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Abstract 39 

Mass General Brigham, an integrated healthcare system based in the Greater Boston area of 40 

Massachusetts, annually serves 1.5 million patients. We established the Mass General Brigham 41 

Biobank (MGBB), encompassing 142,238 participants, to unravel the intricate relationships among 42 

genomic profiles, environmental context, and disease manifestations within clinical practice. In this 43 

study, we highlight the impact of ancestral diversity in the MGBB by employing population genetics, 44 

geospatial assessment, and association analyses of rare and common genetic variants. The population 45 

structures captured by the genetics mirror the sequential immigration to the Greater Boston area 46 

throughout American history, highlighting communities tied to shared genetic and environmental factors. 47 

Our investigation underscores the potency of unbiased, large-scale analyses in a healthcare-affiliated 48 

biobank, elucidating the dynamic interplay across genetics, immigration, structural geospatial factors, 49 

and health outcomes in one of the earliest American sites of European colonization. 50 
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Introduction 51 

Determinants of health include a complex interplay of sociodemographic, structural, genetic, and 52 

environmental factors that are also contextually dependent on time and geography. Disease risk 53 

prediction models and therapeutic paradigms are largely agnostic to many of these important features 54 

yet are intended for broad use. Such training datasets often lack the breadth and depth of information 55 

and the inherent diversity across features required for equitable applications. The United States 56 

populace is highly diverse, marked by complex migration patterns and dynamic social constructs and 57 

represents multilevel health contributors. For example, it is widely recognized that the prevalence of 58 

diseases is closely linked to individual or neighborhood social deprivation, which further varies across 59 

smaller domains and regions1,2. Furthermore, these determinants differentially contribute to health 60 

outcomes depending on local factors3,4. 61 

Contemporary healthcare-associated biobanks represent a new opportunity to discover novel 62 

determinants of health and augment translation to clinical care. Such endeavors represent a recent 63 

collaborative synergy of large-scale population-based-5-8 and local healthcare- biobanks9-13. 64 

Understanding how DNA sequence variation tracks contemporary and historical population 65 

demographics can provide insights on differential disease burdens. For example, rs5742904 66 

(c.10580G>A, p.Arg3527Gln) in APOB, a founder pathogenic mutation for familial hypercholesterolemia 67 

has significantly higher allele frequency in Old Order Amish people. It substantially explains the 68 

increased risk for coronary artery atherosclerosis in this population14,15. Important insights related to 69 

genetic variations and clinical outcomes may often require profiling diverse populations. For example, 70 

the discovery of the association between disruptive variants in PCSK916,17 and lower low-density 71 

lipoprotein cholesterol in the African population, where these variants are prevalent, facilitated drug 72 

development. As another instance, G6PD deficiency18 was recognized as a prevalent hemolytic 73 

disease in Sub-Saharan Africa. Studying diverse populations across a spectrum of diseases is crucial 74 

to assess the penetrance of disease-associated monogenic alleles19 and polygenic models20.  75 

Recent analyses of biobanks in the United States have uncovered the complex genetic structure of 76 

Hispanic and/or Latinx groups tracing their origins to the Americas9,12. In these efforts, it has been 77 

demonstrated that the fine genetic structure within biobanks can identify varying disease risks by 78 

capturing both ancestral and social structures, thereby contributing to the advancement of personalized 79 

medicine. Separately, recent advances in data size and methodology have enabled us to precisely 80 

characterize the complex population dynamics associated with multiple colonization and admixture 81 

events21-23 However, the interplay across these features, or their interaction with large-scale genetic 82 

association studies using whole-genome imputed or sequenced data, remains understudied. 83 
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The New England region represents among the earliest European colonization of the United States with 84 

sequential ongoing migration from diverse groups. In this study, we examined the genetic variation 85 

across New England coupled with sociodemographic, clinical, and environmental/geospatial factors in 86 

the Mass General Brigham Biobank (MGBB). By applying a network-based clustering algorithm with 87 

newly generated reference dataset, we established fine genetic clusters with subcontinental resolution 88 

within MGBB. These clusters exhibited distinct genetic properties, geographic distributions, 89 

socioeconomic statuses, and disease risks. In combination with rare and common variant genetic 90 

association analyses, we gained further insights into the different disease risks among these 91 

populations. Collectively, this study highlights the power of large-scale, unbiased analyses within a 92 

healthcare-based biobank to understand the complex interplay between genotypes and phenotypes, 93 

paving the way for increasingly personalized interventions.  94 
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Results 95 

Participant recruitment and Electronic Health Record (EHR) based phenotyping 96 

Since 2010, 142,238 individuals within the Mass General Brigham (MGB) network, the largest 97 

healthcare system in Massachusetts, have consented to participate in the MGBB as of May 11, 2023 98 

(Figure 1a, Supplemental Information Figure 1, Supplemental Table 1). Among participants, 99.5% (n = 99 

141,519) consented to re-contact. 56.8% of participants are female (n = 80,851, Figure 1b). Median 100 

[interquartile range; IQR] age at consent was 51 [35 – 63] years for female participants and 58 [43 – 68] 101 

years for males. Self-reported races were 84.4% White, 4.5% Black, and 3.0% Asian. Self-reported 102 

ethnicities were 86.6% non-Hispanic and 2.44% Hispanic (Supplemental Information Figure 2). The 103 

participants are primarily cared for at the two flagship MGB hospitals, both located in Boston, MA, and 104 

their associated clinics – Massachusetts General Hospital (MGH) and Brigham and Women’s Hospital 105 

(BWH, Figure 1c). The biobank data is interlinked with EHRs with phenotype data across the MGB 106 

network, as well as notable specialty centers in Boston, MA including the Mass Eye and Ear Institute 107 

(MEEI) and Dana-Farber Cancer Institute (DFCI). To generate systemically annotated 108 

prevalent/incident outcomes, we extracted International Classification of Diseases codes, Nineth (ICD9) 109 

and Tenth (ICD10) revisions, from the EHR and mapped them to PheCodes24. We identified 1,577 of 110 

1,860 possible PheCodes with at least one event (Figure 1d). Participants were followed for a median 111 

[IQR] of 4.3 [2.5 – 6.0] years after inclusion to MGBB with a median of 12 [5 – 25] incident events per 112 

person.  113 
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Fine-scale clustering of genetic ancestry in MGBB 114 

Extending beyond traditional low-dimensional projections of continental ancestry from genome-wide 115 

data, we utilized high-dimensional principal components (PCs) to achieve greater granularity. Using 116 

genome-wide genotyping arrays, we genotyped 53,306 participants in the MGBB. By employing the top 117 

30 genetic PCs and a network-based clustering approach25, we identified 30 data-driven distinct 118 

ancestral clusters (Figure 2a, 2b, and 2c, Figure S1, Supplemental Table 2). The largest cluster (cluster 119 

0, ordered by sample size) includes 11,875 (22.3%) MGBB individuals. The smallest (cluster 29) 120 

includes only one MGBB participant as well as 27/27 reference Sardinian individuals from Human 121 

Genome Diversity Project (HGDP)26, suggesting the origin of this individual. As such, unsupervised 122 

clustering with diverse populations from the 1000 Genomes Project Phase 3 (1KG)27 and HGDP 123 

reference panels28 allowed us to infer the genetic similarity between these clusters and populations 124 

worldwide in an unbiased manner.  125 

Cluster 0 was genetically similar to the Western European populations in the reference dataset (CEU 126 

[Utah residents with Western or Northern European ancestry] and GBR [British from England or 127 

Scotland] in 1KG, French and Orcadian in HGDP, Figure S2). In addition to the cluster 0, we identified 128 

eight distinct 1KG+HGDP-EUR-like clusters that cluster with Italian, Russian, Spanish, Adygei, Finnish, 129 

Basque, and Sardinian ancestries reflecting known patterns of migration to the Greater Boston Area. 130 

We also identified two distinct 1KG+HGDP-AMR-like clusters (cluster 5 enriched with PUR [Puerto 131 

Rican in Puerto Rica], cluster 8 with Colombian, Maya, PEL [Peruvian in Lima, Peru], Pima, CLM 132 

[Colombian in Medellín, Colombia], MXL [Mexican ancestry in Los Angeles, CA]), four African-like 133 

clusters (cluster 6 enriched with African Caribbean in Barbados and African Ancestry in Southwest USA, 134 

cluster 17 specific to Nigerian Africans [Esan in Nigeria, Yoruba in Ibadan, Nigeria], cluster 22 specific 135 

to Kenyan Africans [Bantu and Luhya in Webuye, Kenya], and cluster 18 with other Western Africans 136 

[Mandinka, Mende people in Sierra Leone, Gambian in Western Divisions in the Gambia]), and three 137 

East Asian-like clusters (cluster 19 specific to Japanese, cluster 20 specific to Uygur, and cluster 9 with 138 

other East Asians). We identified a single large cluster (cluster 10) enriched in South Asian reference 139 

populations, however, Hazara and Kalash populations formed distinct clusters.  140 

Even with a diverse reference dataset, eight clusters comprising 9,874 (18.8%) MGBB individuals did 141 

not have enrichments of specific populations from the reference dataset. Among these unannotated 142 

clusters, seven clusters (4,7,11,13,14,15, and 21) exhibited genetic similarities to 1KG+HGDP-EUR 143 

populations. We calculated pairwise Fixation Index (FST) values among clusters, and then constructed a 144 

phylogenetic tree of the clusters. The observed population differentiation between clusters further 145 
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corroborates the ancestral relationships but notable distinctions from continental populations and 146 

residents in New England (Figure S3a).  147 

We also conducted ADMIXTURE29 analyses to infer continuous population structures within these 148 

genetic clusters, many of which show similar patterns of structure across increasing numbers of 149 

ancestral components (Figure S3b). Using cross validation, ten was the best fit number of components 150 

(Supplemental Information Figure 3). We identified two 1KG+HGDP-EUR-like components 151 

(distinguished by components 4 and 9). The component 4 was most enriched in the Finnish-like cluster 152 

(cluster 24), and relatively enriched in northern European-like clusters (0, 1, and 3) more than the 153 

southern European-like clusters (2, 12, and 14). In contrast, the component 9 was enriched in the 154 

southern European-like cluster. We also observed a third component included in the European 155 

ancestries (component 3). This component 3 is prominent in the Kalash (Indo-European in northwest 156 

Pakistan) and other Pakistani reference populations. While this was enriched in southern European-like 157 

clusters, it was more enriched in un-annotated European-like genetic clusters 4, 7, 11, 13, and 21 than 158 

other annotated European genetic clusters, possibly consistent with Middle Eastern origins as this 159 

group is poorly represented in reference datasets.  160 

Cluster 4 – the 5th largest cluster in this study (n = 3,514) – is one of such un-annotated European 161 

clusters. By comparison of allele frequencies between gnomAD30 ancestries and our dataset, we found 162 

that cluster 4 has allele frequencies most similar to the Ashkenazi Jewish reference population 163 

(Supplemental Table 3). We also observed strong enrichment of skin neoplasms and inflammatory 164 

bowel diseases which were previously noted to be enriched in known Ashkenazi cohorts (Figure S4). 165 

We also observed significant enrichment of Ashkenazi Jewish founder mutations (e.g., APC c.3920T>A, 166 

p.Ile1307Lys, BRCA1 c.68_69del, p.Glu23fs, BRCA1 c.5266dup, p.Gln1756fs, BRCA2 c.5946del, 167 

p.Ser1982fs)31,32 in this genetic cluster (Figure S5). We also observed enrichments of these founder 168 

mutations in un-annotated European clusters 11 and 14 suggesting close genetic relationships between 169 

these clusters to the Ashkenazi-like cluster 4. In addition to the European-like components, we also 170 

identified two different components (components 5 and 7) enriched in the East Asian clusters. One of 171 

these components (component 5) was also observed in the Finnish-like cluster which is consistent with 172 

previous observations33-36.  173 
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Effective population size of ancestry clusters in the Greater Boston area 174 

To characterize the ancestral clusters observed in the MGBB, we estimated the historical transition of 175 

effective population size of each cluster using genome-wide genetic data (Figure S6). We conducted 176 

IBD-based estimation for effective population sizes (Ne). Our results were consistent with some prior 177 

results conducted outside of the U.S. For example, we replicated previously described bottleneck event 178 

in Ashkenazi-like population (cluster 4). The lowest Ne was estimated to be 1,170 (95% CI = 1,100 – 179 

1,270) individuals at 28 generations ago37. We observed similar bottleneck events in clusters 11 and 14 180 

around the same generation (minimal Ne was 4,570 [4,210 – 5,030] in cluster 11 and 32,600 [30,700 – 181 

35,900] in cluster 14) consistent with the aforementioned sharing pattern of Ashkenazi founder 182 

mutations with cluster 4. The largest genetic cluster 0 indicates a population bottleneck occurring 183 

approximately 12 generations ago. This timeframe coincides with the initial colonization of the Boston 184 

area by British settlers. Intuitively, this event is not evident in the British population from the UK Biobank 185 

(UKBB) here or in previous studies38,39 (Supplemental Information Figure 4), suggesting a unique 186 

founder event among British Americans due to colonization. We also observed a significant bottleneck 187 

event in the Admixed American populations, specifically in clusters 5 and 8, with a pronounced 188 

magnitude in the Puerto Rican-like cluster 5 (minimal Ne was 11,300 [11,100 – 11,600]). However, we 189 

did not observe such bottlenecks for other clusters potentially reflective of more continuous migration. 190 
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Genetic clusters, geographic and socioeconomic factors, and disease risks 191 

We used geospatial scan statistics to understand the geographical structure of MGBB ancestry clusters. 192 

We observed 22 statistically significant regions of geographical enrichment among 13 genetic clusters 193 

in smaller than 4-km radius areas. We observed distributions of genetically inferred clusters 194 

recapitulating colonization histories into the Greater Boston Area (Figure 3a). One example of strong 195 

enrichment was observed in the southern area (Roslindale / Mattapan / Dorchester and separately 196 

Roxbury) by cluster 6 (ACB [African Caribbean in Barbados] and ASW [African ancestry in Southwest 197 

U.S.], expected number 105 and observed number 725, P < 1 × 10-17). Another strong enrichment is 198 

observed northern of Boston (Charlestown / Chelsea) by cluster 5 (PUR [Puerto Rican in Puerto Rico], 199 

expected number 180 and observed number 624, P < 1 × 10-17) in addition to Boston’s South End 200 

extending to Roxbury / Hyde Park / Jamaica Plain. We also observed enrichment of Ashkenazi Jewish-201 

like (cluster 4) and East Asian-like clusters (cluster 9) in areas seeded by early founding communities, 202 

such as Back Bay / Brookline / Cambridge (cluster 4) and Allston (cluster 9), respectively. 203 

The western European-like clusters cluster 0 and cluster 1 were similar in conventional PC space 204 

(Figure S1) and ADMIXTURE analysis (Figure S3b)29, but well differentiated by network-based 205 

clustering (Figure 2a) as well as geospatially. The CEU/GBR-like cluster 0 was enriched in central 206 

areas of the Boston (Beacon Hill) and Cambridge (Harvard Square), representing the earliest sites of 207 

British colonization. Cluster 1 (Orcadian-like, tagging northern populations of the British Isles including 208 

those hailing from Scotland and Ireland) is enriched in two different geographical locations, including 209 

Chelsea and South Boston, where secondary colonization occurred. These different geographical 210 

enrichments of cluster 0 versus cluster 1 reflect the distinct histories of these two similar, but distinct 211 

genetic European ancestries.  212 

Socioeconomic status was correlated with both genetic ancestry as well as ancestral geographic 213 

distributions1. Using geocoded location information for each participant in our study, we calculated a 214 

Social Deprivation Index (SDI, ranged from 0 to 100, higher SDI indicating greater deprivation) for each 215 

participant and associated this with healthcare outcomes (Figure S8, Supplemental Table 4). The 216 

distributions of SDI widely differed across genetic ancestries (Figure S7a). Specifically, Cluster 6 217 

(enriched with African Caribbean in Barbados like population) exhibited the highest level of deprivation, 218 

with a median [IQR] SDI score of 83 [52 - 94]. Conversely, Cluster 4 (Ashkenazi Jewish-like) had the 219 

lowest deprivation, as indicated by a median [IQR] SDI score of 22 [8 - 45].  220 

To systemically identify the associations between socioeconomic status and disease risk in MGBB, we 221 

associated SDI with phenome-wide outcomes captured by EHRs, adjusting for genetic ancestries. We 222 

found SDI was significantly associated with 400 out of 1,564 phenome-wide outcomes (Bonferroni P < 223 
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0.05/1,564 = 3.2 × 10-5, Figure 3b). Greater SDI was generally associated with increased disease 224 

prevalence and incidence (385 out of 400). The strongest SDI-associated PheCodes was with Tobacco 225 

use disorder (odds ratio; OR [95%CI]) per one standard deviation (SD) of SDI was 1.54 [1.48 – 1.60], 226 

followed by Mood disorders (OR = 1.26 [1.23 – 1.30]), and Depression (OR = 1.26 [1.23 – 1.30]). As 227 

represented by these examples, we observed greater risks for Mental disorders, followed by 228 

Uncharacterized Symptoms, Respiratory, and Circulatory systems per PheCodes categories, 229 

respectively (Figure 3c). However, prostate (OR 0.85 [0.80 – 0.90]) and breast (OR 0.89 [0.84 – 0.95]), 230 

cancer had significant/nominal negative associations with SDI (Figure 3b).  231 

Using coronary artery disease (CAD) as an example of a common complex condition, we identified a 232 

significant association between SDI and CAD independent from clinical and genetic risk. The 233 

association remained significant even after adjustments for clinical risk score (Pooled Cohort Equation, 234 

PCE)40,41, and polygenic risk score42 (PRS, OR1SD-SDI = 1.26 [1.17 – 1.35], OR1SD-PCE = 1.73 [1.65 – 235 

1.81], OR1SD-PRS 1.24 [1.13 – 1.36], in the multivariate model adjusted by the first ten genetic PCs, 236 

Figure S7). 237 
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Exome Sequencing in MGBB 238 

Using high-coverage whole exome sequencing in the same group of individuals, we systemically 239 

identified rare coding variants in MGBB. There were significant differences in variant distributions 240 

across clusters. For instance, the Ashkenazi-like cluster 4 had fewer singleton variants (median [IQR] = 241 

138 [126 – 152] for cluster 4, and 489 [408 – 566] for others). In contrast, there were significantly more 242 

singletons in clusters 11 and 14, even though they are closely related to cluster 4 (320 [294 – 361] and 243 

400 [372 – 436], respectively, Supplemental Information Figure 5).  244 

We identified median 15 [12 – 18] rare (Minor allele frequency, MAF < 0.01), high-confidence predicted 245 

loss-of-function (pLOF) variants per participant (Figure 4a). The largest number of pLOF variants were 246 

observed in African-like clusters (23.5 [20.25 – 26.0] in cluster 22, 21 [19 – 22] in cluster 26, 21 [17 – 247 

24] in cluster 17, 20 [17.0 – 23.0] in cluster 6). The Northern European-like clusters 1 and 0 had the 248 

fewest pLOFs (13 [11.0 – 16.0] in cluster 1 and 14 [12 – 17] in cluster 0 and 3). We also identified 1,425 249 

individuals (2.8% of total population) with at least one rare autosomal pLOF homozygous genotype 250 

across 761 genes.  251 

We next explored established pathogenic variants (Figure 4b) in MGBB. 2.6% (1,318/50,625) of 252 

participants carry a potentially actionable pathogenic/likely pathogenic variant per American College of 253 

Medical Genetics and Genomics secondary findings guideline (ACMG SF, version 3.1)43,44. These 254 

included 6 homozygotes (TP53, LDLR, 4 MUTYH), and 7 potential compound heterozygotes (2 BTD, 3 255 

MUTYH, ATP7B, and GAA). Across genetic clusters, we observed substantial differences in the 256 

prevalence of these pathogenic variants (Figure 4c). The highest rate of actionable findings (> 4%) was 257 

observed in clusters 11 and 4 despite generally having the lower prevalence of very rare variants. 258 

Conversely, non-European clusters generally showed lower rates for annotated actionable variants. 259 

Considering higher number of alternate allele-counts in the non-European clusters, the genetic 260 

diagnostic rate was significantly lower in non-European populations (Figure S9). Namely, pLOF variants 261 

on ACMG SF v3.1 genes found in African and East Asian clusters have significantly lower likelihood of 262 

being annotated with a high-quality (more than equal two-stars) pathogenic/likely pathogenic annotation 263 

in comparison to the European participants (ORAFR 0.27 [0.18 - 0.41] and ORAMR and 0.48 [0.35 – 0.65], 264 

tested by Fisher’s exact test), at least partly related to the underrepresentation of causative variants 265 

recurrently observed in non-European groups in the ClinVar45,46 database. 266 

To understand the clinical consequences of rare coding variants, we performed exome-wide and 267 

phenome-wide association study (PheWAS) across 1,454 PheCodes and 14,912 genes. We did not 268 

find substantial evidence of inflation in the test statistics (median Lambda GC1.0% 0.89 [0.86– 0.93] for 269 

AFR, and 0.90 [0.87 – 0.93] for AMR, 1.02 [0.99 – 1.05] for EUR, Supplemental Information Figure 6a). 270 
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We identified 51 significant associations (P < 1.8 × 10-9, 0.05/28,035,307 tested phenotype-transcript 271 

pairs, Supplemental Table 5) in the burden of rare pLOF and deleterious missense variants with 14 272 

genes, which included 8 ACMG SF v3.1 genes across 45 clinical outcomes (Figure 4d). In addition to 273 

the genes associated with known traits, we found significant associations between PTEN deleterious 274 

variants and increased risk for secondary hypothyroidism. This link was not described by previous rare 275 

variant targeted analysis47,48 while PTEN deleterious variants have been known to be causal for 276 

hamartoma syndrome including thyroid cancers and abnormalities49,50. Nevertheless, we highlight 277 

numerous persistent risk signals from known Mendelian mechanisms of disease in MGBB.  278 
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Genome-wide PheWAS in MGBB 279 

To further explore the relationship between genotype and phenotype in MGBB, we conducted a 280 

comprehensive genome-wide PheWAS using ICD code-based PheCodes. We associated over 20 281 

million common variants in African, European, and Admixed populations, which were imputed using the 282 

TOPMed imputation reference panel,51 with 1,461 PheCodes. Similar to the rare variant burden test, we 283 

observed calibrated test statistics overall (median Lambda GC [IQR] were 0.98 [0.95 – 1.00] for AFR, 284 

0.97 [0.93 – 1.00] for AMR, 1.02 [0.99 – 1.03] for EUR, Supplemental Information Figure 6b). We 285 

identified 111 associations that reached genome-wide significance (P < 5 × 10-8/3,048 = 1.6 × 10-11, 286 

Figure 5a, Supplemental Table 6), including 3 African and 1 AMR associations. We refined the 287 

prognosis of identified known low-frequency monogenic variants. For instance, we observed that the 288 

variant rs6025 (F5, c.1601G>A, p.Arg534Gln; Factor V Leiden) is strongly associated with Congenital 289 

deficiency of other clotting factors, including factor VII (OR [95%CI] =  11.56 [9.37 – 14.27], P = 3.6 × 290 

10-68). Similarly, rs113993960 – a pathogenic variant in CFTR (c.1521_1523del, p.Phe508del) – is 291 

associated with Cystic fibrosis (OR 14.67 [11.66 – 18.44], P = 2.4 × 10-87).  292 

Some of these variants exhibited a pronounced recessive effect on the phenotype. A prime example is 293 

the variant rs72660908, which is associated with Rhesus isoimmunization in pregnancy (Figure 5b). 294 

This medical condition exemplifies recessive inheritance resulting from the deletion of the RHD gene. 295 

As anticipated, the OR for heterozygotes was not significant (ORHetero = 1.18 [0.53 – 2.7]) compared to 296 

the strong effect observed in homozygotes (ORHomo = 24.3 [14.6 – 43.1], Figure 5c). Recent large-scale 297 

sequencing analysis of structural variants52 identified high linkage disequilibrium (LD) between 298 

rs72660908 and a large deletion affecting RHD (R2 > 0.99), which we support by strong expression 299 

quantitative trait loci (eQTL) effect of rs72660908 on RHD53 (Figure 5d) and low coverage by exome 300 

sequencing in the MGBB (Supplemental Information Figure 7). We also observed a significant 301 

enrichment of cases among individuals who were homozygous for rs72660908, with 127 out of 156 302 

cases having the G/G genotype at this locus. As previously reported, individuals with the homozygous 303 

alternate allele for rs72660908 have a recessive inheritance pattern in European ancestry populations, 304 

but the frequency fluctuates among clusters (17% in cluster 0 and 9% in cluster 4, Figure 5e), and we 305 

observed very few copies in AFR/EAS populations.  306 

Another noteworthy example is the association between rs73404549 and sickle cell anemia in the AFR 307 

population. This variant is in strong LD with rs334 (HBB c.20A>T, p.Glu7Val, HbS), a well-established 308 

pathogenic variant for sickle cell anemia. Despite high medical relevance, rs334 was not included in the 309 

TOPMed reference panel. We re-evaluated the impact of rs334 using exome sequencing data on sickle 310 

cell anemia and clinical red blood cell counts. rs334 showed stronger and more penetrant effect size for 311 
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sickle cell anemia than imputed rs73404549 (βrs334 = 4.14 ± 0.25, Prs334 = 5.9 × 10-94, βrs73404549 = 3.05 ± 312 

0.22, Prs73404549 = 4.4 × 10-46) with 14 homozygotes for rs334 and a penetrance rate of 79% (Figure 313 

S10a). Additionally, we noted another missense variant rs33930165 in HBB (HBB c.19G>A, p.Glu7Lys, 314 

HbC) – previously shown to confer malarial resistance without sickle cell anemia. We found 5 315 

participants with sickle cell anemia heterozygous for both HbS or HbC with significantly lower red blood 316 

cell counts compared to heterozygotes for either genotype (Figure S10b).  317 
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Discussion 318 

In this study, we conducted multidimensional investigations into the structure of a modern healthcare-319 

based biobank based at one of the earliest sites of durable European colonization. We show how 320 

expanded immigrant communities in the U.S. often exhibit genetic similarities to contemporary 321 

continental populations and reflect common bottlenecks. However, we also observe distinct 322 

bottlenecking effects of early colonization and patterns of admixture, and identify populations not well 323 

represented in reference datasets. Using geospatial indices, genetic ancestries, and phenome-wide 324 

outcome data, we described the architecture of diseases associated with regional socioeconomic 325 

factors such as area-level poverty, education level, single parent households, living in rented housing 326 

units or overcrowded housing units, living without a care or unemployment54. We further leverage rich 327 

genotyping and phenotyping to clarify several clinically relevant genetic associations complementing 328 

clinical and environmental features. This work advances an overall goal of comprehensively quantifying 329 

heterogeneous health determinants that uniquely vary across diverse communities in the U.S.  330 

Leveraging population genetics, we delineated the complex ancestral components present within the 331 

Boston area. While our findings align well with prior studies on nationwide cohorts22,23,38,39, our research 332 

offers further granular insights into the individual-level ancestral histories of the participants, including 333 

lifestyle, genetic, and social risk factors associated with the diseases. We used genetic variation to 334 

explore the dynamic interplay of migration, expanded colonization sites, and geographic and 335 

community variation, aiming to study how social deprivation influences health, independent of the 336 

clinical and genetic risk factors. With distinctions from continental level ancestral histories, the complex 337 

history of communal- and individual-level factors can be uniquely mapped by healthcare-associated 338 

biobanks to uncover novel important drivers of health. 339 

Area-defined SDI improved prediction performance when incorporated into existing clinical55,56 and 340 

genetic risk stratification models57,58 for common complex diseases. In this study, by integrating large 341 

scale EHR data and geographical information, we systemically assessed the impact of SDI on 342 

Phenome-wide scale across diverse ancestries and drew several clinical implications. First, our 343 

systemic assessment suggests that although SDI is a significant contributor to a wide range of diseases, 344 

the impacts of SDI are significantly varied across disease domains. For example, while mental and 345 

cardiopulmonary diseases are more prevalent among individuals experiencing social deprivation, 346 

cancers and congenital diseases are observed almost equally, irrespective of deprivation status. 347 

Furthermore, SDI is differentially yet ubiquitously associated with a wide array of health outcomes 348 

across various genetic ancestral groups. Finally, although the effect of SDI persisted across various 349 
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genetic clusters, the varying magnitude of association suggests an interaction between social 350 

deprivation and genetic factors as previously suggested59,60.  351 

In addition to enabling detailed disease modeling, healthcare biobanks are unique and powerful 352 

resources for exploring rare genetic conditions or disease outcomes. First, we identified individuals 353 

carrying actionable variants, as defined by a curated database. However, these individuals are 354 

predominantly of specific European ancestries, suggesting a bias against non-Europeans in reference 355 

datasets, potentially resulting from disparities in clinical genetic testing19,61. Using an unbiased genomic 356 

scan, our study uncovered several significant associations, which may further refine prognosis within 357 

healthcare settings. Furthermore, we confirmed a penetrant association between an upstream variant 358 

of the RHD gene and Rhesus isoimmunization during pregnancy13,62, while also clarifying varied 359 

prevalence across diverse communities. Bringing these findings together, we highlight that healthcare 360 

biobanks, compared to general population-based biobanks, are enriched with uncommon outcomes, 361 

and associated genetic variations, thereby offering an ideal environment to study clinically pertinent 362 

scenarios. 363 

Nevertheless, our study warrants several limitations. First, most of our enrollment occurred in tertiary 364 

hospitals. While this enabled us to include patients with rare and more severe conditions, the 365 

prevalence may not reflect the general population due to inclusion bias as previously described63. 366 

Second, MGBB participants are centralized in the greater Boston area of Massachusetts, which reflects 367 

the geographic location of the two main hospitals of the MGB health system. Communal and geospatial 368 

characteristics are likely to vary in other New England regions and more broadly across the U.S. 369 

Moreover, while our study provides detailed insights into European populations, the resolution for non-370 

European populations is less robust due to limited sample sizes, reflecting the demography of the 371 

included region. 372 

In conclusion, by utilizing a population genetics, we discerned specific ancestral clusters within the 373 

MGBB. These clusters reflect the colonization histories of the Greater Boston area and exhibit distinct 374 

genetic characteristics and disease susceptibilities. Individual-level clinical and lifestyle risk factors in 375 

combination with community context, structural factors, and genetic variation advance disease 376 

modeling toward precision medicine initiatives.  377 
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Methods 378 

Patient recruitment in MGBB and study protocols 379 

MGBB, previously known as Partners Biobank, is an integrated research initiative based in Boston, 380 

Massachusetts. It collects biological samples and health data from consenting individuals at 381 

Massachusetts General Hospital, Brigham and Women’s Hospital, and local healthcare sites within the 382 

MGB network64. This repository of samples and data supports researchers aiming to decipher disease 383 

mechanisms, enhance personalized medicine, and innovate therapeutic solutions. Since July 1st, 2010, 384 

the MGBB has enrolled 142,238 participants, and extracted DNA from 88,665 participants’ samples 385 

(62.3%). All participants provided written/electronic informed consent for broad biological and genetic 386 

research. The study protocol to analyze MGBB data was approved by the Mass General Brigham 387 

Institutional Review Board under protocol number 2018P001236. The study protocols to analyze UKBB 388 

data was approved under protocol number 2021P002228 and performed under UKBB application 389 

number 7089. 390 

Genotype quality control and imputation 391 

53,306 individuals were genotyped by Illumina Global Screening Array (Illumina, CA) in four batches 392 

(13,140 in the 1st batch, 11,649 in the 2nd batch, 5,976 in the 3rd batch, and 22,541 in the 4th batch). 393 

Genotypes were called using the Z-call software65. After genotype calling, we conducted quality control 394 

with the following steps. We re-aligned genotyping probes to the GRCh38 reference genome using the 395 

blast software66 and extracted probes with perfect- unique match. We removed indels and multiallelic 396 

sites and removed variants with high missingness (> 2%) and low minor allele counts (≤ 2). After 397 

genotype quality control, we estimated continental level ancestry using the 1KG dataset. We extracted 398 

common, high-quality SNPs (missingness < 1%, MAF > 1%) across MGBB and the 1KG dataset. After 399 

pruning SNPs, we computed SNP weights for genetic principal component using the 1KG dataset. 400 

Then, we projected MGBB participants into the same principal component space using 10 PCs. Using 401 

genetic PCs in 1KG dataset as a feature matrix, we trained a K-nearest neighbor model for population 402 

assignment (AFR, AMR, EAS, EUR, and SAS) to assign population labels to MGBB participants. With 403 

these inferred labels, we calculated Hardy Weinberg disequilibrium for each population and removed 404 

variants with P < 1 × 10-6. Finally, we compared the allele frequency in these populations with gnomAD 405 

allele frequency, then removed variants with deviation from ancestry specific gnomAD allele frequency 406 

(Chi-square value > 300). These quality control procedures were done by genotyping batch. We took 407 

the intersection of the variants in these four batches and generated dataset for imputation. Using the 408 

same set of variants, we imputed the genotypes by TOPMed imputation server67. We used TOPMed 409 

multi-ancestry imputation reference panel (TOPMed r2 panel) including 97,256 reference samples and 410 
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308,107,085 variants. Pre-phasing was carried out by Eagle software68, and imputation was conducted 411 

by Minimac4 software67,69. After the imputation, we merged all the four batches by vcftools70 and 412 

converted to bgen file by PLINK2 software (9 Jan 2023)71 for the downstream analysis. 413 

Exome sequencing and quality control 414 

Exome sequences were performed by on Illumina NovaSeq instruments (Illumina, CA) with a custom 415 

exome capture kit (Human Core Exome, Twist Bioscience, CA), with a target of at least 20x coverage 416 

at > 85% of target sites. Alignment, processing, and joint calling of variants were performed using the 417 

Genome Analysis ToolKit (GATK, version v4.1)72 following GATK best practices. The joint called 418 

dataset containing all 53,420 individuals processed by Hail framework73 for further 1) genotype, 2) 419 

variant, and 3) sample quality controls. First, we split the multi-allelic site into biallelic by split_multi_hts 420 

function. Following this process, we removed low-quality genotypes and genotypes called by 421 

unbalanced allele balance. We consider genotypes that meet the following criteria as missing: For 422 

reference homozygotes: total depth (DP) < 10, or Genotype Quality (GQ) < 20. For heterozygotes: DP 423 

< 10, Genotype Likelihood for reference homozygote (PL) < 20, (Reference depth + A1 depth)/DP < 0.8, 424 

or (A1 depth)/DP < 0.2. For alternate homozygotes: DP < 10, PL < 20, or (A1 depth)/DP < 0.8. 425 

Following genotype quality control, we conducted variant-level quality control. First, we filtered variants 426 

in the low complexity region or outside of the target region 427 

(broad_custom_exome_v1.Homo_sapiens_assembly38.bed) with 50bp flanks. We excluded i) 428 

monomorphic variants and, ii) variants with high missing rate (>10%). Using a quality-controlled variant 429 

set, we conducted sample-level quality control. We collected sample QC metric by Hail’s sample_qc 430 

function. We implemented five hard filters (percent chimeric reads, percent contamination, call rate, 431 

mean depth, and mean genotyping quality, Supplemental Information Figure 8) and four soft filters 432 

(number of singletons, Ts/Tv ratio, Het/Hom variant ratio, and Insertion/Deletion ratio, Supplemental 433 

Information Figure 9). For soft filters, we obtained residuals of metrics regressing by the first ten genetic 434 

PCs and excluded +/- 4SD outliers. Finally, using only unrelated quality-controlled samples, we 435 

computed Hardy-Weinberg P-values by continental ancestry estimated from genotyping data. Hardy-436 

Weinberg P-values in chromosome X was computed only for Female participants. We excluded 437 

variants with ancestry-wise Hardy-Weinberg P-values < 1 × 10-6 or monomorphic variant. After quality 438 

control steps, 7,895,027 variants in 22 autosomes and chromosome X were found in 50,625 individuals 439 

remained. 440 

Relatedness inference 441 

We utilized the pc_relate74 function from Hail to adjust for the presence of an admixed population within 442 

the MGBB, using 91,615 pruned, common (MAF > 1%) variants that are located outside the major 443 
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histocompatibility complex (chromosome 6 24,000,000 – 37,000,000 base pair). Among 53,306 444 

individuals, we identified 3,147 pairs with a kinship greater than 0.0884. 445 

Derivation of genetic principal components 446 

To obtain insights utilizing reference populations, first we combined array genotypes from unrelated 447 

MGBB participants with recently generated whole genome sequence datasets from ancestrally diverse 448 

populations including 3,381 individuals from 1KG and HGDP28. We intersected 495,213 autosomal, 449 

non-palindromic variants outside the high LD region with minor allele counts ≥ 10. After merging two 450 

datasets, we pruned variants by PLINK2 software71 with –indep-pairwise option 1000 100 0.2 resulting 451 

in 257,754 variants. Using these genotypes, we derived the weight for each variant for PCs excluding 452 

related samples. Using derived weights, we calculated 30 PCs for all the individuals from MGBB, 1KG, 453 

and HGDP which were used in subsequent analysis. 454 

Fixation index 455 

Pairwise Fixation indices (FST) were computed among in MGBB-, 1KG- and HGDP- populations using 456 

PLINK2 software. The phylogenetic tree was constructed neighbor-joining method75 implemented by 457 

ape R package76. 458 

ADMIXTURE analysis 459 

Using PCs derived above, we conducted admixed component analysis using ADMIXTURE software 460 

(version 1.3.0)29. We optimized the number of admix component K from 1 to 20 and found that K = 10 461 

showed the least cross-validation error (Supplemental Information Figure 3). 462 

Genetic ancestral clustering 463 

To derive fine-scale genetic clusters in the population, we conducted Graph-based clustering which is 464 

frequently used in single-cell RNA-seq clustering analysis implemented in Seurat software (version 465 

4.1.0)25. Though Seurat is primarily tailored for single-cell RNA seq data analyses, we leveraged its 466 

robust clustering capabilities for genetic ancestry clustering. Using the first 30 PCs derived above, we 467 

constructed a nearest-neighbor graph and classified individuals into distinct clusters using the Louvain 468 

algorithm, a default clustering approach in Seurat with resolution parameter of 0.2. As Seurat identified 469 

the clusters in an unsupervised mode, we used individuals from the 1KG or HGDP as a “spike in” 470 

positive controls (true labels). 471 

Effective population size estimation 472 

To estimate the effective population size using haplotype sharing information, we used IBDNe in 473 

combination with the hap-ibd. First, we phased the genotypes of unrelated MGBB participants with 474 
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SHAPEIT software (version 4.2). Then, using hap-ibd software (version 1.0, 15Jun23.92f)77, we 475 

calculated IBD sharing, and this output was fed into IBDNe software (version 23Apr20)78 to determine 476 

the effective population size for each ancestry. To compare the effective population size trajectories in 477 

British population in UK and MGBB, we computed effective population size in down-sampled, unrelated 478 

UKBB European-like population to the same sample size as MGBB British-like population (n=11,508), 479 

using microarray-based genotypes.  480 

Variant annotation 481 

We annotated WES data using the VEP software (version 107)79, supplemented with the Loftee30 and 482 

dbNFSP80 plugins. The “—pick” option was enabled to prioritize the canonical transcript. Additionally, 483 

in-silico predictions from dbNFSP (version 4.2) were employed to prioritize missense variants. 484 

Pathogenic variant annotation 485 

We downloaded ClinVar database45,46 on Aug 16, 2022, and annotated all the variants identified by 486 

exome sequence using snpEff software (version 5.0e) 81. We identified 536,729 variants registered in 487 

the ClinVar Database overall. To identify the carriers of pathogenic/likely pathogenic variants in the 488 

ACMG SF v3.1 actionable genes43,44, we only used variants with review status 489 

“reviewed_by_expert_panel”, “criteria_provided,_multiple_submitters,_no_conflicts” 490 

Polygenic risk score 491 

Using the PRS-CS software82, we determined posterior weights for 1.2 million hapmap3 SNPs from a 492 

previous CAD GWAS42, which did not include the MGBB/UKBB population. Given our study’s 493 

predominant European population, we utilized the European reference panel provided by the PRS-CS 494 

authors. Our model training and derivation of posterior weights incorporated parameters phi ranging 495 

from 1 × 10-1, 1 × 10-2, 1 × 10-3, 1 × 10-4, and 1 × 10-5. With these weights, we determined the CAD-496 

PRS for both UKBB and MGBB populations. From the UKBB results, we identified the optimal 497 

parameter phi as 1 × 1 × 10-3 and applied this PRS in the MGBB analysis. 498 

Disease Phenotyping 499 

We obtained patient data from the electronic health record system within the MGB network. We 500 

specifically extracted ICD9 and ICD10 codes assigned to each patient. To enhance the interpretability 501 

and powered analysis of the disease outcome, we employed the PheWAS R package (version 1.2)83 to 502 

map these codes to corresponding PheCodes24. The PheWAS package utilizes a comprehensive 503 

catalog of PheCodes (https://phewascatalog.org/phecodes). This mapping process facilitated a more 504 

standardized and consistent representation of the patient’s conditions for subsequent analyses. To 505 
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determine the prevalence or incidence of diseases, we considered the date of blood draw for 506 

genotyping as the reference date. By aligning with the corresponding date of PheCodes occurrences, 507 

we identified the prevalent or incident outcomes related to the date of enrollment in MGBB.  508 

Clinical risk, genetic risk, and social risk for CAD 509 

For the CAD analysis, we calculated the 10-year Atherosclerotic Cardiovascular Disease (ASCVD) risk 510 

scores based on the PCE using the PooledCohort R package39,40,84. The PCE accounts for sex, race, 511 

age, total and HDL cholesterol, systolic blood pressure, antihypertensives prescription, current smoking, 512 

and prevalence of diabetes mellitus. For missing values, we performed multiple imputation by chained 513 

equations using the mice R package85, using enrollment age, sex, and race as predictors. Among 514 

participants without prior CAD, the first post-enrollment CAD incidence was ascertained based on 515 

relevant ICD-9 and ICD10 codes from in-hospital records. We assessed the individual association of 516 

10-year ASCVD risk, CAD-PRS, and SDI with incident CAD based on logistic regression. 517 

Exome-wide burden test 518 

We conducted a rare variant aggregation burden test implemented in Regenie software (version 519 

3.2.5)86. We generated masks comprised of predicted loss of function (high confidence by Loftee 520 

software30) and damaging missense variants predicted by > 90% of 29 in-silico prediction programs 521 

included in dbNFSP (version 4.2)80 with MAF < 0.01. 522 

Genome-wide, phenome-wide association study 523 

We conducted single variant PheWAS using imputed genotypes and 1,461 PheCodes. We applied 524 

mixed model approach implemented in Regenie software (version 3.2.5)86. Null model was fit using 525 

pruned common variants derived from microarray-derived genotypes (MAF > 1%, pruned by PLINK2 526 

software71 with option –indep-pairwise 1000 100 0.9). The analyses were conducted ancestry wise. For 527 

sex specific endpoint, only male or female were included in the analysis. The genome-wide significant 528 

threshold was set at P = 1.6 × 10-11 dividing conventional genome-wide significant threshold 5 × 10-8 by 529 

3,048 tested phenotypes across three ancestries. To define the associated loci, we added the flanking 530 

region (± 500,000 base-pairs) for all the variants with genome-wide significance (P < 1.6 × 10-11) and 531 

merged all overlapping regions. 532 

PheWAS Inflation statistics 533 

We estimated Lambda GC (observed chi-squared value divided by expected value) i) at top 1.0 534 

percentile of the test statistics for rare variant burden PheWAS, and ii) using HapMap3 SNPs for 535 
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common variant PheWAS. For common variant PheWAS, LD score regression87 was additionally 536 

performed to estimate intercept using ldscr R package (https://github.com/mglev1n/ldscr). 537 

Geocoding 538 

The participants' current address data was geocoded using the DeGAUSS framework88, a collection of 539 

geospatial tools designed for cleaning and formatting geographic data. This process converts the 540 

address information into standardized spatial data, specifically latitude and longitude coordinates. Our 541 

analysis focused on participants residing in Massachusetts. We excluded 1) Participants whose 542 

addresses were located outside of the state of Massachusetts, 2) Participants for whom the geocoding 543 

process failed. We successfully geocoded 48,369 individuals with genotype data. 544 

Area-based deprivation score index 545 

For individuals whose addresses were successfully geocoded, we proceeded with the following steps: 546 

A) We assigned each individual’s address to a corresponding U.S. Census tract. Census tracts are 547 

small, relatively stable geographic areas that are defined by the United States Census Bureau. They 548 

are designed to be relatively homogeneous units with respect to population characteristics, economic 549 

status, and living conditions. B) We then merged this Census tract-level data with SDI (2018 SDI, 550 

downloaded from https://www.graham-center.org/maps-data-tools/social-deprivation-index.html)54. SDI 551 

is a composite measure of area level deprivation based on seven demographic characteristics collected 552 

in the American Community Survey (ACS) and used to quantify the socio-economic variation in 553 

health outcomes. The final SDI is a composite measure of seven demographic characteristics collected 554 

in the ACS: percent living in poverty, percent with less than 12 years of education, percent single-555 

parent households, the percentage living in rented housing units, the percentage living in the 556 

overcrowded housing unit, percent of households without a car, and percentage non-employed adults 557 

under 65 years of age. This approach allows for a detailed, regional census tract-level analysis of the 558 

social conditions experienced by the study participants. 559 

Spatial enrichment analysis 560 

We utilized the Bernoulli model in SaTScan89. Under this model, individuals belonging to a specific 561 

genetic cluster were treated as “cases,” while all other individuals were treated as “controls.” This 562 

model compares the rates of cases in different areas to determine if the rate of cases inside the 563 

potential cluster area is significantly different from outside. To avoid detecting overly large and 564 

potentially less meaningful clusters, we limited our scan by setting the maximal diameter of the spatial 565 

cluster window. Specifically, we restricted this to a maximum radius of 4 kilometers. 566 

Data availability 567 
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Genotyping and exome sequencing data for 13,500 participants from the MGBB are available in dbGAP 568 

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002018.v1.p1). 569 

Additional MGBB data were accessed under institutional review board protocol for this current study 570 

and are not publicly available due to restrictions on the data. The summary statistics for phenome-wide 571 

common/rare variant association analysis and the allele frequencies of genetic clusters will be publically 572 

available upon the publication.  573 
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Figure Legends 621 

Figure 1 | The cohort characteristics of MGBB 622 

a, The columns represent the cumulative number of individuals who have consented to the MGBB. 623 
Colors indicate the vital status of participants as of May 2023. b, Gender/Age at Consent Distribution: 624 
The columns represent the distribution of the participants based on gender and age at the time of 625 
consent. The individuals older than 100 years at the time of consent are not included in the displayed 626 
numbers. c, Encounter patterns in the MGB Network. The number of encounters that participants have 627 
had within the MGB network. Please note that these encounters include sites where recruitment did not 628 
take place. d, Distribution of PheCodes based outcomes. The columns indicate the number of 629 
outcomes in PheCode-category. Colors distinguish between incident and prevalent cases. MGH, 630 
Massachusetts General Hospital; BWH, Brigham’s and Women’s Hospital, MEEI Mass Eye and Ear 631 
Institute; FH Faulkner Hospital; NWH, Newton-Wellesley Hospital; DFCI, Dana-Farber Cancer Institute. 632 

Figure 2 | Fine-scale genetic clusters within MGBB 633 

a, and b, UMAP representation of genetic clusters in MGBB. Each dot represents a participant, with 634 
colors indicating distinct genetic clusters identified through graph-based clustering from genetic 635 
principal components (Methods). The numbers indicate cluster identification. The color legend and 636 
detailed cluster information will be found in Supplemental Table 2 and Figure S2. c, Population 637 
differentiation in MGBB revealed by ADMIXTURE analysis. The heatmap displays the proportions of 638 
ADMIXTURE components (K = 10) within each genetic cluster. The columns at the top of the heatmap 639 
represent the number of MGBB participants in each cluster. UMAP, Uniform Manifold Approximation 640 
and Projection; MGBB, Mass General Brigham Biobank 641 

Figure 3 | Geospatial distribution, socioeconomic status, and disease risks in MGBB 642 

a, Geographical enrichment of genetic ancestries in the greater Boston area. The circle indicates area 643 
of significant enrichment of corresponding genetic ancestries. b, We tested the association between the 644 
socioeconomic deprivation index (SDI) and 1,564 PheCodes based outcomes (Prevalence + Incidence) 645 
in 47,070 MGBB participants. The model was adjusted for age, sex, and the first ten genetic principal 646 
components. An association was considered statistically significant if P-value was less 3.2 × 10-5 647 
(0.05/1,564). The color of bars indicated the direction of the effect of SDI (higher SDI suggests higher 648 
deprivation). c, The disease frequency (prevalence + incidence) by deprivation status and genetic 649 
ancestry. The color of bars indicated deprivation status (higher or lower than the median SDI). 650 
Complication of Birth, Other and unspecified complications of birth; puerperium affecting management 651 
of mother (PheCode 654). 652 

Figure 4 | Rare variant identification in the MGBB 653 

a, Distribution of the number of protein-truncating variants across genetic ancestries. Each dot 654 
represents a participant. The horizontal axis represents the genetic ancestries in the MGBB, while the 655 
vertical axis represents the number of protein-truncating alleles in each participant. b, Carrier counts of 656 
pathogenic/likely pathogenic variants in ACMG actionable genes. The colors of the bars indicate the 657 
mode of inheritance of the genes. c, Carrier frequency of individuals with pathogenic variants in ACMG 658 
actionable genes, categorized by ancestry. The colors of the bars correspond to the continental 659 
ancestries. The dotted line represents the average frequency in the MGBB. d, Summary of phenome-660 
wide gene burden testing in the MGBB. We conducted exome-wide phenome wide association analysis 661 
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across 1,454 PheCodes based outcomes in 14,912 genes. The columns indicate the number of 662 
significant associations (P < 1.8 × 10-9 = 5 × 10-2/28,035,307 phenotype-transcript pairs) for designated 663 
genes. The color of each column corresponds to the associated PheCode-category. MGBB, Mass 664 
General Brigham Biobank; ACMG, American College of Medical Genetics and Genomics; pLOF, 665 
predicted loss of function; AFR, African; AMR, Admixed-American; EAS, East Asian; EUR, European; 666 
SAS, South Asian. 667 

Figure 5 | Common variant association study in the MGBB 668 

a, Number of associations in the common variant phenome-wide association analysis in MGBB. 669 
We conducted associations between common genetic variants (Minor allele counts ≥ 40) and 670 
1,461 PheCodes (Case counts ≥ 60), categorized by continental ancestries (AFR, n = 2,846; 671 
AMR, n = 3,756; EUR, n = 44,163). The columns represent the number of significant 672 
associations (P < 1.6 × 10-11) on each chromosome. The color indicates the ancestry in which 673 
the association was observed. We annotated chromosomes with more than 10 associations, 674 
indicating the representative locus in the chromosome. b, Manhattan plot of GWAS for Rhesus 675 
isoimmunization during pregnancy in women (n = 23,959). The horizontal axis displays the 676 
genomic coordinates from chromosome 1 to chromosome X. The vertical axis represents the 677 
strength of association in negative log10 P-value. The significantly associated variants in the 678 
RHD locus is highlighted. c, Odds ratio for Rhesus isoimmunization during pregnancy by 679 
rs72660908 genotypes. The dots and error bars represent the estimated odds ratios and 95% 680 
confidence intervals compared to the reference homozygotes ([C/C]). d, RHD read counts from 681 
Whole Blood RNA sequence data obtained from the GTEx dataset. The horizontal axis 682 
displays the number of reads aligned to the RHD gene, categorized by rs72660908 genotypes. 683 
e, Frequencies of rs72660908 homozygotes across genetic clusters in MGBB. The horizontal 684 
axis corresponds to the genetic ancestries in MGBB, while the vertical axis represents the 685 
ancestral frequency of rs72660908 homozygotes ([G/G]). The colors of the columns 686 
correspond to continental ancestries. MGBB, Mass General Brigham Biobank; ACMG, 687 
American College of Medical Genetics and Genomics; pLOF, predicted loss of function; AFR, 688 
African; AMR, Admixed-American; EAS, East Asian; EUR, European; SAS, South Asian; 689 
GWAS, Genome-Wide Association Study; GTEx, Genotype-Tissue Expression.690 
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Supplemental Figure Legends 691 

Figure S1 | Projection of the fine genetic clusters in the continental ancestry space 692 

a, The distribution of the continental ancestries in the UMAP space. Each point on the plot represents 693 
an individual participant of MGBB. To infer the continental ancestry of each participant, we utilized the 694 
K-nearest neighbor algorithm trained on the 1000 Genomes Project dataset. The colors assigned to the 695 
points represent the inferred continental ancestries. The horizontal axis corresponds to the first axis of 696 
the UMAP projection, and the vertical axis represents the second axis. This two-dimensional 697 
representation allows us to visualize the clustering and distribution patterns of different continental 698 
ancestries within the MGBB population. b, The distribution of the fine-scale genetic clusters in the 699 
MGBB on conventional PC space. Each point on the plot represents an individual in MGBB. The colors 700 
assigned to the points represent genetic clusters inferred by the network-based clustering method 701 
(Methods). The horizontal axis corresponds to the first genetic PC, and the vertical axis represents the 702 
second genetic PC. UMAP, Uniform Manifold Approximation and Projection; MGBB, Mass General 703 
Brigham Biobank; PC, principal component. 704 

Figure S2 | Enrichment of the reference groups in the genetic clusters inferred in MGBB 705 

The horizontal axis shows reference populations from 1000 Genomes Project and Human Genome 706 
Diversity Project. The vertical axis shows genetic clusters inferred from MGBB. In the left panel, the 707 
heights of bars show the number of MGBB participants included in the genetic clusters. In the right 708 
panel, the size and transparency of rectangle shows intersection size between reference population 709 
and genetic clusters. The number of individuals in the clusters and the color legend are found in 710 
Supplemental Table 2. Abbreviations for reference populations will be find in Supplemental Table 7. 711 
MGBB, Mass General Brigham Biobank. 712 

Figure S3 | ADMIXTURE analysis for reference population (1KG + HGDP) and genetic clusters 713 

a, Phylogenetic tree generated using Fst Values. The phylogenic tree was constructed using the 714 
Neighbor-Joining method with pairwise Fst values serving as a measure of genetic distance between 715 
populations. A higher Fst value indicates a greater genetic differentiation between populations. The 716 
numeric numbers indicate genetic cluster in MGBB. Ancestry names indicated reference populations in 717 
1KG or HGDP. The number indicate genetic clusters in MGBB. b, In each panel, a stacked column of 718 
color segments represents an individual participant. The color of each segment corresponds to one of 719 
the K = 10 ancestral components, as determined by ADMIXTURE software. The length of each colored 720 
segment within a participant's column indicates the estimated proportion of their genome attributed to 721 
that specific ancestral population. The choice of K = 10 was informed by cross-validation results, with 722 
the aim of minimizing prediction error (Supplemental Information Figure 3). The abbreviations and 723 
detailed descriptions for the ancestral populations corresponding to each color are provided in 724 
Supplemental Table 7. 1KG, 1000 Genomes Project; HGDP, Human Genome Diversity Project; MGBB, 725 
Mass General Brigham Biobank. 726 

Figure S4 | Phenome wide association analysis for cluster 4 727 

Each dot represents the association results based on PheCodes. We examined the relationship 728 
between membership in genetic cluster 4 of the MGBB biobank and PheCodes outcomes. This 729 
association was assessed using a logistic regression model, adjusted for age and sex. MGBB, Mass 730 
General Brigham Biobank. 731 
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Figure S5 | Shared founder mutations across genetic clusters 4, 11, and 14 732 

The left panels are showing the distribution of genetic cluster 4, 11, and 14 in the UMAP space. The 733 
right panel shows the distribution of Ashkenazi founder mutations described in the previous literatures. 734 
The horizontal axes show the genetic clusters identified in MGBB, and the vertical axes show the allele 735 
frequencies determined by whole exome sequencing of MGBB by the genetic clusters. UMAP, Uniform 736 
Manifold Approximation and Projection; MGBB, Mass General Brigham Biobank. 737 

Figure S6 | Effective population sizes in the genetic clusters in MGBB 738 

The horizontal axes show generations ago. The vertical axes show the estimated population size. 739 
Numbers on the top of panels show the cluster identification. The black lines show the estimates and 740 
gray lines show 95% confidence interval.  741 

Figure S7 | Geographical, socioeconomical, distributions of genetic clusters 742 

Distributions of socioeconomic (a), clinical (b), and genetic risks (c). Each dot indicates MGBB 743 
participants. The horizontal axes show genetic cluster. SDI, social deprivation index; PCE, pooled 744 
cohort equation, CAD PRS, polygenic risk score for coronary artery disease. 745 

Figure S8 | Social deprivation in Massachusetts and Greater Boston Area 746 

The color of each grid represents the median Social Deprivation Index (SDI) of the participants from 747 
MGBB. A darker shade denotes a higher level of socioeconomic deprivation. Grids with fewer than five 748 
participants have been excluded. 749 

Figure S9 | Different annotation rate for the functional variants in the pathogenic genes 750 

a, The bar heights depict the proportion of pLOF variants in ACMG genes within specific genetic 751 
clusters identified in MGBB with pathogenic/likely pathogenic annotations as determined by multiple 752 
expert reviews in ClinVar. b, The odds ratio indicates the likelihood of pLOF variants in ACMG genes 753 
having pathogenic/likely pathogenic annotations based on multiple expert reviews. The results are 754 
presented in the continental ancestries and in reference to the European population. Error bars indicate 755 
95% confidence intervals. OR, Odds Ratio; AFR, African; AMR, Admixed American; EAS, East Asian; 756 
EUR, European; SAS, South Asian. ACMG, American College of Medical Genetics and Genomics; 757 
MGBB, Mass General Brigham Biobank; pLOF predicted loss of function. 758 

Figure S10 | Penetrant association of rs334 for sickle cell anemia 759 

a, The prevalence of Sickle cell anemia by rs334 genotypes. b, The RBC measurements in the MGB 760 
participants by combined genotype of rs33930165 and rs334. The box plot depicts the first and third 761 
quartiles, with the line inside the box indicating the median value. RBC, Red Blood Cell count. 762 
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