and 3-year survival for head and neck cancer patients. Our 

hypothesis was that the combination would enable automated discovery of prognostic features generating 

testable insights.  

Methods: Records for 964 patients treated at a single instiution for head and neck cancers with conventional 

fractionation between 2017 and 2022 were used.  Combined information on demographics, diagnosis and 

staging, social determinants of health measures, chemotherapy, radiation therapy dose volume histogram 

curves, and treatment details, laboratory values, and outcomes from the  LHSI to winnow evidence for 485 

candidate prognostic features.  Univariate statistical profiling using benchmark resampling to detail confidence 

intervals for thresholds and metrics:  area under the curve (AUC), sensitivity (SN), specificity (SP), F1, 

diagnostic odds ratio (DOR), p values for Wilcoxon Rank Sum (WRS), Kolmogorov-Smirnov (KS), and 

logistic fits of distributions detailed predictive evidence of individual features. Statistical profiling was used to 

benchmark, parsimonious XGBoost models were constructed with 10-fold cross validation using training 

(70%), validation (10%), and test (20%) sets.  Probabilistic models utilizing statistical profiling logistic fits of 

distributions were used to benchmark XGBoost models.  

Results: Automated standardized analysis identified novel features and clinical thresholds. Validity of 

automated findings were affirmed with supporting literature benchmarks. Average incidence of dysphagia 

≥grade 3 within 1 year of treatment was low (11%). Xerostomia ≥ grade 2 (39% to 16%)  and survival ≤ 3 years 

decreased (25% to 15%) over the time range. Standard planning constraints used limited contribution of those 

features:  : Musc_Constrict_S: Mean[Gy] < 50, Glnd_Submand_High: Mean[Gy] ≤ 30, Glnd_Submand_Low: 

Mean[Gy] ≤ 10, Parotid_High: Mean[Gy] ≤ 24, Parotid_Low: Mean[Gy] ≤ 10  Additional prognostic features 

identified for dysphagia  included Glnd_Submand_High:D1%[Gy] ≥ 71.1, Glnd_Submand_Low:D4%[Gy] ≥ 

55.1 , Musc_Constric_S:D10%[Gy] ≥ 56.5 , GTV_Low:Mean[Gy] ≥ 71.3. Strongest grade 2 xerostomia feature 

was Glnd_Submand_Low: D15%[Gy] ≥ 45.2 with a logistic model quantifying a gradual rather than an abrupt 

increase in probability 13.5 + 0.18 (x-41.0 Gy).     Strongest prognostic factors for lower likelihood of death by 

3 years were GTV_High: Volume[cc] ≤ 21.1, GTV_Low: Volume[cc] ≤ 57.5, Baseline Neutrophil-Lymphocyte 

Ratio (NLR) ≤ 5.6, Monocyte-Lymphocyte Ratio (MLR) ≤0.56, Platelet-Lymphocyte ratio (PLR) ≤ 202.5.  All 

predictors had WRS and KS p values < 0.02. Statistical profiling enabled detailing gains of XGBoost models 

with respect to individual features.  Time period reductions in distribution of GTV volumes correlated with 

reductions in death by 3 years.  

Discussion: Confirming our hypothesis, automated, standardized statistical profiling of a set of statistical 

metrics and visualizations supported detailing predictive strength and confidence intervals of individual 

features, benchmarking of subsequent AI models, and clinical assessment. Association of high dose values to 

submandibular gland volumes, highlighted relevance as surrogate measures for proximal un-contoured muscles 

including digastric muscles. Higher values of PLR, NLR, and MLR were associated with lower survival rates.  

Combined use of Learning Health System Infrastructure, Statistical Profiling and Artificial Intelligence 

provided a basis for faster, more efficient evidence-based continuous learning of risk factors and development 

of clinical trial testable hypothesis.  Benchmarking AI models with simple probabilistic models provided a 

means of understanding when results are driven by general areas of overall risk vs. more complex interactions.   
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Introduction 

Automating learning from large-scale real-world data entered into electronic health record (EHR) systems as 

part of routine practice is highly desirable to enable rapid and ongoing evidence-driven discovery of features 

associated with patient outcomes.  The development of EHR learning automations will support practice quality 
improvement and monitoring. In addition, automated evidence-driven discovery could be used to improve 

hypothesis generation and clinical trial design. Taken together, these developments promise to have a 
transformative impact on patient care.  

 

In previous work we described the construction of our learning health system (LHS) infrastructure named the 

Michigan Radiation Oncology Analytics Resource (MROAR) which aggregates, integrates, and harmonizes 

(AIH) data from the EHR, Radiation Oncology Information System (ROIS), the radiation therapy treatment 

planning system (TPS) and other systems. The goal was to enable electronic learning from large scale, 

comprehensive real-world data sets. We implemented standardizations as part of clinical workflows to reduce 

noise and missingness in manually entered data. This marked approaching AIH scalability systematically as a 

“data farming”, rather than a more ad-hoc “data mining”, operation1.   

In a subsequent study, we coupled that system to an algorithm that combined statistical profiling with artificial 

intelligence to create an explainable AI approach to detail prognostic factors of patients being treated for head 

and neck cancers having emergency department visits during or within 90 days of the end of treatment. 2 

We expanded upon the methods, algorithms, and visualizations from our prior work to improve detection and 

evaluation of candidate prognostic factors.  By integrating statistical profiling, including standardized 

visualizations and fittings, along with AI approaches layered on top of the comprehensive LHS,  our 

overarching aim is to build a standardized, clinically interpretable approach to drive evidence-based discovery 

and hypothesis generation from large-scale, multi-factor “real-world” data sets. 3   

We tested the ability of the approach to highlight previously under-recognized prognostic features in our local 

data in three use cases: 1) dysphagia, 2) xerostomia, and 3) three-year survival rates for patients treated for head 

and neck cancers. We tested features identified for supporting evidence in the literature, expanding the range of 

locally monitored features. Statistical profiling was used to quantify confidence intervals and actionable 

thresholds.  Benchmarking of AI models with respect to mechanistic statistical models was used to quantify 

gains in AI models and to gauge impact of missing data.  

In this work we demonstrate we show that coupling the standardized numerical and visualization methodology 

to the comprehensive, large-scale learning health system provides insights to better guide treatment planning 

and monitoring throughout patient care. Clinical incorporation of standardizations in data entry, aggregation, 

analysis and reporting, creates a data “farm to table” approach for automating clinical discovery from real-world 

data.  In addition, the use of standardized, scalable, automated approaches for continuous evidence-based 

learning could support ongoing practice quality monitoring with positive implications for accreditation, 

Medicare payment programs, and other quality improvement activities. 

Methods  

Records for 964 patients treated for head and neck cancers with conventional fractionation between 2017 and 

2022 were used in the study operating under a hospital IRB.  Patient characteristics are summarized in Table 1. 

Patients were predominantly male (74%) and white (91%).   

We examined 468 prognostic features spanning 9 domains (Table 2) to identify predictors for dysphagia ≥ grade 

3, xerostomia ≥ grade 2, and death within 3 years of treatment.  TG-263 nomenclature standardizations were 

used for structures and DVH metrics.4 Applying the Operational Ontology for Oncology (O3), DVH curves 

were represented as an absolute volume and a set of Dx%[Gy] values for a set of standardized percentage values 
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(100%,99.5%, 99-96% in 1% increments, 95%-5% in 5% increments, 4%-1% in 1% increments, 0.5% and 0%). 

D0%[Gy] corresponds to Max[Gy] and D100%[Gy] corresponds to  Min[Gy]. 5 Bilateral structures (parotid and 

submandibular glands) were categorized as _High vs. _Low according to their relative median dose. Following 

TG-263 nomenclature, for plans with multiple GTV and PTV volumes treated to different dose levels, the 

volumes receiving the highest and lowest dose were categorized as xxx_High and _Low and if three volumes, 

then xxx_Mid were also used. Single target volumes were categorized as _High.  

Patients  974 

Sex Female 252 (26%) 

 Male 722 (74%) 

Stage I 91 (  9%) 

 II 101 (10%) 

 III 206  (21%) 

 IV 469  (48%) 

 Metastatic 107  (11%) 

Race White 884 (91%) 

 Black 30 (  3%) 

 Asian 18 (  2%) 

 Unspecified 42 (  4%) 

Ethnicity Hispanic 17 (  2%) 

 Non-Hispanic 945 (97%) 

 Unspecified 12 (  1%) 

Table 1 Patient characteristics 

 

Domain Features 

Demographics Sex, Race, Ethnicity, Martial Status, Insurance, Age 

Location Postal Code, Distance to hospital 

Disease 

Characteristics 

Diagnosis and Staging, Volume of GTVs, CTVs, PTVs, number of GTVs  

Substances Smoking history, smoking max pack/day, alcohol history, max oz/week of alcohol 

Body Habitus Value nearest course start and end for: Height, weight, BMI 

Chemotherapy 

Agents 

Carboplatin, Cisplatin, Paclitaxel, Bevacizumab, Cyclophosphamide, Docetaxel, Fluorouracil, 

Gemcitabine, Methotrexate, Nivolumab, Pembrolizumab, Vincristine 

Laboratory 

Values (course 

start and end) 

Value nearest course start and at 2 months following end of treatment for:  

Neutrophile (Absolute and Percent), Lymphocytes (Absolute and Percent), Platelets, Hematocrit, 

Hemoglobin, White blood cell count, Red blood cell count, Mean corpuscular volume, Monocytes 

Absolute, Eosinophils Absolute, Basophiles (Absolute and Percent), Albumin, Chloride, 

Potassium, Sodium, Creatinine, Blood urea nitrogen, Total Bilirubin, Neutrophil-Lymphocyte 

ratio, Platelet-Lymphocyte ratio, Monocyte-Lymphocyte ratio, Albumin-Bilirubin (ALBI) 

Treatment Number of re-simulations, Median dose to GTV, CTV and PTV 

O3 Formatted 

Organ at Risk 

DVHs curves 

Superior constrictor, inferior constrictor, parotid glands, submandibular glands, oral cavity, larynx, 

esophagus, brainstem  

Table 2: Comprehensive per patient feature set  
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All calculations were carried out in Python 3.6, with  statistical profiling was carried out for each feature.  

Profiles had three components: 1) bootstrap resampling of thresholds and derivative statistics detailing evidence 

and confidence intervals were tabulated for filtering and sorting, 2) visualization of distributions and logistic fits 

supporting clinical evaluation, and 3) visualizations box-whisker plots by year to highlight evolving practice 

changes.   

Endpoints analyzed included overall survival and toxicity endpoints of dysphagia and xerostomia according to 

physician-graded toxicity prospectively scored at each clinical visit including consults, on-treatment visits, and 

follow-up visits.  

For component 1, a set of statistical measures was calculated for each of the 1000 samples of each feature. In 

each sample, the Youden index for a receiver operator characteristic (ROC) curve was used to identify an 

optimal threshold. Incidence (I),  area under the curve (AUC), sensitivity (SN),  specificity (SP),  positive 

predictive value (PPV), negative predictive value (NPV), F1, Matthew’s Correlation Coefficient6–9, Diagnostic 

Odds Ratio (DOR)10,11,  p values for Wilcoxon Rank Sum Test (WRS), and Kolmogorov-Smirnov (KS) tests 

were calculated for each sample. In addition, we calculated the relative predictive difference (RPD) with respect 

to the overall incidence for each sample as  

𝑅𝑃𝐷 =  
𝑃𝑃𝑉 − (1 − 𝑁𝑃𝑉)

𝐼
 

to gauge the ability of the threshold to consistently categorize the feature value region of greatest incidence.   

Mean, standard deviation, median, and 25% and 75% quantiles were calculated from distribution of metric 

values over all samples. The set of bootstrapped sampled statistical metrics and confidence intervals were used 

to evaluate univariate evidence for predictive strength of each feature.   

For component 2, distributions for those with and without the outcome were compared in a histogram for each 

feature. Median threshold from component 1 (𝑥0) was plotted for reference. The distribution with respect to the 

feature value (x) was fitted ( 𝑃𝑚𝑎𝑥, 𝑑𝑥 ) to an increasing (𝑃𝐼 (𝑥)) and a decreasing (𝑃𝐷(𝑥)) logistic curve. 

 

𝑃𝐼 (𝑥) =  
𝑃𝑚𝑎𝑥

(1+exp(
−(𝑥−𝑥0)
𝑑𝑥

𝑑𝑥0
⁄

))

        

 

𝑃𝐷(𝑥) = 𝑃𝑚𝑎𝑥 (1 −  
1

(1+exp(
−(𝑥−𝑥0)
𝑑𝑥

𝑑𝑥0
⁄

))

)      

where,  

𝑑𝑥0 = 𝑙𝑛 (
1

0.75
− 1) 

Definition of 𝑑𝑥0 means   𝑃𝐼 (𝑥0 + 𝑑𝑥0) =  0.75 ∗ 𝑃𝑚𝑎𝑥  . The curve fit selected to represent the distribution (P) 

was set equal to 𝑃𝐼  𝑜𝑟 𝑃𝐷  according to whether the median PPV or (1-NPV) was larger.  P was plotted along 

with the histogram. The plots were used to visualize the strength of evidence for each feature.  
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SN and an SP prioritized feature sets were created from component 1 tabulations, filtering for median (AUC ≥ 

0.6, KS p≤ 0.05, and WRS p ≤0.05), and SN ≥ 0.6  or  SP ≥ 0.6 respectively.  Features passing both filters were 

included according to whether SN or SP was larger. Features were displayed in order of importance using 

SN*DOR*Pmax or SP*DOR*Pmax respectively. For structures in each set, only the DVH metric that was most 

important was retained. For laboratory values, only the most important value at the start of the course or two 

months following the end of the course was retained for any given test.  

We defined a feature clinical relevance (FCR) score (table 3) to reflect concordance with literature and clinician 

experience.  

 

Baseline XGBoost models were constructed and compared in the context of statistical profiling of individual 

features for each SN and SP prioritized feature set individually and for the combination of SP and SN feature 

sets.  Models were also constructed to compare results for data sets where missing values were imputed with 

median values to sets limited to the subset of records not requiring imputation.  

Twenty-fold cross-validation with training and testing sets (80%,20%) was carried out with each XGBoost 

model. Hyperparameters were tuned to reduce overfitting.  Since incidence is low, Synthetic Minority 

Oversampling Technique (SMOTE) of training sets was used to mitigate under-sampling in model creation.  

Statistics were aggregated across the folds for AUC, SN, and SP for testing sets. XGBoost reported importance 

of the features in the training set was aggregated across the folds.  

Significance of improvement in AUC, SN, and SP in models over univariate statistical profiling and of 

XGBoost over the more statistically driven logistic fit model was evaluated with a student t-test (p<0.05).   

Results 

Incidence of dysphagia, xerostomia, and Kaplan-Meier 3-year overall survival by year of course start is shown 

in Figure 1 along with the makeup of patient cohorts by stage. Staging system changed from AJCC7 to AJCC8 

in 2020. Incidence of grade 3 dysphagia requiring a feeding tube was ~11% over the time range, while 

xerostomia and survival  ≤3 years decreased.  

Feature Clinical Relevance 

Value 

Description 

 1.25 Feature supported by literature and not currently incorporated in local clinical 

practice or outcomes modeling. 

 1.00 Feature supported by literature 

 0.50 Feature not supported by literature but judged by clinicians as likely relevant.  

-1.00 Feature not supported by literature. 

-1.50 Feature not supported by literature and judged by clinicians as likely not relevant.   

Table 3: Feature Clinical Relevance (FCR) scoring  
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Figure 2 illustrates the combined numerical and visualization approach for one of the features evaluated for 

predicting dysphagia, Ipsilateral Submandibular Gland: D1%[Gy]. Augmenting statistical metrics with 

visualizations improved communication with stakeholders and evaluation of clinical relevance and 

interpretation of numerically identified features. Thresholds supported clinical evaluation in the context of 

clinician experience providing a basis for evaluating applicability in clinical use or in a trial design. DOR and 

RPD highlighted features with stronger contrasts in incidence on either side of identified thresholds. Evaluating 

standardized DVH metrics along the whole DVH curve enabled selecting the specific regions with strongest 

evidence. Use of a logistic model plotted alongside distributions provided ready means for visualizing strength 

of evidence for a feature with respect to the median threshold. Comparing changes in incidence over time 

(Figure 1) with changes in distributions of feature values (Figure 2c) supported explain-ability of time 

dependence.  

Standard planning constraints limit reduced likelihood of a dataset containing high dose values for several 

metrics. Current constraints include Larynx: Mean[Gy] <20 (3), Musc_Constrict_S: Mean[Gy] < 50, 

Musc_Constrict_S : D25%[Gy] < 50, Oral_Cavity: Mean[Gy] ≤ 30Gy, Glnd_Submand_High: Mean[Gy] ≤ 30, 

 

Figure 1 Change by Year of Course start of a) Incidence of 

Dysphagia grade ≥ 3 (red circle), Xerostomia grade ≥ 2 

(green circle) and Survival ≤ 3 years (blue plus sign) 

compared to b) mix of cancer stage I (pink), II (blue), 

III(beige), IV(lavender), Documented Distant Metastasis (M, 

yellow) 
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Glnd_Submand_Low: Mean[Gy] ≤ 10 , Parotid_High: Mean[Gy] ≤ 24, Parotid_Low: Mean[Gy] ≤ 10, 

 

Figure 2. Statistical profiling results for one of the features evaluated for predicting grade 3 dysphagia. Combining (a ) 

tabulations of boot strap resampling of a common set of thresholds and statistical characterization metrics, with (b) 

visualizations of distributions and logistic model fit (solid blue line) for those with (yellow) and without (green) toxicity and 

(c) box-whisker plots of distributions by year with respect to median threshold (dashed blue line) supported clinical 

evaluation of features and explain-ability of subsequently developed models.  
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Esophagus: Mean[Gy] ≤ 20.   Glnd_Submand_Low and Parotid_Low limits were added after 2017. Table 4 

summarizes statistical profiling and modeling results for SN and SP prioritized features.  Visualizations of 

distributions and logistic fits for all features are shown in the appendix.  

Dysphagia 

High dose to submandibular glands was not among the features monitored in standard planning constraints but 

was found to be significant (p<< 0.01). Glnd_Submand_High: D1%[Gy] and D30%[Gy] values equal to 71 Gy 

had SN and SP of 0.82 and 0.79, respectively. While current constraints focus on Larynx: Mean[Gy], Max[Gy] 

≥ 65.5 was also found to be a predictor (p<<0.01). Thresholds in Oral_Cavity dose D30%[Gy]  ≥ 37 (SN = 

0.72, p<< 0.01)  and D5%[Gy] ≤ 63  (SP = 0.66, p<<0.01) indicated further reductions beyond standard 

constraints could be beneficial. 

Patients not treated with carboplatin or cisplatin were less likely (p<<0.01) to have dysphagia with median SP 

equal to 0.63[0.62,0.64] and 0.81[0.80,0.82] respectively. Cisplatin was used infrequently.  

Risk was greater for maximum toxicity occurring late in the course or after completion of treatment ( ≥ 29 

days), consistent with known clinical practice.   

Including SP-prioritized features did not significantly improve XGBoost models compared to SN-prioritized 

features alone. Use of imputation did not significantly change model predictions. 

Having more than one GTV (p< 0.04), weight change (>-7.3[-7.3,-6.3] kg, p< 0.01), BMI change (>-2.1[-2.1,-

1.5], p<0.01), and weight (< 71.6[66.6, 76.6] kg, p< 0.02) were significant but did not have AUC, SN, SP > 0.6. 

Sex, race, ethnicity, and insurance status did not convey greater risk (p>0.3). Observed age threshold was 62.3 

[60.4, 65.6]  but was not significant (p>0.09). Stage was not a significant (p>0.38) predictor.  

Xerostomia 

In the context of dose distributions driven by current planning constraints, low doses to submandibular glands 

had the strongest associations with xerostomia for Glnd_Submand_Low: D25%[Gy] ≥ 41 (SN = 0.69, p < 0.01) 

and Glnd_Submand_Low: D75%[Gy] ≤ 28.9 (SP=0.67, p< 0.01). Parotid_High: D50%[Gy] ≤ 24.3[22.4,24.9] 

was marginally significant (WRS p = 0.07, KS p = 0.04) and had SN = 0.78[0.57, 0.80], but AUC = 

0.58[0.57,0.60]. Parotid_Low: D50% ≤ 12.0[11.5,16.7] Gy was significant (p< 0.01) with SN = 0.78[0.57, 

0.80], but AUC= 0.58[0.57,0.60].  

Figure 2 (a,b)  illustrates that distribution differences in Glnd_Submand_Low: D25%[Gy] were more 

pronounced than D50% consistent with routine use of the Mean[Gy] constraint in routine planning. Logistic fits 

illustrated that the percent risk for xerostomia due to submandibular gland dose increased gradually ( 
𝑑𝑥0

𝑥0
⁄  = 

0.89 ) rather than as a step. Risk of xerostomia associated with Glnd_Submand_Low: D25%[Gy] increased 

gradually as 13.5% + 0.18 (x-41.0 Gy)%.   

Observed reduction in xerostomia by year (figure 1a), correlated with reduction in the lower quartile of doses to 

parotid and submandibular glands decreased over time (2 c-f). Reductions for for submandibular glands were 

most pronounced.  

Stage was not a significant (p>0.5) predictor. Risk was greater for maximum toxicity occurring late in the 

course ( ≥ 23 days after start of treatment ). 
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Table 4: Standardized comparison of AI algorithm results in the context of statistical profiling of features for a) 

Dysphagia ≥ grade 3, b) Xerostomia ≥ grade 2, and c) Survival ≤3 Years with number of patients in the labeled subset in 

parenthesis. Missingness is detailed for each feature as well as fraction meeting threshold limit. Bootstrap resampling 

of Thresholds, AUC, SN , SP, and DOR highlight strength of evidence for each with confidence intervals as median [25% 

quantile, 75% quantile]. Gradual vs step changes in logistic model fits are highlighted for dx0 greater or less than x0 

respectively. Feature clinical relevance (FCR) was scored to reflect concordance with literature and clinician experience. 

 Models for complete data sets (Not Imputed) and incomplete data sets (Imputed) are compared for SN, SP and 

Combined SN and SP filtered data sets. Relative importance ranking of features are compared for SN, SP and combined 

(SP&SN) data sets.   
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Figure 3 Use of statistical profiling visualizations supporting practice changes over time of 

features contributing to xerostomia 
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Survival ≤ 3 Years 

Patients with GTV_Low  and GTV_High volumes ≤ 57.5 cc and ≤21.1 cc respectively were less likely to have 

survival ≤ 3 years (SP = 0.84, p<0.02 and 0.78, p<0.001  respectively). Figure 3 a-d highlights that relative to 

the thresholds, more patients with larger GTV volumes presented in 2017 than in subsequent years.  

Significant improvement in ML models for non-imputed vs. imputed sets highlighted the importance of GTV 

volumes to models.  

Stage IV was marginally significant with (WRS p< 0.03, KS p > 0.08) and AUC= 0.57[0.55,0.59], SN= 

0.59[0.55,0.62], SP=0.56[0.54,0.57].  The average fraction of patients with Stage IV disease 2017-2018 was 

55% 2017-2018, decreasing to 31% in 2020-2022.  

We had not previously included laboratory values among the markers monitored for anticipating outcomes. 

Patients with platelet lymphocyte ratios (PLR)  ≥ 202.5  or neutrophile counts ≥ 4.8 at the course start were 

more likely (SN = 0.66, p< 0.01 and SN = 0.65, p<0.01) to have survival ≤ 3 years. Similarly, patients with 

neutrophile-lymphocyte ratio (NLR) ≤ 5.6, percent neutrophile ≤ 72.8, or monocyte-lymphocyte ratios (MLR) ≤ 

0.55 were less likely to have survival ≤ 3 years with SP = 0.84, p<0.01 and 0.79, p<0.03 and 0.67, p<0.04 

respectively. Patients with baseline platelet ≤ 278[262,302] were less likely to have survival ≤ 3 years (SP = 

0.70[0.62,0.78],). 
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Figure 4 Features predicting Survival ≤3 year 
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Discussion 

The combined use of the standardized LHSI + Statistical Profiling + AI approach demonstrated the ability to 

automate hypothesis-generating clinical insights from comprehensive, large-scale multi-feature real-world data 

sets. Successfully benchmarking automated findings with similar findings in the literature (FCR≥1.0) supports 

efficacy of the method.  

Dysphagia 

Significance (p<<0.01) of high doses to the submandibular glands and the contralateral parotid gland for 

dysphagia was a novel finding from our experience.  Threshold dose levels were much higher than associated 

with xerostomia, and hypothesis generating.  Dysphagia is complex, and patients often describe dry mouth as 

contributory to their dysphagia, but these higher doses may also be consistent with muscle or nerve toxicities. 

Submandibular glands are adjacent to the digastric, geniohyoid, stylohyoid, and mylohyoid muscles. These  are 

not routinely contoured but have been implicated in the swallowing mechanism.   This leads to the hypothesis 

that high doses to the submandibular glands may act as surrogates for dose to the adjacent musculature.  If  true 

then constraining high doses to submandibular glands may be used to reduce dysphagia incidence without 

needing to increase the number of musculature structures contoured.  

A few publications support this novel hypothesis (FCR=1.25). In a study of 300 patients with oropharyngeal 

cancer, with delineation of several swallowing muscle groups, Dale et al found that genioglossus V35Gy[%], 

anterior digastric muscle V60Gy[%], middle constrictor V49Gy[%], and superior constrictor muscle V70Gy[%] 

were associated with increased risk but did not provide confidence interval quantified thresholds.12 They did not 

differentiate between doses to components of bilateral muscle groups.  They found a continuous risk model with 

two inputs V69Gy[%] for mylo/geniohyoid complex and age out had an AUC of 0.835, performing better than a 

binary model for mylo/geniohyoid complex V69Gy[%] >79.5 and age of > 62 years. Values and confidence 

intervals for SN and SP for models were not provided.  

In a study of 90 patients Hedström et al. found that constructing a model using mean doses to the contralateral 

parotid and supraglottic larynx, and maximum dose to the contralateral anterior digastric muscle had an AUC = 

0.64-0.67.13  Mean[Gy] ≥60 for submandibular glands and Mean[Gy] ≥40 for digastric muscles were the most 

significant predictors. Mean[Gy] pharyngeal constrictor muscle, the larynx, the supraglottic larynx, the 

epiglottis, and Max[Gy] to the contralateral submandibular gland predicted moderate and severe dysphagia by 

VFS (AUC = 0.71-0.80). 

Examining other features, in a study of 31 patients Schwarz et al. reported adding Oral Cavity: V30Gy[%] < 65 

and V35Gy[%] < 35  as well as superior constrictor V55Gy[%] < 80 and V65Gy[%] < 30  as planning 

constraints based on their study to reduce the incidence of dysphagia. They did not quantify risks with SN or 

SP. 14  

Xerostomia 

Parotid sparing is widely adopted as the primary means of limiting incidence of xerostomia. Given dose 

constraints targeting parotids, additional gains are evident with reductions to submandibular glands. 

Longitudinal decreases on the lower quartile of submandibular gland doses correlated with observed reductions 

in the incidence of high-grade xerostomia. This reflected practice changes over the same time period.  

In a study of 114 patients with 76 receiving contralateral submandibular gland sparing to Mean[Gy] ≤ 30.7, 

Gensheimer found significantly reduced incidence.15 Kim et al. reported results from a randomized study of 236 

patients having elective nodal irradiation of IB nodes.16 They found that lower Mean[Gy] for ipsilateral (51.5 vs 

67.9) and contralateral (45.2 vs. 55.7) were associated with the incidence of grade 2 xerostomia (9.9 vs. 29.2%)   
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Our results are suggestive that differential dosing to subvolumes of contralateral submandibular glands 

D25%[Gy] < 41 and D75%[Gy] < 28.9 may be beneficial (FCR=1.25).  

 

Survival 

Stage IV was a predictor for survival ≤3 years, but more specifically GTV_Low and GTV_High volumes 

greater than identified thresholds were associated with shorter survival.  Significance of missing values in ML 

models is suggestive of the potential value of recording GTV volumes before surgical resection to include in 

models.  Data was suggestive that elevated platelets, neutrophils, and monocytes were associated with shorter 

survival but were less important than GTV volumes. PTV and CTV volumes did not emerge as predictive 

indicating that the underlying disease rather than the volume of irradiated tissue may be more predictive.  

Literature supported identified values that are not currently incorporated into our local models (LCR = 1.25)  

We have previously shown that the median GTV volume of the primary tumor is a significant predictor of 

locoregional failure (LRF) (Mierzwa, CCR, 2022).  In another retrospective analysis of 137 patients with 

nasopharyngeal cancer,  Laconelli et al. identified GTV volume < 43.2 cc as a prognostic factor for local control 

at 5 years. 17  Romesser et al. examined the prognostic utility of GTV volumes for primary (GTV-P) and nodal 

(GTV-N) disease to augment TNM classification. 18  They found that GTV-P < 32.9 cc was a significant 

predictor for overall survival as well as for local control, but not volume of GTV-N. Studer et al. examined the 

potential of a GTV volume-based system of staging for predicting overall survival in a cohort of 172 patients 

treated for Head and Neck Cancers. They demonstrated significant differences in Kaplan Meier survival curves 

categorizing primary and total GTV volumes into cohorts of 1-15 cc, 15-70cc and > 70cc.19 Our findings that 

GTV_High (i.e. primary GTV) < 21.2 cc and GTV_Low (i.e. total GTV) < 57.5 cc support their hypothesis that 

incorporation of GTV volumes into prognostic models could improve survival models based on TNM staging 

alone (FCR=1.25).  

In a study of 433 patients with oropharyngeal cancer, Shoultz-Henly et al. found that freedom from distant 

metastasis and overall survival was decreased for patients with pre-treatment platelet > 350 x 109/L 20. Haddad 

found in a  study of 46 patients that 2-year overall survival was 89% vs. 61% for patients with NLR < 5. 21  

Bardash et al. carried out a meta-analysis of 13 studies from 4541 patients and reported that elevated PLR was 

associated with poorer survival. Median PLR threshold from the studies ranged from 11 to 186.2 with a median 

of 146.2. 22  A meta-analysis showed that larger PLR, NLR, and MLR values were associated with lower overall 

survival. 23   A study of 476 patients by Yu et al. demonstrated that a lymphocyte-monocyte ratio < 3.8 

(corresponding to MLR > 0.26) was associated with lower overall survival. 24 Our findings supported 

prognostic value of PLR,NLR, and MLR and quantified thresholds for clinical guidance (FCR=1.25)  

 

Summary 

There are significant challenges for the application of AI with real-world data. Real-world data may be sparse 

(not all patients have all features or labels). Further, AI algorithms may not provide improved insights beyond 

statistical analysis for all data sets.25,26  We found that detailing inputs ahead of the application of AI algorithms 

in decision frameworks enabled a more objective assessment of results and insights on surrogacy of features. 

Use of only a single metric (e.g. AUC) and the neglect of methods to quantify confidence intervals undermines 

the ability to objectively assess evidence and likely reproducibility of findings. We recommend that at minimum 

SN, SP, DOR, WRS and KS with confidence intervals  determined with bootstrap resampling be used to 

augment AUC as a reporting metric. Optimally the complete set of metrics used here, including thresholds and 

confidence intervals, would be included in reporting.  
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Ability to automate statistical and AI discovery is only as strong as the consistent entry of feature values. When 

clinical standardized methods for entry are not used or are endlessly personalized, then everyone is harmed by 

forcing manual rather than automated aggregation of data. This example focused on comprehensive feature sets 

where data was reliably entered showing the potential of automated approaches.   

Use of the feature clinical relevance (FCR) was a novel and valuable metric for benchmarking features 

identified with the automation. For any given feature, the FCR metric is likely to evolve as clinical factors 

become relevant with clinical practice changes. This points to the value of journals adopting standardized article 

meta-data approaches (e.g. based on O3) to facilitate searching and scoring that could be incorporated into 

automation. This would enable developing automated analysis approaches that readily incorporate literature 

values with local data to improve rapid discovery and validation.  

Standardized detailed analysis and visualizations revealed practice patterns changed. For accreditation agencies 

development of radiation therapy specific practice quality metrics is an area of interest.27–31  To optimize 

participation, metrics need to be both clinically relevant and possible to gather without excessive effort. We 

believe application standardized LHSI + Statistical Profiling + AI systems across a wider range of facilities 

could be transformative for both.   

Both the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) and the Pediatric Normal 

Tissue Effects in the Clinic (PENTEC) highlighted non-standard reporting of dose delivered to organs at risk 

and small data sets not representing the overall population as issues in the development of models from 

aggregated experience.32–35 By using the combination of LHSI + statistical profiling + AI to lower the effort to 

create standardized data sets and reporting methods, such systems could significantly improve the ability to 

learn from aggregated experience by expanding the range of academic and non-academic clinics able to 

contribute.  
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Appendix Statistical Profiling  Distribution visualizations from SP and SN screened features 
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Dysphagia SP Prioritized Set 
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Xerostomia SN Prioritized Set 

 

 

 

 

 

 

 

 

 

Xerostomia SP Prioritized Set 
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Survival ≤3 years SN Prioritized Set 

 

 

 

 

 

 

 

 

Survival ≤3 years SP Prioritized Set 
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