Rare Genomic Copy Number Variants Implicate New Candidate Genes for Bicuspid Aortic
 Valve

_

3	
4	Authors: Steven G. Carlisle ¹ , Hasan Albasha ² , Hector Michelena ³ , Anna Sabate-Rotes ⁴ , Lisa
5	Bianco ⁴ , Julie De Backer ⁵ , Laura Muiño Mosquera ⁶ , Anji T. Yetman ⁷ , Malenka M Bissell ⁸ ,
6	Maria Grazia Andreassi ⁹ , Ilenia Foffa ⁹ , Dawn S. Hui ¹⁰ , Anthony Caffarelli ¹¹ , Yuli Y. Kim ¹² ,
7	Dong-Chuan Guo ¹ , Rodolfo Citro ¹³ , Margot De Marco ¹⁴ , Justin T. Tretter ¹⁵ , Kim L. McBride ¹⁶ ,
8	^{&} EBAV Investigators, ^{&} BAVCon Investigators, Dianna M. Milewicz ¹ , Simon C. Body ¹⁷ ,
9	Siddharth K. Prakash ¹
10	
11	¹ Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston,
12	Texas.
13	² UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
14	³ Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.
15	⁴ Department of Pediatric Cardiology, Hospital Vall d'Hebron, Facultad de Medicina, Universidad
16	Autònoma Barcelona, Barcelona, Spain.
17	⁵ Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium; VASCERN HTAD European
18	Reference Centre, Belgium; Department of Pediatrics, Division of Pediatric Cardiology, Ghent University
19	Hospital, Ghent, Belgium; Department of Cardiology, Ghent University Hospital, Ghent, Belgium.
20	⁶ Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium
21	⁷ Children's Hospital and Medical Center, University of Nebraska, Omaha, Nebraska.
22	⁸ Deparmentt of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
23	University of Leeds, Leeds, United Kingdom.
24	⁹ Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy.
25	¹⁰ Department of Cardiothoracic Surgery, University of Texas Health Science Center San Antonio, Texas.

26	¹¹ Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California.
27	¹² Division of Cardiovascular Medicine, The Hospital of the University of Pennsylvania, Perelman School
28	of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Philadelphia Adult Congenital
29	Heart Center, The Children's Hospital of Philadelphia, Perelman Center for Advanced Medicine, Penn
30	Medicine, Philadelphia, Pennsylvania.
31	¹³ Cardio-Thoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi
32	d'Aragona," Salerno, Italy.
33	¹⁴ Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno,
34	Baronissi, Italy.
35	¹⁵ Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
36	¹⁶ Division of Human Genetics, Ohio State University Wexner Medical Center, Columbus, Ohio.
37	¹⁷ Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's
38	Hospital/Harvard Medical School, Boston, Massachusetts.
39	
40	
41	
42	
43	
44	
45	Corresponding author:
46	Siddharth Prakash, MD, PhD, Department of Internal Medicine, John P. and Katherine G. McGovern
47	Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 6.116,
48	Houston, Texas, USA
49	E-mail: <u>Siddharth.K.Prakash@uth.tmc.edu;</u> Office: 713-500-7003
50	

51 &Complete lists of EBAV and BAVCon Investigators are provided in the Acknowledgments.

52 Abstract

53	Bicuspid aortic valve (BAV), the most common congenital heart defect, is a major cause
54	of aortic valve disease requiring valve interventions and thoracic aortic aneurysms predisposing
55	to acute aortic dissections. The spectrum of BAV ranges from early onset valve and aortic
56	complications (EBAV) to sporadic late onset disease. Rare genomic copy number variants
57	(CNVs) have previously been implicated in the development of BAV and thoracic aortic
58	aneurysms. We determined the frequency and gene content of rare CNVs in EBAV probands (n
59	= 272) using genome-wide SNP microarray analysis and three complementary CNV detection
60	algorithms (cnvPartition, PennCNV, and QuantiSNP). Unselected control genotypes from the
61	Database of Genotypes and Phenotypes were analyzed using identical methods. We filtered the
62	data to select large genic CNVs that were detected by multiple algorithms. Findings were
63	replicated in cohorts with late onset sporadic disease ($n = 5040$). We identified 34 large and rare
64	(< 1:1000 in controls) CNVs in EBAV probands. The burden of CNVs intersecting with genes
65	known to cause BAV when mutated was increased in case-control analysis. CNVs intersecting
66	with GATA4 and DSCAM were enriched in cases, recurrent in other datasets, and segregated with
67	disease in families. In total, we identified potentially pathogenic CNVs in 8% of EBAV cases,
68	implicating alterations of candidate genes at these loci in the pathogenesis of BAV.

69 Author Summary

70	Bicuspid aortic valve (BAV) is the most common form of congenital heart disease and
71	can lead to long-term complications such as aortic stenosis, aortic regurgitation, or thoracic
72	aortic aneurysms. Most BAV-related complications arise in late adulthood, but 10-15% of
73	individuals with BAV develop early onset complications before age 30. Copy number variants
74	(CNVs) are genomic structural variations that have been previously implicated in some types of
75	congenital heart disease, including BAV. Here we demonstrate that individuals with early onset
76	complications of BAV are enriched for specific rare CNVs compared to individuals with late-
77	onset BAV disease. We also describe novel CNVs involving DSCAM, a gene on chromosome 21
78	that has not previously been associated with the development of BAV. These results may lead to
79	improved risk stratification and targeted therapies for BAV patients.

80 Introduction

Copy number variants (CNVs) have been implicated as causes or modifiers of many
human diseases [1]. Specifically, large genomic CNVs are significantly enriched in cohorts with
developmental delay or congenital abnormalities, and the severity of phenotypes has been
correlated with the burden of rare CNVs [2]. These observations show that large, rare, *de novo*CNVs are likely to be pathogenic and can exert clinically relevant effects on disease
pathogenesis [3-4].

87 Congenital heart disease (CHD) has a worldwide prevalence of 8.2 per 1000 live births 88 [5]. CNVs have been implicated in both syndromic and non-syndromic forms of CHD [6-10]. 89 The pathogenicity and penetrance of CNVs was initially established for clinical syndromes such 90 as velocardiofacial syndrome, Turner syndrome, or Williams-Beuren syndrome, which involve 91 chromosomal or megabase scale duplications or deletions, but has since been expanded to 92 include additional CHD subtypes [10]. CNVs contribute to 10% of all CHD cases and up to 25% 93 of cases with extracardiac anomalies or other syndromic features [11]. The role of pathogenic 94 CNVs affecting genes that are known to cause CHD when mutated, such as *GATA4* and *TBX1*, 95 has been established [12]. Furthermore, population-level analysis has consistently demonstrated 96 an increased burden of CHD in carriers of CNVs at specific genomic hotspots compared to 97 controls, displaying the pathogenic potential of rare or de novo CNVs [12-14]. 98 Bicuspid Aortic Valve (BAV) is the most common congenital heart malformation with a 99 population prevalence of 0.5 - 2% [15]. BAV predisposes to aortic valve stenosis and thoracic 100 aortic aneurysms and is associated with other left ventricular outflow tract lesions such as mitral 101 valve disease and coarctation [16]. The high heritability of BAV was demonstrated in first- and

102	second-degree relatives, who are more than ten times more likely to be diagnosed with BAV
103	compared to matched controls [17]. BAV can occur as an isolated congenital lesion or as part of
104	a clinical syndrome. For example, the prevalence of BAV is increased in Velocardiofacial,
105	Loeys-Dietz, Kabuki, and Turner syndromes. Pathogenic variants of several genes are
106	implicated in familial non-syndromic BAV, which is typically inherited as an autosomal
107	dominant trait with reduced penetrance and variable expressivity. There is strong cumulative
108	evidence that GATA4, GATA6, NOTCH1, ROBO4, SMAD4, MUC4, and SMAD6 each contribute
109	to a small percentage of non-syndromic BAV cases. Phenotypic expression of BAV disease
110	ranges from incidental discovery in late adulthood to neonatal or childhood onset of
111	complications. In comparison to patients with later disease onset, younger BAV cohorts tend to
112	present with syndromic features or complex congenital malformations that are more likely to
113	have a genetic cause, thereby increasing the power of association studies to discover clinically
114	relevant CNVs [18]. Recently, we identified recurrent rare CNVs that were enriched for cardiac
115	developmental genes in a young cohort with early-onset thoracic aortic aneurysms or acute aortic
116	dissections [19].

117 We hypothesize that large rare genomic CNVs contribute to early onset complications of 118 BAV. Consistent with previous observations, we predict that the burden and penetrance of rare 119 CNVs will be increased in individuals with early onset disease when compared to elderly 120 sporadic BAV cases and population controls. Identification of novel pathogenic CNVs can 121 provide new insights into the genetic complexity of BAV and may be useful for personalized risk 122 stratification or clinical guidance based on the specific recurrent CNV [20]. Therefore, we set out 123 to describe the burden and penetrance of rare CNVs in a young cohort with early onset 124 complications of BAV disease (EBAV).

125

Materials and Methods 126

127 The study protocol was approved by the Committee for the Protection of Human Subjects at the University of Texas Health Science Center at Houston (HSC-MS-11-0185). After written 128 129 informed consent, we enrolled 272 probands of European ancestry with early onset BAV disease 130 (EBAV), which we defined as individuals with BAV who were under the age of 30 at the time of 131 first clinical event. Clinical events were defined as aortic replacement, aortic valve surgery, 132 aortic dissection, moderate or severe aortic stenosis or aortic regurgitation, large aneurysm (Z >133 4.5), or intervention for BAV-related conditions. Those with hypoplastic left heart, known 134 genetic mutations, genetic syndromes, or complex congenital heart disease were excluded. 135 Affected and unaffected family members of probands were included in this cohort for a total of 136 544 individuals in 293 families (26 trios and 16 multiplex families). Samples were collected and 137 genotyped similar to our previous study [21]. For comparison, we analyzed a cohort of older 138 individuals of European ancestry with sporadic BAV disease selected from the International 139 BAV Consortium (Table 1) [22].

- 140
- 141
- 142

Table 1. Summary of Case Cohorts.

Cohort	Source	Sample Size	Array		
EBAV	UTHealth Houston	544	Illumina GSA-24v1.0/2.0		
BAVGWAS	International BAV Consortium	5040	Illumina GSA-24v3.0		

polymorphism (SNP) array data included three independent CNV detection algorithms (Fig 1).

143 Cohort: name of case cohort; EBAV: family-based cohort selected for early onset complications of bicuspid aortic 144 valve (BAV); BAVGWAS: unrelated probands with sporadic BAV disease. Source: origin of genotypes; Array: 145 microarray used for genotyping. 146 147 Phenotypes were derived from record review with confirmation of image data whenever 148 possible [23-24]. The computational pipeline for CNV analysis of Illumina single nucleotide 149

150

151 Fig 1. Overview of Pipeline for CNV Identification and Validation.

152 SNP, single nucleotide polymorphism. OC, Quality control, CNV, copy number variant. The software and 153 algorithms used for the analysis are provided in boxes to the left of the corresponding steps. Illumina raw signal 154 intensity data was trimmed and exported using GenomeStudio. The intensity data was then analyzed with three 155 different CNV calling algorithms (PennCNV [25], cnvPartition, and QuantiSNP [26]) to generate initial CNV calls 156 and sample-level statistics. Sample-level quality control analysis was performed using PennCNV. PLINK [27] 157 toolset was used to define CNV regions from initial CNV calls for subsequent burden testing, enrichment studies, 158 and replication studies. The initial CNV calls were individually screened for CNVs intersecting with candidate loci, 159 which we defined as genes implicated in bicuspid aortic valve disease and those discovered in our enrichment 160 studies. CNVs of interest were then validated in GenomeStudio.

- 161
- 162 GenomeStudio was used to exclude samples with indeterminate sex or more than 5%
- 163 missing genotypes, and single nucleotide polymorphisms (SNPs) with GenTrain = 0. Principal
- 164 component analysis was used to remove outliers that did not cluster with European ancestry.
- 165 Only SNPs common to all microarray platforms were included.

166 Three independent algorithms (PennCNV, cnvPartition, and QuantiSNP) were used to 167 generate CNV calls and sample-level quality statistics from SNP intensity data. PennCNV and 168 QuantiSNP were run on Unix clusters and cnvPartition data were exported from GenomeStudio. 169 The analysis was run using default configurations. 170 PennCNV was used to generate QC data and remove CNV calls that intersect with 171 polymorphic genomic regions. Samples that met any of the following criteria were excluded: 172 standard deviation of the LogR ratio (obtained from PennCNV) > 0.35 or number of CNVs > 2173 standard deviations above the mean for each data set. CNV calls less than 20 kilobase pairs 174 and/or spanned by less than 6 SNP probes were excluded. The overlap function for rare CNVs in 175 PLINK was used to construct CNV regions (CNVRs) and adjacent regions were merged using 176 PennCNV. 177 LogR ratio (LRR) and B allele frequency (BAF) data at CNVRs and calls of interest were 178 visualized in GenomeStudio for validation. For segregation analysis, GenomeStudio was used to 179 determine the presence of CNVs in relatives. 180 A total of 22,014 unselected control Illumina Genotypes obtained from the Database of 181 Genotypes and Phenotypes were analyzed using identical methods (Table in S1Table). Cohorts 182 were paired as follows for case-control analysis based on the concordance of sample-level 183 quality control statistics (mean number of CNV calls and mean standard deviation of the LogR 184 Ratio): EBAV and WLS, BAVGWAS and HRS. 185 PLINK was used to catalog CNV calls and perform burden and enrichment studies. Case 186 - control burden tests were restricted to large (250 - 5000 kilobase pairs), rare (occurring in less 187 than 1 in 1000 samples; total of cases and controls), and validated CNV calls in EBAV probands.

188 Genome Reference Consortium Human Build 37 [28] was used for CNV annotation.

Results 189

190 Compared to BAVGWAS probands, EBAV probands were significantly younger at 191 diagnosis, had more frequent co-existing congenital heart and vascular lesions, and underwent 192 more frequent valve or aortic operations. A phenotype summary of the EBAV and BAVGWAS 193 Cohorts is provided in Table 2. 194

- 195

Table 2. Characteristics of EBAV and BAVGWAS Probands.

196

	EBAV $(n = 279)$	BAVGWAS ($n = 3141$)
Female (%)	33	29
Age at diagnosis (years)	17 ± 13	52 ± 16
TAA (%)	20	37
Predominant AR (%)	12	40
Predominant AS (%)	20	37
Other Lesions (%)	53	1
Aortic Replacement (%)	27	16
Aortic Valve Surgery (%)	40	16

197 N: number of cases; ±, standard deviation; TAA, thoracic aortic aneurysm; AR: aortic regurgitation; AS, aortic 198 stenosis; Other Lesions, other congenital heart malformations (primarily coarctation or ventricular septal defect). We 199 had phenotype information for 279 EBAV probands but did not have access to genotype information for all samples. 200 201 CNV analysis is summarized in Table 3. The percentages of individuals with large and 202 rare CNV regions were relatively consistent throughout datasets. The prevalence of large and 203 rare CNVs, specifically large genomic deletions, was increased in EBAV cases compared to

204 controls (Table S2).

205 206

Table 3. Summary of CNV Calls for EBAV Cohort.

	RATE	P^{E}	РВ	PROP	P^{E}	P ^B	тот	P^{E}	РВ	AVG	P^{E}	P^{B}
Large	0.51	1x10 ⁻⁷	1	0.17	1	1	2648	1x10 ⁻⁷	2.2x10 ⁻²	690	1x10 ⁻⁷	6x10 ⁻⁵
Rare	0.36	0.79	1	0.21	1	1	426	6.1x10 ⁻⁴	0.87	288	4.1x10 ⁻²	0.6
Duplications	7.1x10 ⁻²	0.96	1	6.8x10 ⁻²	0.96	1	648	0.25	0.98	615	0.18	0.98
Deletions	0.11	1x10 ⁻⁷	1	4.8x10 ⁻²	1.9x10 ⁻²	1	1477	1.1x10 ⁻³	4.1x10 ⁻²	608	0.23	1.7x10 ⁻²

Large: CNV regions between 250 Kb and 5 Mb in length. Rare: occur in fewer than 1 in 1000 individuals; Rate: 207

208 number of CNVs per individual; Prop: proportion of samples with one or more CNVs; TOT: total length of all

209 CNVs in kilobases; AVG: mean CNV length. p^E , p-value for EBAV cohort in respective category. p^B , p-value for

BAVGWAS in respective category. Tests are 1-sided with 100,000 permutations. A subset of CNV calls from the

EBAV and BAVGWAS datasets were validated by examining GenomeStudio plots. In total, 125/347 (36%) of

212 EBAV and 289/600 (48%) of BAVGWAS CNVs were validated. 213 214 There were 34 large (>250 Kb), rare (<1:1000 in dbGAP controls) CNV regions that 215 involved protein-coding genes in EBAV cases (Table S3). Seven of these genic CNVs were 216 enriched in EBAV cases compared to WLS controls with a genome-wide adjusted empiric P < P217 0.05. These CNVs included the genes PCP4, DSCAM, MIR4760, and DSCAM-AS1 in 21q22 and 218 GATA4, C8orf49, NEIL2, FDFT1, and CTSB in 8p23. Large duplications involving the 219 Velocardiofacial (VCFS) region in 22q11.2 and 1q21.1 microduplications were also enriched in 220 EBAV cases (Table S4). The overall burden of large, rare, genic CNVs was not different 221 between EBAV cases and WLS controls. However, the burden of large, rare genic CNVs 222 intersecting with genes known to cause BAV when mutated or implicated in syndromic BAV 223 was significantly increased in EBAV cases (Table 4).

224 225

210

211

Table 4. Burden Testing of Rare EBAV CNVs.

	EB	BAV	W	<u>'LS</u>		
	Calls	Rate	Calls	Rate	RR	Р
Genic	28	0.8	1151	0.65	1.2	0.23
Deletions	11	3.8×10^{-2}	439	4.6×10^{-2}	0.81	0.78
BAV	3	1.0×10^{-2}	1	1.1×10^{-4}	97	1.1×10^{-3}
Total	34	-	1443	-	-	-

²²⁶ Calls: total number of CNVs that met the specified criteria. Rate: number of CNVs per individual; RR: relative risk; 227 P: p-value; Genic; CNVs that intersect with genes; BAV: CNVs that intersect with genes that are known to cause 228 bicuspid aortic valve (BAV) when mutated or implicated in syndromic BAV. Total: total number of large, rare 229 CNVs or CNVRs. Tests are 2-sided using 100,000 permutations. 230 231 We also scrutinized genomic regions that are implicated in CHD by careful analysis of 232 data from individual CNV algorithms to detect subtle copy number alterations. We identified 233 additional rare EBAV CNVs that intersect with CHD candidate genes CELSR1, GJA5, RAF1, 234 LTBP1, KIF1A, MYH11, MAPK3, TTN, and the VCFS region in 22q11.2. We detected additional

²³⁵ GATA4 and DSCAM CNVs in multiplex families. These CNVs were enriched in EBAV cases

compared to WLS controls (Table 5).

Table 5. CNV's Affecting Congenital Heart Disease Genes in EBAV Conort.						
Region	Genes	Case	Control	OR	95% CI	
Chr22:46261909-51187440	CELSR1	1	1	33	2.1 to 530	
Chr1:146326373-147340734	GJA5	1	2	17	1.5 to 183	
Chr3:12599717-12803792	RAF1	1	2	17	1.5 to 183	
Chr22:41278694-41813285	DSCAM	4	2	67	12 to 367	
Chr8:11495032-11856903	GATA4	4	0	301	16 to 5599	
Chr22:1900000-22000000	TBX1, CRKL	4	10	13	4.2 to 43	
Chr16:15484868-16295863	MYH11	2	22	3.0	0.70 to 13	
Chr2:241652252-241678528	KIF1A	3	22	4.5	1.3 to 15	
Chr2:32775984-33331219	LTBP1	2	26	2.5	0.60 to 11	

- FDAV Caland

238 Region: coordinates corresponding to the minimum overlap region of CNVs; Genes: cardio-

240 with region of interest. Control: number of CNVs in WLS cohort that intersect with region of interest. OR: odds 241 ratio; 95% CI, 95% confidence interval for respective odds ratio.

242

237

244 dataset that overlapped with rare EBAV CNVs. We found that large duplications involving

245 SOX7 and GATA4 in 8p23 and the VCFS region in 22q11.2 were also significantly enriched in

- 246 BAVGWAS cases compared to HRS controls (Table 6, Table S6 and S7).
- 247 248

Table 6. CNVs Affecting	Congenital Heart I	Disease	Genes in B	AVGWA	S Cohort.
Region	Genes	Case	Control	OR	95% CI
Chr3:29993977-31273870	TGFBR2	1	0	5.6	0.23 to 138
Chr9:101861767-102092282	TGFBR1	1	0	5.6	0.23 to 138
Chr21:41577819-41842252	DSCAM	2	1	3.7	0.34 to 41
Chr22:46924254-46931077	CELSR1	3	1	5.6	0.58 to 54
Chr2:111404636-11310378	TMEM87B, FBLN7	3	2	2.8	0.47 to 17
Chr8:11385469-11821835	GATA4	8	1	15	1.9 to 120
Chr12:7918339-8130958	NANOG	10	2	9.4	2.1 to 43
Chr2:147166377-147308112	GJA5	4	10	0.75	0.23 to 2.4
Chr16:29664753-30199713	MAPK3	3	15	0.37	0.11 to 1.3
Chr22:1900000-22000000	TBX1, CRKL	18	11	3.1	1.4 to 6.5
Chr2:32689829-33299434	LTBP1	9	22	0.76	0.35 to 1.7
Chr16:15240816-16281154	MYH11	13	27	0.90	0.46 to 1.7
Chr2:241640262-241689833	KIF1A	13	30	0.81	0.42 to 1.6

249 Region: coordinates corresponding to the minimum overlap region of CNVs; Genes: cardio-

250 developmental candidate genes in the region. Case: number of large and rare CNVs in BAVGWAS cases that

251 intersect with region of interest. Control: number of CNVs in HRS cohort that intersect with region of interest. OR:

- 252 253 odds ratio; 95% CI, 95% confidence interval for respective odds ratio.

²³⁹ developmental candidate genes in the region. Case: number of large and rare CNVs in EBAV cases that intersect

²⁴³ Next, we attempted to replicate our observations by identifying CNVs in the BAVGWAS

- 254 CNVs intersecting with *GATA4* and *DSCAM* significantly overlapped between EBAV
- and BAVGWAS datasets (Fig 2). On average, the GATA4 CNVs were larger in the BAVGWAS
- 256 dataset while the *DSCAM* CNVs were larger in the EBAV dataset.

- 274 We identified 7 additional CNV regions that are enriched in BAVGWAS cases but not in
- EBAV and are rare or absent in controls (Table S5). *NANOG* and *NIBPL* are essential for early

- heart development, and mutation of *NIBPL* causes Cornelia-de Lange syndrome with a spectrumof congenital heart malformations including BAV.
- We also identified 21 very large genomic CNVs more than 5 Mb in length in the
- 279 BAVGWAS dataset. Analysis of GenomeStudio data showed that most of these were mosaic
- 280 loss of heterozygosity regions or duplications. Nine were large germline chromosome-scale
- aberrations, including two cases of trisomy 21 (Table S8). We did not identify any large X
- chromosome copy variants that may be consistent with Turner syndrome. There were no
- 283 megabase-scale copy number variants in the EBAV dataset.

284 Pedigree analysis showed that several CNVs involving *CELSR1*, *LTBP1*, *KIF1A*, *GATA4*,

and *DSCAM* segregate with BAV in EBAV families (Table S9). CNV carriers tended to present

286 due to moderate or severe aortic regurgitation requiring valvular surgery. One proband had aortic

coarctation. The youngest age at presentation was 13 years. There were no sex differences in

288 presentation between CNV carriers.

289

290 **Discussion**

We identified large, rare, and likely pathogenic CNVs in almost 10% of EBAV probands that are enriched in genes that cause BAV when mutated. The percentage of EBAV cases with likely pathogenic CNVs is similar to our previous observations in a cohort with early onset TAD [30]. Enrichment of CNVs involving *GATA4* and *DSCAM* in EBAV cases replicated in two additional BAV datasets and thousands of unselected control genotypes. This analysis provides compelling evidence that rare CNVs collectively cause more BAV cases than any single mutated gene.

298	GATA-Binding Protein 4 is a transcription factor that is required for cardiac and neuronal
299	differentiation during embryogenesis [31]. Mutations of GATA4 and its homologs GATA5 and
300	GATA6 cause congenital heart lesions [32]. Mutations in the GATA4 gene have been linked to a
301	range of congenital heart diseases in humans, such as cardiac septal defects, tetralogy of Fallot,
302	amd patent ductus arteriosus [33]. Patients with BAV who have rare functional variants in the
303	GATA family exhibit varying degrees of aortopathy expression, including aortic aneurysm,
304	dissection, and/or aortic stenosis. Alonso-Montes et al. described 4 predicted deleterious GATA4
305	mutations in 122 non-syndromic BAV probands who did not have affected relatives [34]. Rare
306	GATA4 deletions and putative loss of function mutations are also implicated in CHD with
307	distinctive features, underlining the importance of GATA4 dosage to cardiac development [35-
308	36]. Glessner et al. discovered large <i>de novo</i> (~4Mb) duplications involving <i>GATA4</i> in CHD trios
309	with conotruncal defects or left ventricular outflow tract obstructive lesions [37]. Some
310	duplications were inherited from apparently unaffected parents. Zogopoulos and Yu described
311	similar genomic duplications in unaffected individuals and in unselected control genotypes [38-
312	39].
313	These observations are consistent with low-nenetrance CHD in $G4T44$ duplication

These observations are consistent with low-penetrance CHD in GATA4 duplication 313 314 carriers. Similar to other complex and multifactorial disorders, CHD pathogenesis is likely 315 caused by the cumulative impact of multiple CNVs or mutations, each exerting small to 316 moderate effects to collectively disrupt cardiac development. For example, the frequency of 317 congenital heart lesions is increased in individuals with velocardiofacial syndrome who have 318 22q1.2 deletions and a common 12p13.31 duplication involving the SLC2A3 gene. The SLC2A3 319 CNV likely functions as a modifier of the cardiac phenotype associated with 22q11 deletion 320 syndrome, exemplifying a "two-hit" model [40].

321	More than half of patients with Down syndrome have congenital heart malformations due
322	to the interaction of multiple dosage-sensitive CHD genes on chromosome 21 [41-43]. Down
323	syndrome cell adhesion molecule, previously shown to play a critical role in neurogenesis, has
324	also been implicated in the pathophysiology of CHD [44]. Analysis of rare segmental trisomies
325	of chromosome 21 suggested that duplication of DSCAM and the contiguous COL6A1 and
326	COL6A2 genes may cause septal abnormalities and other Down Syndrome-related CHD lesions,
327	including BAV. Overexpression of DSCAM and COL6A2 causes cardiac malformations in mice
328	[45]. Our findings suggest that rare CNVs involving DSCAM may contribute to some non-
329	syndromic BAV cases.
330	Consistent with previous observations, GATA4 and DSCAM CNVs segregated with
331	disease in multiple families, but are not fully penetrant and were detected in some unaffected
332	relatives. Intriguingly, large 22q11.2, GATA4 and DSCAM CNVs were more highly enriched in
333	EBAV than in BAVGWAS cases, suggesting that these CNVs may drive early onset BAV
334	disease. These results are consistent with our observation that pathogenic CNVs involving
335	candidate BAV genes are also enriched in EBAV compared to BAVGWAS cases. Our data
336	suggests that pathogenic CNVs at these loci may predict accelerated disease onset or more severe
336 337	suggests that pathogenic CNVs at these loci may predict accelerated disease onset or more severe complications.

We also identified recurrent rare CNVs of specific dosage-sensitive regions that affect cardiac developmental genes and are implicated in non-syndromic CHD. Recurrent 1q21.1 distal deletions encompassing *GJA5*, the gene encoding Connexin-40, are associated with CHD lesions including BAV. A study of 807 TOF cases showed significant enrichment of small duplications spanning the *GJA5* gene, providing compelling evidence that it acted as the primary candidate gene, supporting the association of *GJA5* and CHD [31]. Additionally, cardiac abnormalities

344	have been documented in mice with a targeted GJA5 deletion, implying that haploinsufficiency
345	of GJA5 might contribute to cardiac defects in individuals affected by 1q21.1 deletions [46].
346	CELSR1, a cadherin superfamily member, is mutated in families with BAV and hypoplastic left
347	heart syndrome [47]. LTBP1 encodes an extracellular matrix protein that regulates TGF-beta and
348	fibrillin and has been implicated in congenital heart lesions [48]. KIF1A, encoding a kinesin
349	microtubule transporter, was implicated in a dominant multisystem syndromic disorder with
350	valvular and cardiac defects [49]. Mutation of MYH11 causes familial thoracic aortic aneurysms
351	and dissections with an increased prevalence of BAV [50]. TTN mutations cause dilated
352	cardiomyopathy and are associated with other left-sided congenital lesions [51]. Mutations or
353	copy number changes involving these genes all cause a wide spectrum of penetrance and
354	phenotypic severity, consistent with sensitivity to genetic or clinical modifiers.
355	Our combinatorial analysis method eliminated many CNVs that were detected by single
356	algorithms or did not meet quality control benchmarks. Therefore, our analysis likely
357	underestimated the contribution of rare pathogenic CNVs to BAV. We also recognize that
358	cardiac development involves the complex interaction of many genes. We selectively validated
359	individual CNVs at loci of interest but may have underrepresented CNVs that had no a priori
360	relationship with CHD. The apparent penetrance of some CNVs may be less than expected due
361	to missing phenotypic information. The available clinical data was not sufficiently detailed to
362	permit genotype-phenotype correlations with specific CHD clinical features.
363	In conclusion, we identified large rare CNVs in a significant proportion of BAV cases,
364	
501	including a subset of CNVs that may predict early onset complications of BAV disease. These

366 stratification and personalized disease management.

367 Acknowledgments

368	We thank Joana Castillo and Jacqueline Jennings for sample preparation, and Gladys Zapata,
369	Nitesh Mehta, and the Laboratory for Translational Genomics at Baylor College of Medicine for
370	microarray genotyping. This study was supported in part by R01HL137028 (SP). Fig 1 created
371	with BioRender.com.
372	The EBAV Investigators are: Shaine A. Morris, Rita Milewski, Giuseppe Limongelli, Allesandro
373	Della Corte, Laura Perrone, Yuli Y. Kim, Hector Michelena, Maria G. Andreassi, Arturo
374	Evangelista, Denver Sallee, Anji Yetman, Kim McBride, Eduardo Bossone, Rodolfo Citro,
375	Dawn S. Hui, Malenka M. Bissell, Andrea Ballotti, Ilenia Foffa, Margot De Marco, Anthony
376	Caffarelli, Rita Weise, Julie DeBacker, Laura Muino Mosquera, Robbin Cohen, Laura Dos
377	Subira, Justin T. Tretter, Anna Sabe Rotes, Martina Caiazza, Lamia Ait Ali, Francesca
378	Pluchinotta, and Simon C. Body.
379	The BAVCon Investigators are: Simon Body, Alessandro Della Corte, Alessandro Frigiola,
380	Andrea Ballotta, Arturo Evangelista, Betti Giusti, Bo Yang, Carlo de Vincentiis, Dan Gilon,
381	David Messika Zeitoun, Dianna M. Milewicz, Eduardo Bossone, Eric Eisselbacher, Francesca R.
382	Pluchinotta, Giuseppe Limongelli, Gordon S. Huggins, Hector I. Michelena, J. Daniel
383	Muehlschelgel, Kim Eagle, Lasse Folkerson, Malenka M. Bissell, María Brion, Patrick Mathieu,
384	Per Eriksson, Peter Lichtner, Rodolfo Citro, Ronen Durst, Sébastien Thériault, Siddharth K.
385	Prakash, Thoralf M. Sundt, Vicenza Stefano Nistri, Yahn Bossé.

386 **References**

- 387 1. Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and
- evolution. Annual review of genomics and human genetics. 2009;10:451.
- 389 2. Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, Williams C, Stalker H,
- 390 Hamid R, Hannig V, Abdel-Hamid H. A copy number variation morbidity map of developmental
- delay. Nature genetics. 2011 Sep;43(9):838-46.
- 392 3. Girirajan S, Rosenfeld JA, Coe BP, Parikh S, Friedman N, Goldstein A, Filipink RA,
- 393 McConnell JS, Angle B, Meschino WS, Nezarati MM. Phenotypic heterogeneity of genomic
- disorders and rare copy-number variants. New England Journal of Medicine. 2012 Oct
 4;367(14):1321-31.
- 4. Kaufman L, Ayub M, Vincent JB. The genetic basis of non-syndromic intellectual disability: a
 review. Journal of neurodevelopmental disorders. 2010 Dec;2(4):182-209.
- 398 5. Liu, Y., Chen, S., Zühlke, L., Black, G., Choy, M. K., Li, N., & Keavney, B. (2019). Global
- birth prevalence of congenital heart defects 1970–2017: Updated systematic review and meta-
- 400 analysis of 260 studies. International Journal of Epidemiology, 48(42), 455–463.
- 401 6. Hitz MP, Lemieux-Perreault LP, Marshall C, Feroz-Zada Y, Davies R, Yang SW, Lionel AC,
- 402 D'Amours G, Lemyre E, Cullum R, Bigras JL. Rare copy number variants contribute to
- 403 congenital left-sided heart disease.
- 404 7. Warburton D, Ronemus M, Kline J, Jobanputra V, Williams I, Anyane-Yeboa K, Chung W,
- Yu L, Wong N, Awad D, Yu CY. The contribution of de novo and rare inherited copy numberchanges to congenital heart disease in an unselected sample of children with conotruncal defects
- 407 or hypoplastic left heart disease. Human genetics. 2014 Jan;133:11-27.
- 408 8. Silversides CK, Lionel AC, Costain G, Merico D, Migita O, Liu B, Yuen T, Rickaby J,
- 409 Thiruvahindrapuram B, Marshall CR, Scherer SW. Rare copy number variations in adults with
- 410 tetralogy of Fallot implicate novel risk gene pathways.
- 411 9. Ware SM, Jefferies JL. New genetic insights into congenital heart disease. Journal of clinical
 412 & experimental cardiology. 2012 Jun 6.
- 413 10. Sørensen KM, El-Segaier M, Fernlund E, Errami A, Bouvagnet P, Nehme N, Steensberg J,
- 414 Hjortdal V, Soller M, Behjati M, Werge T. Screening of congenital heart disease patients using
- 415 multiplex ligation-dependent probe amplification: Early diagnosis of syndromic patients.
- 416 American journal of medical genetics Part A. 2012 Apr;158(4):720-5.
- 417 11. Lander J, Ware SM. Copy number variation in congenital heart defects. Current Genetic
- 418 Medicine Reports. 2014 Sep;2:168-78.

- 419 12. Tomita-Mitchell A, Mahnke DK, Struble CA, Tuffnell ME, Stamm KD, Hidestrand M,
- 420 Harris SE, Goetsch MA, Simpson PM, Bick DP, Broeckel U. Human gene copy number spectra
- 421 analysis in congenital heart malformations. Physiological genomics. 2012 May 1;44(9):518-41.
- 422 13. Kim DS, Kim JH, Burt AA, Crosslin DR, Burnham N, Kim CE, McDonald-McGinn DM,
- 423 Zackai EH, Nicolson SC, Spray TL, Stanaway IB. Burden of potentially pathologic copy number
- 424 variants is higher in children with isolated congenital heart disease and significantly impairs
- 425 covariate-adjusted transplant-free survival. The Journal of thoracic and cardiovascular surgery.
 426 2016 Apr 1;151(4):1147-51.
- 427 14. Soemedi R, Wilson IJ, Bentham J, Darlay R, Töpf A, Zelenika D, Cosgrove C, Setchfield K,
- 428 Thornborough C, Granados-Riveron J, Blue GM. Contribution of global rare copy-number
- 429 variants to the risk of sporadic congenital heart disease. The American Journal of Human
- 430 Genetics. 2012 Sep 7;91(3):489-501.
- 431 15. Chandra S, Lang RM, Nicolarsen J, Gayat E, Spencer KT, Mor-Avi V, Hofmann Bowman
- 432 MA. Bicuspid aortic valve: inter-racial difference in frequency and aortic dimensions. JACC:
- 433 Cardiovascular Imaging. 2012 Oct;5(10):981-9.
- 434 16. Michelena HI, Prakash SK, Della Corte A, Bissell MM, Anavekar N, Mathieu P, Bossé Y,
- Limongelli G, Bossone E, Benson DW, Lancellotti P. Bicuspid aortic valve: identifying
- 436 knowledge gaps and rising to the challenge from the International Bicuspid Aortic Valve
- 437 Consortium (BAVCon). Circulation. 2014 Jun 24;129(25):2691-704.
- 438 17. Glotzbach JP, Hanson HA, Tonna JE, Horns JJ, McCarty Allen C, Presson AP, Griffin CL,
- 439 Zak M, Sharma V, Tristani-Firouzi M, Selzman CH. Familial Associations of Prevalence and
- 440 Cause-Specific Mortality for Thoracic Aortic Disease and Bicuspid Aortic Valve in a Large-
- 441 Population Database. Circulation. 2023 Jun 15.
- 442 18. Prakash SK, Yetman A, Bissell MM, Kim YY, Michelena H, Hui DS, Caffarelli A,
- 443 Andreassi MG, Foffa I, Jennings J, Citro R. Recurrent genomic copy number variants implicate
- 444 new candidate genes for early onset bicuspid aortic valve disease. Journal of the American
- 445 College of Cardiology. 2019 Mar 12;73(9S1):620-.
- 446 19. Prakash S, Kuang SQ, GenTAC Registry Investigators, Regalado E, Guo D, Milewicz D.
- 447 Recurrent rare genomic copy number variants and bicuspid aortic valve are enriched in early
- onset thoracic aortic aneurysms and dissections. PloS one. 2016 Apr 19;11(4):e0153543.
- 449 20. Balistreri CR, Cavarretta E, Sciarretta S, Frati G. Light on the molecular and cellular
- 450 mechanisms of bicuspid aortic valve to unveil phenotypic heterogeneity. Journal of Molecular
- 451 and Cellular Cardiology. 2019;133: 113–114. Doi:10.1016/j.vjmcc.2019.06.004.
- 452 21. Prakash, S.K., LeMaire, S.A., Guo, D.C., Russell, L., Regalado, E.S., Golabbakhsh, H.,
- 453 Johnson, R.J., Safi, H.J., Estrera, A.L., Coselli, J.S. and Bray, M.S., 2010. Rare copy number -
- 454 variants disrupt genes regulating vascular smooth muscle cell adhesion and contractility in
- 455 sporadic thoracic aortic aneurysms and dissections. *The American Journal of Human*
- 456 *Genetics*, 87(6), pp.743-756.

- 457 22. Prakash SK, Bossé Y, Muehlschlegel JD, Michelena HI, Limongelli G, Della Corte A,
- 458 Pluchinotta FR, Russo MG, Evangelista A, Benson DW, Body SC. A roadmap to investigate the
- 459 genetic basis of bicuspid aortic valve and its complications: insights from the International
- 460 BAVCon (Bicuspid Aortic Valve Consortium). Journal of the American College of Cardiology.
- 461 2014 Aug 26;64(8):832-9.
- 462
- 23. PA Harris, R Taylor, R Thielke, J Payne, N Gonzalez, JG. Conde. Research electronic data
 capture (REDCap) A metadata-driven methodology and workflow process for providing
 translational research informatics support. J Biomed Inform. 2009 Apr;42(2):377-81.
- 466 24. PA Harris, R Taylor, BL Minor, V Elliott, M Fernandez, L O'Neal, L McLeod, G Delacqua,
- 467 F Delacqua, J Kirby, SN Duda, REDCap Consortium, The REDCap consortium. Building an
- international community of software partners. J Biomed Inform. 2019 May 9 [doi:
- 469 10.1016/j.jbi.2019.103208].
- 470 25. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M. PennCNV:
- 471 an integrated hidden Markov model designed for high-resolution copy number variation
- detection in whole-genome SNP genotyping data. Genome research. 2007 Nov 1;17(11):1665-74.
- 474 26. Colella S, Yau C, Taylor JM, Mirza G, Butler H, Clouston P, Bassett AS, Seller A, Holmes
- 475 CC, Ragoussis J. QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and
- 476 accurately map copy number variation using SNP genotyping data. Nucleic acids research. 2007
 477 Mar 1;35(6):2013-25.
- 478 27. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De
- 479 Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-
- 480 based linkage analyses. The American journal of human genetics. 2007 Sep 1;81(3):559-75.
- 481 28. Church DM, Schneider VA, Graves T, Auger K, Cunningham F, Bouk N, Chen HC,
- 482 Agarwala R, McLaren WM, Ritchie GR, Albracht D. Modernizing reference genome assemblies.
 483 PLoS biology. 2011 Jul 5;9(7):e1001091.
- 484 29. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The
 485 human genome browser at UCSC. Genome research. 2002 Jun 1;12(6):996-1006.
- 486 30. Prakash S, Kuang SQ, GenTAC Registry Investigators, Regalado E, Guo D, Milewicz D.
- 487 Recurrent rare genomic copy number variants and bicuspid aortic valve are enriched in early
- 488 onset thoracic aortic aneurysms and dissections. PloS one. 2016 Apr 19;11(4):e0153543.
- 489 31. Durocher, D., Charron, F., Warren, R., Schwartz, R. J., Nemer, M. The cardiac transcription
 490 factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J. 16: 5687-5696, 1997.
- 32. Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development
 and disease. Development. 2018 Oct 15;145(20):dev164384.
- 493 33. McCulley DJ, Black BL. Transcription factor pathways and congenital heart disease. Current
 494 topics in developmental biology. 2012 Jan 1;100:253-77.

- 495 34. Alonso-Montes C, Martín M, Martínez-Arias L, Coto E, Naves-Díaz M, Morís C, Cannata-
- 496 Andía JB, Rodríguez I. Variants in cardiac GATA genes associated with bicuspid aortic valve. 497
- European journal of clinical investigation. 2018 Dec;48(12):e13027.
- 498 35. Pehlivan T, Pober BR, Brueckner M, Garrett S, Slaugh R, Van Rheeden R, Wilson DB,
- 499 Watson MS, Hing AV. GATA4 haploinsufficiency in patients with interstitial deletion of
- 500 chromosome region 8p23. 1 and congenital heart disease. American journal of medical genetics.
- 501 1999 Mar 19;83(3):201-6.
- 502 36. Li RG, Xu YJ, Wang J, Liu XY, Yuan F, Huang RT, Xue S, Li L, Liu H, Li YJ, Qu XK.
- 503 GATA4 loss-of-function mutation and the congenitally bicuspid aortic valve. The American 504 journal of cardiology. 2018 Feb.
- 505 37. Glessner JT, Bick AG, Ito K, Homsy JG, Rodriguez-Murillo L, Fromer M, Mazaika E,
- 506 Vardarajan B, Italia M, Leipzig J, DePalma SR. Increased frequency of de novo copy number
- 507 variants in congenital heart disease by integrative analysis of single nucleotide polymorphism
- 508 array and exome sequence data. Circulation research. 2014 Oct 24;115(10):884-96.
- 509 38. Zogopoulos G, Ha KC, Naqib F, Moore S, Kim H, Montpetit A, Robidoux F, Laflamme P,
- 510 Cotterchio M, Greenwood C, Scherer SW. Germ-line DNA copy number variation frequencies in
- 511 a large North American population. Human genetics. 2007 Nov;122:345-53.
- 512 39. Yu S, Zhou XG, Fiedler SD, Brawner SJ, Joyce JM, Liu HY. Cardiac defects are infrequent
- 513 findings in individuals with 8p23. 1 genomic duplications containing GATA4. Circulation:
- 514 Cardiovascular Genetics. 2011 Dec;4(6):620-5.
- 515 40. Mlynarski EE, Sheridan MB, Xie M, Guo T, Racedo SE, McDonald-McGinn DM, Gai X,
- 516 Chow EW, Vorstman J, Swillen A, Devriendt K. Copy-number variation of the glucose
- 517 transporter gene SLC2A3 and congenital heart defects in the 22q11. 2 deletion syndrome. The
- 518 American Journal of Human Genetics. 2015 May 7;96(5):753-64.
- 519 41. Freeman SB, Taft LF, Dooley KJ, Allran K, Sherman SL, Hassold TJ, Khoury MJ, Saker
- 520 DM. Population-based study of congenital heart defects in Down syndrome. American journal of
- 521 medical genetics. 1998 Nov 16;80(3):213-7.
- 522 42. Paladini D, Tartaglione A, Agangi A, Teodoro A, Forleo F, Borghese A, Martinelli P. The
- 523 association between congenital heart disease and Down syndrome in prenatal life. Ultrasound in
- 524 Obstetrics and Gynecology. 2000 Feb;15(2):104-8.
- 525 43. Laursen HB. Congenital heart disease in Down's syndrome. Heart. 1976 Jan 1;38(1):32-8.
- 526 44. Kosaki R, Kosaki K, Matsushima K, Mitsui N, Matsumoto N, Ohashi H. Refining
- 527 chromosomal region critical for Down syndrome-related heart defects with a case of cryptic 528 21q22. 2 duplication. Congenital anomalies. 2005 Jun;45(2):62-4.
- 529 45. Grossman TR, Gamliel A, Wessells RJ, Taghli-Lamallem O, Jepsen K, Ocorr K, Korenberg
- 530 JR, Peterson KL, Rosenfeld MG, Bodmer R, Bier E. Over-expression of DSCAM and COL6A2
- 531 cooperatively generates congenital heart defects. PLoS genetics. 2011 Nov 3;7(11):e1002344.

- 46. Gu H, Smith FC, Taffet SM, Delmar M. High incidence of cardiac malformations in
- 533 connexin40-deficient mice. Circulation research. 2003 Aug 8;93(3):201-6.
- 47. Theis JL, Niaz T, Sundsbak RS, Fogarty ZC, Bamlet WR, Hagler DJ, et al. CELSR1 Risk
- Alleles in Familial Bicuspid Aortic Valve and Hypoplastic Left Heart Syndrome. Circ: Genomic and Precision Medicine. 2022;15. doi:10.1161/CIRCGEN.121.003523.
- and Precision Medicine. 2022;15. doi:10.1161/CIRCGEN.121.003523.
- 48. Pottie L, Adamo CS, Beyens A, Lütke S, Tapaneeyaphan P, De Clercq A, et al. Bi-allelic
 premature truncating variants in LTBP1 cause cutis laxa syndrome. The American Journal of
- 539 Human Genetics. 2021;108: 1095–1114. doi:10.1016/j.ajhg.2021.04.016.
- 540 49. Akasaka T, Ocorr K, Lin L, Vogler G, Bodmer R, Grossfeld P. Overexpression of KiflA in
- 541 the Developing Drosophila Heart Causes Valvar and Contractility Defects: Implications for
- 542 Human Congenital Heart Disease. JCDD. 2020;7: 22. doi:10.3390/jcdd7020022.
- 543 50. Pannu H, Tran-Fadulu V, Papke CL, Scherer S, Liu Y, Presley C, et al. MYH11 mutations
- result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II.
- 545 Human Molecular Genetics. 2007;16: 2453–2462. doi:10.1093/hmg/ddm201.
- 546 51. Herman DS, Lam L, Taylor MRG, Wang L, Teekakirikul P, Christodoulou D,
- 547 et.al. Truncations of titin causing dilated cardiomyopathy. New England Journal of Medicine.
- 548 2012;366: 619-628. doi: 10.1056/NEJMoa1110186

549 Supplemental Data

550

Cohort	Study	Samples	Accession	Microarray
WLS	Wisconsin Longitudinal	8969	Phs001157.v1.pl	Illumina
	Study on Aging			HumanOmniExpress-
				24 v1.1
HRS	Health and Retirement Study	9426	phs000428.v2.pl	Illumina Human
				Omni2.5-Quad

S1 Table. Summary of Control Cohorts. Cohort, name of control cohort. Study, study from which genotypes were obtained. Samples, number of control samples in each dataset. Accession, Database of Genotypes and Phenotypes accession number. Microarray, Illumina microarray used for genotyping.

	EBAV	BAVGWAS	WLS	HRS
PennCNV	6781	73784	58115	163938
cnvPartition	2289	33640	31148	51794
QuantiSNP	1798	21326	14346	85312
Merged	902	7622	21343	14657
Deletions	610	2772	8170	6770
>5 MB	9	22	9830	6114
Rare	84	579	1443	1372
Rare Deletions	59	181	285	394

551 S2 Table. Comprehensive CNV Summary.EBAV, EBAV Cohort including cases and unaffected family members. 552 BAVGWAS, BAVGWAS cohort. WLS, WLS cohort. HRS, HRS cohort. PennCNV, number of CNV calls detected 553 by PennCNV algorithm after quality control. cnvPartition, number of CNV calls detected by cnvPartition algorithm 554 after quality control. QuantiSNP, number of CNVs detected by QuantiSNP algorithm after quality control. Merged, 555 number of CNV regions after merging initial calls. Deletions, number of CNV regions that are deletions. >5 MB, 556 number of CNV regions that are larger than 5 megabases. Rare, number of large (> 250 kilobases and less than 5 557 megabases) CNV regions that occur in less than 1 in 1000 samples based on case-control cohort pairs (EBAV and 558 WLS; BAVGWAS and HRS). R. Del., number of large, rare deletions. All values reflect the total CNV calls and 559 regions prior to validation in GenomeStudio. 560

Chr.	Start BP	Stop BP	Туре
1	187296703	187609850	DEL
1	146326373	147340734	DUP
1	79238015	79619893	DEL
1	228625778	228880626	DUP
2	114458921	115208197	DUP
2	4638261	5564549	DUP
3	31901848	32165994	DUP
3	19363589	19813225	DEL
4	84658825	85270309	DUP
5	25468811	25719474	DEL
5	78016365	78286867	DUP
6	95836160	96095769	DEL
8	89353386	89800669	DEL

8	2319555	2585105	DUP
8	4201652	4493979	DUP
8	10111571	10721128	DUP
8	11103895	11856864	DUP
8	9368431	9745798	DUP
8	11448529	11732454	DUP
8	11448529	11808756	DUP
10	134505252	135203544	DEL
12	84108147	84443245	DUP
13	70578273	71593281	DUP
15	32908301	34761123	DEL
16	83302526	84016062	DUP
17	1389	582832	DEL
18	57590566	57955945	DUP
21	41268738	41813285	DUP
21	41268738	41823356	DUP
21	41278694	41823356	DUP
21	41278694	41823356	DUP
22	19580050	20227551	DUP
22	46261909	46931077	DEL
22	48871294	51187440	DEL

- 561 S3 Table. Large, Rare Copy Number Variants Identified in the EBAV Cohort. Chr., Chromosome on which
- 562 CNV is located. Start BP, start basepair of CNV. Stop BP, stop basepair of CNV. Type, denotes if a CNV is a duplication (DUP) or deletion (DEL) event. All CNVs were validated in GenomeStudio.

Gene(s)	Chr.	Start BP	Stop BP	Туре
HYDIN2, NBPF12, LOC728989, NBPF13P, PRKAB2, PDIA3P, FM05, CHD1L, LINC00624, BCL9, ACP6, and GJA5	1	146326373	147340734	DUP
HYDIN2, NBPF12, LOC728989, NBPF13P, PRKAB2, PDIA3P, FM05, CHD1L, LINC00624, BCL9, ACP6, and GJA5*	1	146326373	147229299	DUP
<i>MIR4782, SLC35F5, ACTR3, LOC100499194, and LOC440900*</i>	2	114426115	115208197	DUP
<i>MIR4782, SLC35F5, ACTR3, LOC100499194,</i> and <i>LOC440900*</i>	2	114614021	114732241	DUP
<i>MIR4782, SLC35F5, ACTR3, LOC100499194, and LOC440900*</i>	2	114458921	115208197	DUP
<i>MIR4782, SLC35F5, ACTR3, LOC100499194,</i> and <i>LOC440900</i>	2	114458921	115208197	DUP
<i>TTN, AX746670, TTN-AS1</i> , and <i>MIR548N</i>	2	179364778	179486671	DUP

<i>TTN, AX746670, TTN-AS1</i> , and <i>MIR548N*</i>	2	179395466	179517632	DUP
GATA4, C8orf49, NEIL2, FDFT1, and CTSB	8	11506208	11786255	DUP
GATA4, C8orf49, NEIL2, FDFT1, and CTSB	8	11103895	11856864	DUP
<i>GATA4, C8orf49, NEIL2, FDFT1,</i> and <i>CTSB</i>	8	11448529	11808756	DUP
<i>GATA4, C8orf49, NEIL2, FDFT1,</i> and <i>CTSB</i>	8	11448529	11732454	DUP
PARD3	10	35107733	35284461	DUP
PARD3	10	35107733	35271898	DUP
KLHL1 and ATXN8OS	13	70578273	71593281	DUP
<i>KLHL1</i> and <i>ATXN8OS</i> *	13	70589082	71548725	DUP
<i>KLHL1</i> and <i>ATXN8OS</i> *	13	70730307	70773605	DEL
NECAB2	16	83302526	84016062	DUP
NECAB2*	16	83303915	83999565	DUP
<i>PCP4, DSCAM, MIR4760,</i> and <i>DSCAM-AS1</i>	21	41278694	41823356	DUP
<i>PCP4, DSCAM, MIR4760,</i> and <i>DSCAM-AS1</i>	21	41268738	41813285	DUP
<i>PCP4, DSCAM, MIR4760,</i> and <i>DSCAM-AS1</i>	21	41278694	41823356	DUP
<i>PCP4, DSCAM, MIR4760,</i> and <i>DSCAM-AS1</i>	21	41278694	41813285	DUP
<i>PCP4, DSCAM, MIR4760,</i> and <i>DSCAM-AS1</i>	21	41268738	41823356	DUP
TBX1, GNB1L, C22orf29, TXNRD2, COMT, MIR4761, ARVCF, TANGO2, MIR185, DGCR8, MIR3618, MIR1306,	22	19580050	20227551	DUP
<i>TRMT2A, RANBP1, ZDHHC8, LOC388849, LOC284865,</i> and <i>LINC00896</i>				
<i>TBX1, GNB1L, C22orf29, TXNRD2, COMT, MIR4761, ARVCF, TANG02, MIR185, DGCR8, MIR3618, MIR1306, TRMT2A, RANBP1, ZDHHC8, LOC388849, LOC284865, LINC00896, RTN4R, and MIR1286</i>	22	18877787	21461607	DUP

564

565 S4 Table. Rare CNVs Enriched in EBAV Cohort. Gene(s), genes intersected by CNV. Chr, chromosome on

which each CNV is on. Start BP, start basepair of each CNV. Stop BP, stop basepair of each CNV. Type, denotes if 566

567 a CNV was a duplication (DUP) or deletion (DEL) event.

568 569 * Indicates the call was from an unaffected family member.

Gene(s)	Chr	Start BP	Stop BP	Туре
LOC100507334	2	110852875	111406073	DUP
LOC100507334	2	110982530	112007875	DUP
MIR128-2	3	35775249	35938795	DUP
MIR128-2	3	35775249	35938795	DUP
MIR128-2	3	35785608	35936616	DUP
TMPRSS11E, UGT2B17, UGT2B15, UGT2B10	4	69599357	69712995	DUP
AHRR, C5orf55, EXOC3, FLJ00157, AK023178, PP7080, BC013821, LOC100996325, and CEP72	5	323965	889536	DUP
AHRR, C5orf55, EXOC3, FLJ00157, AK023178, PP7080, and BC013821	5	287907	602256	DUP
AHRR, C5orf55, EXOC3, FLJ00157, AK023178, PP7080, and BC013821	5	310925	548342	DUP
AHRR, C5orf55, EXOC3, FLJ00157, AK023178, PP7080, BC013821, LOC100996325, and CEP72	5	426109	673408	DUP
AHRR, C5orf55, EXOC3, FLJ00157, AK023178, PP7080, BC013821, LOC100996325, and CEP72	5	589727	701920	DUP
AHRR, C5orf55, EXOC3, FLJ00157, AK023178, PP7080, BC013821, LOC100996325, and CEP72	5	589727	701920	DUP
NIPBL	5	36764235	37046626	DUP
NIPBL	5	36805679	37046626	DUP
NIPBL	5	36898424	37046626	DUP
NIPBL	5	36911625	37052624	DUP
SGK223, CLDN23, and MFHAS1	8	8064756	11143272	DUP
SGK223, CLDN23, and MFHAS1	8	8064756	11882065	DUP
SGK223, CLDN23, and MFHAS1	8	8064756	8655355	DUP
SGK223, CLDN23, and MFHAS1	8	8114228	8627839	DUP
SGK223, CLDN23, and MFHAS1	8	8202294	8674049	DUP
SGK223, CLDN23, and MFHAS1	8	8221088	8650456	DUP
CUL5	11	107755731	107965390	DUP
NANOG and NANOGNB	12	7893437	8101326	DUP

NANOG and NANOGNB	12	7918339	8109412	DUP
NANOG and NANOGNB	12	7942473	8109412	DUP
NANOG and NANOGNB	12	7942945	8123777	DUP
NANOG and NANOGNB	12	7942945	8105015	DUP
NANOG and NANOGNB	12	7945559	8101326	DUP
NANOG and NANOGNB	12	7945559	8105015	DUP
NANOG and NANOGNB	12	7945559	8105015	DUP
NANOG and NANOGNB	12	7945559	8109412	DUP
NANOG and NANOGNB	12	7945559	8130958	DUP
UBE2MP1, LOC283914,	16	34355747	34740580	DUP
LOC146481, and LOC100130700				
<i>LOC283914</i> and <i>LOC146481</i>	16	34428972	34723621	DUP
LOC283914	16	34433468	34663346	DUP
FAM101B, VPS53, and FAM57A	17	1389	641023	DUP
FAM101B, VPS53, FAM57A,	17	225778	906268	DEL
<i>GEMIN4, DQ581337</i> , and				
DBILSP EAMINIR VDS53 EAM57A	17	225778	640766	סנות
and GEMINA	1 /	223778	049700	DUP
<i>FAM101B, VPS53, FAM57A</i> ,	17	238906	650372	DUP
and <i>GEMIN4</i>				
FAM101B, VPS53, FAM57A,	17	284614	831667	DUP
<i>GEMIN4, DQ581337,</i> and				
DBIL5P	10	29(922(2011(0(1	
RYRI, MAP4KI, and EIF3K	19	38683266	39116961	DUP
<i>KYRI, MAP4KI</i> , and <i>EIF3K</i>	19	389/6659	39116961	DUP
RYRI, MAP4KI, and EIF3K	19	38993142	39116961	DUP
KYRI, MAP4KI, and EIF3K	19	38993142	39116961	DUP
CYP2A/, CYP2GIP, CYP2B/PI, and CVP2B6	19	41349/32	41508557	DUP
and $CIF2D0$ CVP2A7 CVP2G1P CVP2R7P1	19	41350509	41600054	DUP
and <i>CYP2B6</i>	17	41550507	41000004	DUI
CYP2A7, CYP2G1P, CYP2B7P1,	19	41354458	41588347	DUP
and CYP2B6				
CYP2A7, CYP2G1P, CYP2B7P1,	19	41386035	41522338	DUP
and CYP2B6	10	4120 (014	41 50 1 50 5	DUD
CYP2A7, CYP2GIP, CYP2B7P1, and CVP2R6	19	41386814	41531705	DUP
anu CIF2D0 CVP247 CVP2C1D CVD2R7D1	10	41386814	41510306	DUP
and <i>CYP2B6</i>	1)	1500014	1517500	DUI

570 571 572 S5 Table. Rare CNVs Enriched in BAVGWAS Cohort. Gene(s), genes intersected by CNV. Chr, chromosome on which each CNV is on. Start BP, start basepair of each CNV. Stop BP, stop basepair of each CNV. Type, denotes if

a CNV was a duplication (DUP) or deletion (DEL) event.

Principal Gene/Regions	Chr.	Start BP	Stop BP	Туре
KIF1A	2	241640262	241678528	DUP
KIF1A	2	241640262	241678528	DUP
KIF1A	2	241652252	241678528	DUP
KIF1A*	2	241626057	241702124	DUP
KIF1A*	2	241607616	241702124	DUP
KIF1A*	2	241644718	241709924	DUP
LTBP1	2	32639775	33331219	DUP
LTBP1	2	32775984	33331219	DUP
LTBP1*	2	32633925	33331219	DUP
LTBP1*	2	32633925	33331219	DUP
LTBP1*	2	32639775	33331219	DUP
RAF1	3	12599717	12803792	DUP
FLT4*	5	180019198	180056863	DEL
MICA	6	31360255	31453029	DEL
MICA	6	31360255	31485928	DEL
MICA	6	31360255	31487876	DEL
MICA	6	31360255	31457633	DUP
MICA	6	31361397	31453029	DUP
MICA*	6	31360255	31453029	DEL
MICA*	6	31360255	31453029	DEL
MICA*	6	31360255	31453029	DEL
MICA*	6	31360255	31485928	DEL
MICA*	6	31360255	31485928	DEL
MICA*	6	31360255	31485928	DEL
MICA*	6	31383960	31485928	DEL
MICA*	6	31355260	31453029	DEL
GATA4**	8	11506208	11786255	DUP
GATA4**	8	11506208	11999394	DUP
MUC5B	11	1078312	1300406	DUP
NANOG*	12	7945559	8123777	DUP
MYH11	16	14975292	16295863	DUP
MYH11	16	15484868	18309593	DUP
МАРКЗ	16	27977483	30174024	DUP
NCOR1	17	15976558	16012829	DUP
DSCAM**	21	41278161	41856480	DUP
DSCAM*	21	41278694	41813285	DUP
22q11*	22	19698129	19883189	DEL
22q11*	22	19682627	19755127	DEL
22q11	22	19701341	19776365	DEL
22q11	22	19701341	19808938	DEL

22q11

22 20742450 21461607 DEL

575 S5 Table. EBAV CNVs intersecting with Genes of Interest. Gene/Region, Principal gene or region of interest

576 intersected by CNV. Chr, chromosome on which each CNV is on. Start BP, start basepair of each CNV. Stop BP,

577 stop basepair of each CNV. Type, denotes if a CNV was a duplication (DUP) or deletion (DEL) event.

578 * Indicates the call was from an unaffected family member.

579 ** Indicates the call was from an affected family member from a multiplex family.

Principal Gene/Regions	Chr.	Start BP	Stop BP	Туре
GJA5	1	145723645	148343177	DUP
GJA5	1	145723739	148343177	DUP
GJA5	1	145801230	147824365	DUP
GJA5	1	147166377	147308112	DUP
TMEM87B/FBLN7	2	110982530	113103748	DUP
TMEM87B/FBLN8	2	111399346	113103748	DEL
TMEM87B/FBLN9	2	111404636	113215796	DUP
KIF1A	2	241623458	241697884	DUP
KIF1A	2	241623458	241697884	DUP
KIF1A	2	241623458	241698298	DUP
KIF1A	2	241623458	241724479	DUP
KIF1A	2	241626057	241689833	DUP
KIF1A	2	241626057	241689833	DUP
KIF1A	2	241626057	241689833	DUP
KIF1A	2	241626057	241689833	DUP
KIF1A	2	241626057	241689833	DUP
KIF1A	2	241626057	241702124	DUP
KIF1A	2	241626057	241702124	DUP
KIF1A	2	241640262	241689833	DUP
KIF1A	2	241640262	241697773	DUP
LTBP1	2	32619581	33299434	DUP
LTBP1	2	32619581	33331219	DUP
LTBP1	2	32633925	33302342	DUP
LTBP1	2	32633925	33302342	DUP
LTBP1	2	32633925	33331219	DUP
LTBP1	2	32633925	33331219	DUP
LTBP1	2	32633925	33331219	DUP
LTBP1	2	32633925	33369552	DUP
LTBP1	2	32689829	33331219	DUP
RAF1	3	12645681	12739194	DUP
TGFBR2	3	29993977	31273870	DEL
SOX7/GATA4	8	8064756	11882065	DUP
SOX7/GATA4	8	8064756	11882065	DUP
SOX7/GATA4	8	8064756	11882065	DUP

SOX7/GATA4	8	8064756	12009597	DUP
SOX7/GATA4	8	10109379	11987960	DUP
SOX7	8	10587741	10683929	DEL
GATA4	8	10914233	11853596	DUP
GATA4	8	11349186	11821835	DUP
GATA4	8	11385469	11882065	DUP
TGFBR1	9	101861767	102092282	DUP
MYH11	16	14761719	16281154	DUP
MYH11	16	14761719	16315360	DUP
MYH11	16	14975292	16299148	DEL
MYH11	16	14975292	16308351	DUP
MYH11	16	14975292	16308351	DUP
MYH11	16	14975292	16308351	DUP
MYH11	16	14975292	16308351	DUP
MYH11	16	14975292	16308351	DUP
MYH11	16	14975292	16308351	DUP
MYH11	16	14975292	16315360	DUP
MYH11	16	15092120	16291933	DUP
MYH11	16	15125441	16292128	DUP
MYH11	16	15240816	18584353	DUP
MAPK3	16	29647342	30199713	DUP
MAPK4	16	29647342	30199713	DUP
MAPK5	16	29647342	30199713	DUP
DSCAM	21	41254102	41516071	DUP
DSCAM	21	41254456	41536215	DUP
22q11	22	16874656	20241436	DEL
22q11	22	17818807	19002159	DUP
22q11	22	18644702	21726191	DUP
22q11	22	18877787	21461607	DUP
22q11	22	18877787	21461607	DUP
22q11	22	18877787	21028007	DEL
22q11	22	18877787	21804903	DEL
22q11	22	19062020	20264937	DUP
22q11	22	19667336	20329526	DEL
22q11	22	19682627	20233865	DEL
22q11	22	19682627	20262166	DEL
22q11	22	19693418	20264937	DEL
22q11	22	19701341	20300738	DEL
22q11	22	19724224	20300738	DEL
22q11	22	19951816	24298181	DUP
22q11	22	20719325	21726191	DEL

22q11	22	21246902	22702508	DEL
22q11	22	21424414	22015771	DUP
CESLR1	22	45236935	48193505	DEL
CESLR1	22	46751367	47159028	DUP
CESLR1	22	46924254	46931077	DEL

581 S7 Table. BAVGWAS CNVs intersecting with Genes of Interest. Gene/Region, Principal gene or region of

582 interest intersected by CNV. Chr, chromosome on which each CNV is on. Start BP, start basepair of each CNV.

583 Stop BP, stop basepair of each CNV. Type, denotes if a CNV was a duplication (DUP) or deletion (DEL) event.

584

5	Q	5
J	0	J

Chr.	Start BP	Stop BP	Туре	Description
2	138066736	143331537	DUP	Mosaic LOH
2	183476298	189945752	DUP	Mosaic LOH
3	143040791	168814375	DUP	Mosaic LOH
3	66206	7768285	DEL	Constitutional
6	148301116	156618923	DEL	Constitutional
7	101355402	106892492	DEL	Mosaic
8	6970806	12525566	DUP	Constitutional
8	170692	11987960	DUP	Constitutional
14	101350298	107283150	DUP	Mosaic LOH
14	71135027	107283150	DUP	Mosaic LOH
15	80465431	88497147	DUP	Mosaic LOH
15	93593528	102150818	DUP	Mosaic LOH
15	22761722	28540261	DEL	Constitutional
17	15175570	22234751	DUP	Mosaic
18	67445173	78010620	DEL	Constitutional
20	31265482	50716159	DEL	Mosaic
20	61098	25829977	DEL	Mosaic
20	31240778	48292606	DEL	Mosaic
20	50320079	62960292	DUP	Constitutional
21	14359894	48099610	DUP	Trisomy 21
21	14359894	48099610	DUP	Trisomy 21

586 **S8 Table. Large Genomic Events in BAVGWAS** Chr., Chromosome CNV on which CNV is located. Start BP,

587 start base pair of CNV. Stop BP, stop base pair of CNV. Type, denotes if a CNV is a duplication (DUP) or deletion

588 (DEL) event. Description, denotes if the CNV was a mosaic loss of heterozygosity (Mosaic LOH), loss of

589 heterozygosity (LOH), mosaic (Mosaic), constitutional (constitutional), or trisomy 21 (Trisomy 21) event.

⁵⁹⁰ 591

PROBAND	GENE	SEGREGATES?	WITH CNV	NO CNV	SEX
BAV064	GATA4	Yes	Father*,	Paternal	Female
			Paternal Grandfather*	Grandmother	
BAV475	DSCAM	Yes	Sister*	Father	Female
BAV787	CELSR1	Yes	None	Daughter	Female

BAV330	KIF1A	Yes	None	Father	Female
BAV478	KIF1A	Yes	None	Father	Male
BAV829	LTBP1	No	Son, Father	Mother, Brother	Female

592 S9 Table. Pedigree Information for CNVs that Segregated with Disease. Proband, identification number of

593 proband with CNV intersecting with gene of interest. Gene, gene of interest intersected by CNV. Segregates?,

594 indicates if the CNV segregated with disease. Family With CNV, family members of proband that were found to 595

have a CNV intersecting with the respective gene. Family Without CNV, family members of proband who were not 596 found to have a CNV intersecting with the respective gene. Family members are listed if their genotype was

597 available for the study. Sex, sex of the proband.

598 *Indicates family members who also have BAV.