
Shortening heart rate variability measurement time to 1 

minute using deep learning: Implication of real-time 

measurement of heart rate variability 
 

 
 

Junghwa Shin1, M.D., Byung-Chae Lee2, Ph.D., Kee Sam Jeong3, Ph.D., Kwang Yoon Kim4, 

MD., Bom-Taeck Kim4*, M.D., Ph.D. 

 

 

1Department of Family Medicine, Korea University Ansan Hospital, 123, Jeokgeum-ro, 

Danwon-gu, Ansan-si, Gyeonggi-do, Republic of Korea 

 

2Department of Medical Information System, Yong-in Songdam College, 61, Dongbu-ro, 

Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea 

 

3Medicore Co. Ltd., 827-828 ho, D-dong, Hangangmisa-2cha, Misa-daero, Hanam-si, 

Gyeonggi-do, Republic of Korea 

 

4Department of Family Practice and Community Health, Ajou University Hospital, 164, 

WorldCup-ro, Youngtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea 

 

 

* Correspondence:  

Bom-Taeck Kim, M.D., Ph.D. 

Email: lovesong@ajou.ac.kr   

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.10.23.23297390doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:lovesong@ajou.ac.kr
https://doi.org/10.1101/2023.10.23.23297390
http://creativecommons.org/licenses/by/4.0/


Abstract 

Heart rate variability (HRV) is an effective predictor of cardiovascular diseases. The 

current standard 5-min recording time is lengthy compared with routine clinical examinations 

such as blood pressure measurement. Previous studies have observed that the indices of 3-min 

HRV data are as clinically meaningful as those of 5-min HRV data; however, shorter durations 

are considered unreliable, and there have been no attempts to challenge this notion. This study 

aimed to validate the outcomes of 1-min HRV recordings reconstructed using deep learning 

algorithms. Three-minute HRV recordings from 34,885 participants were included in the 

analysis. Of the recordings, 60% (20,931), 30% (10,465), and 10% (3,489) were allocated to 

the training, validation, and test sets, respectively. Data from 1-min excerpts of the 3-min 

recordings were used as the input for the deep learning models to predict the data of the 3-min 

recordings. Various deep learning models were applied to each indicator, and the model that 

produced the lowest mean absolute error was selected as that particular indicator’s learning 

model. There was no statistical difference between the values of the 1-min recordings 

reconstructed by deep learning and those of the 3-min recordings. The 1-min recordings 

reconstructed by deep learning demonstrated a higher correlation with the 3-min recordings 

when compared with the 1-min recordings that were not processed by deep learning. They also 

strongly agreed with the 3-min recordings in the Bland–Altman analysis. The 1-min HRV 

recordings reconstructed by deep learning were as reliable as the 3-min HRV recordings, 

suggesting that a 1-min recording could serve as a proxy for real-time HRV monitoring in the 

future.  

 

Keywords: heart rate variability; deep learning; Bland-Altman analysis; ultrashort-term; one 

minute HRV 
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Introduction 

The heart rate variability (HRV) test is a simple and effective noninvasive tool that can 

predict cardiovascular events by assessing the autonomic nervous system function [1]. The 

interaction between the heart and brain is affected by rhythms generated by higher frequency 

changes (e.g., vagal outflow, blood pressure and respiratory control) and slower modulations 

(e.g., circadian rhythms, thermoregulation, and hormonal regulation) [2,3]. The heart rate 

tachogram, a plot of a time sequence of R-R intervals is the most common form for observing 

these changes [3]. Heart rate fluctuations within specific time intervals yield time, frequency, 

and nonlinear indices. The ECG recording time of a conventional short-term HRV includes at 

least 10 cycles of the lower-frequency bound of the investigated component, for instance, 1-

min for high-frequency (HF) (0.15–0.4 Hz), 2 min for low-frequency (LF) (0.04–0.15 Hz), and 

5-min for very low-frequency (VLF) (≤ 0.04 Hz) [4]. An ECG recording time of longer than 

5-min provides an acceptable resolution that distinguishes different frequency domains using 

fast Fourier transform (FFT), based on which the 5-min recording time became standard in 

HRV testing [5]. However, numerous variations in HRV recording times are used in different 

clinical and nonclinical settings and range from < 5-min (ultrashort-term), to 5-min (short-

term), and ≥ 24 h (long-term) [4].  

Developments in mobile and wearable devices have increased the demand for 

ultrashort-term HRV to assess fitness and overall health in real time. However, the greatest 

advantage of ultrashort-term HRV is the potential to save lives because it quickly predicts 

cardiac mortality and malignant arrhythmias [2]. Ultrashort-term HRV testing may also 

contribute to a range of situations where real-time assessment of autonomic functions is 

required, for instance, athletes in training, workers in highly demanding jobs, and critically ill 

patients in ICUs. The increasing need for, and benefits of, ultrashort-term HRV tests are evident, 
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yet questions arise about the precision of the data obtained within the shortest HRV test time 

possible [6].  

Previous studies showed that some indices such as mean heart rate (mHR), the square 

root of the mean of the sum of the squares of differences between adjacent NN intervals 

(RMSSD), HF from ultrashort-term HRV could reliably estimate short-term HRV [7-9]. The 

time-sensitive indices such as standard deviation of all NN intervals (SDNN), total power (TP), 

and VLF required at least 4-min (240 seconds) [8]. Measurements from ultrashort-term HRV 

tests have thus far been considered unreliable; however, no study has tried to challenge this 

time barrier using deep learning.  

This study attempted to validate 1-min HRV data reconstructed by deep learning 

models by comparing them with those of the 3-min data to establish their reliability and 

procedural feasibility. 

 

2. Materials and Methods 

2. 1 Materials 

43,504 HRV recordings were randomly selected from six different medical centers that 

used the same HRV testing device (SA3000P; Medicore, Seoul, Korea). The recordings were 

from patients who visited for regular health checkups between January 2011 and December 

2019. Demographic information, such as age, sex, medical, and drug history, was not 

considered in the analysis; however, age and sex distribution were even in the 3-min and 1-min 

groups. At the time of the test, patients were either seated or lying down. Patients were 

previously informed to avoid confounding factors, such as caffeine or food intake. The time of 

day was not specified; however, most tests were conducted in the morning.  

8,619 recordings showing bradycardia, tachycardia, arrhythmias, or artifacts were 

excluded. In total, 34,885 HRV recordings were included in the analysis. Data from the original 
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3-min recording (Raw-3) served as the target. From Raw-3, a 1-min recording (Raw-1) was 

selected 30 s after the start of the test. Raw-1 was processed using deep learning models to 

produce outcome (Rec-1).  

 

2.2 Learning label 

The indices used in this study were the mHR, RMSSD, SDNN, TP, power in the VLF 

range, power in the LF range, and power in the HF range (Table 1). The mean RR interval 

(mRR), LF power in normalized units (LFn), and HF power in normalized units (HFn) were 

excluded from the learning process because these indices can be directly calculated from mHR, 

LF, and HF. 

 

Table 1. HRV indices 

Indices Unit Explanation 

mRR ms mean R-R interval 

mHR bpm mean Heart Rate average heart rate 

SDNN ms Standard deviation of all NN intervals 

RMSSD ms 

The square root of the mean of the sum of the 

squares of differences between adjacent NN 

intervals 

TP ms2 Total Power 

VLF ms2 Power in the very low-frequency range ≤0.04 Hz 

LF ms2 Power in the low-frequency range 0.04–0.15 Hz 

HF ms2 Power in the high-frequency range 0.15–0.4 Hz 
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LFn n.u. 

LF power in normalized units LF/ (Total Power-

VLF) × 100 

HFn n.u. 

HF power in normalized units HF/ (Total Power-

VLF) × 100 

LF/HF  Ratio LF/HF 

 

2.3 Input data for the deep learning models 

Generally, the training data for the deep learning models should be uniform in size; 

however, the number of heartbeats in Raw-1 varied according to each individual’s heart rate. 

The input data for time-domain indices such as mHR, SDNN, and RMSSD were fixed at 300 

beats, which is the maximum heartbeat in a 3-min recording (Fig. 1). To create the time-domain 

input data (300-beat data), Raw-1 was placed in the middle, and the rest were filled with the 

average value of Raw-1. This 300-beat data served to predict the time-domain indices. 

The input data sizes for the frequency domain indices, such as TP, LF, HF, VLF, LFn, 

HFn, and LF/HF, were fixed at 256 beats. Raw-1 was resampled at 2 Hz and repeated three 

times. The frequency data from this process (256 FFT data) served as the input to predict the 

frequency domain indices. 

The time and frequency domain labels from Raw-3, 300-beat data, and 256 FFT data 

were normalized between 0 and 1 to be processed through the deep learning models. 
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Figure 1. Generation of input data; 3-min HRV data (Raw-3) were generated from each 3-min 

ECG/PPG. The time and frequency data from Raw-3 served as reference (target label). From 

Raw-3, a 1-min HRV recording (Raw-1) was selected after 30 s of testing. The data of the time 

and frequency domains should be uniform in size for training the deep learning models; 

therefore, the time and frequency domain data were fixed at 300 and 256 beats, respectively. 

These 300 beats and 256 FFT data served as the input for the deep learning models to predict 

the outcome, which is the reconstructed 1-min data (Rec-1).  

 

2.4 Learning model 

From the 34,885 HRV recordings, 20,931 (60%), 10,465 (30%), and 3,489 (10%) were 

randomly selected for training, validation, and testing, respectively. 

A few studies have predicted time dependent indicators using short-term measures; however, 

there are no reports on measurements that require longer testing time, i.e., LF and VLF. We 

attempted to measure LFn with a brute force method in 32 empirical models (Supplemental 

Table 1). Deep Neural Network (DNN) and Convolutional Neural Network (CNN) learning 
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models yielded the best outcomes. We tried other indicators in various types of DNN and CNN 

models using a brute force method to identify the best learning model for training a particular 

indicator to find which returned the smallest mean absolute error (MAE) (Supplemental Table 

2) [10–13]. 

Tables 2 and 3 present the learning model used for each indicator. In the case of SDNN, 

the learning model was CNN2D. The loss function, metric, and optimizer were Huber loss, 

MAE, and Adam, respectively (Supplemental Figure 1). The learning rate, optimal epoch, and 

batch size were 1 x 10-5, 14,150, and 5000, respectively. 

 

Table 2. Frequency domain indices and learning models  

 

 

 

 

 

 

 

 

 

 

 

 

FFT, fast Fourier transform; DNN, deep neural network; CNN2D, 2-dimensional convolutional 

neural network; MAE, mean absolute error 

 

Indices TP LF HF VLF LF n HF n LF/HF  

Data format 256 FFT     256 FFT     256 FFT     256 FFT     256 FFT     256 FFT     256 FFT      

Learning model 

DNN+ 

Dropout 

DNN DNN 

DNN+ 

Dropout 

DNN+ 

Dropout 

DNN+ 

Dropout 

CNN2D

+ 

Dropout 

 

Loss function MAE 

Huber 

loss 

Huber 

loss 

Huber 

loss 

Huber 

loss 

Huber 

loss 

Huber 

loss 

 

Metric MAE MAE MAE MAE MAE MAE MAE  

Optimizer Adam Nadam Nadam Adamax Nadam Nadam Adam  

Learning rate 0.001 0.00002 0.00002 0.00001 0.00002 0.00002 0.00001  

Optimal epoch 1030 3493 5898 117111 59253 40208 40822  

Batch size 1000000 5000 5000 1000001 5000 5000 5000  
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Table 3. Learning model for the time-domain indices 

Indices mHR SDNN RMSSD 

Data format 300-Beat                   300-Beat                   300-Beat                   

Learning model DNN CNN2D CNN1D 

Loss function Huber loss Huber loss Huber loss 

Metric MAE MAE MAE 

Optimizer Adam Adam Adam 

Learning rate 0.0001 0.00001 0.00001 

Optimal epoch 50,873 14,150 157,584 

Batch size 5,000 5,000 5,000 

 

2.5 Statistical processing 

The results were analyzed using an independent sample t-test and Pearson’s correlation 

coefficient. The degrees of consistency between Raw-3 vs. Rec-1 and Raw-3 vs. Raw-1 values 

were determined using the Bland–Altman plot, and the tolerance limit between the two 

measured values was defined as average ± 2 × standard deviation (SD). The significance level 

was set at p < 5 % for all the statistical analyses, and the SPSS19 and Excel technological 

statistics packages were used. 

 

2.6 Institutional review board statement 

This study was approved by the review board of the Ajou University Hospital (AJIRB-

DEV-MDB-21-258) and was conducted according to the Helsinki Declaration. Patient consent 

was waived because of the retrospective nature of the study and the analysis used anonymous 

clinical data. 
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3. Results 

3.1. Comparison between the data of Raw-3 and Raw-1 vs. Raw-3 and Rec-1 

While all the Raw-1 measurements significantly differed (p≤0.05) from those of Raw-

3, with the exception of mHR and RMSSD, the measurements of Rec-1 did not show any 

significant difference in any indices (Table 4). For example, the TP measurements for Raw-3, 

Rec-1, and Raw-1 of the first subject were 1418.7233, 775.6076, and 282.5084, respectively. 

For the second subject, the values were 1246.5504, 1148.8865, and 1681.5488, respectively. 

The Raw-3 and Rec-1 TP measurements of the first 99 subjects were plotted for visual 

comparison (Fig. 2).  

 

Figure 2. Comparison of TP measurements of Raw-3 and Rec-1 

 

 

Raw-3 (blue) and Rec-1 (orange) measurements of the first 99 of the 3,489 study subjects are 

shown. The patterns of the blue and orange lines are similar. 
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Table 4. Independent sample t-test of the HRV data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Indices 

Raw-3 Rec-1 Raw-1 

Ave ± SD Ave ± SD t(p) Ave ± SD t(p) 

TP 

1061.99 ± 

906.47 

1051.81 ± 

847.87 

0.485 

(0.628) 

763.52 ± 

854.51 

14.152 

(0.000) 

LF 332.97 ± 376.95 332 ± 373.19 

0.107 

(0.915) 

305.9 ± 486.2 

2.599 

(0.009) 

HF 256.01 ± 285.61 

256.14 ± 

285.11 

-0.018 

(0.986) 

282.13 ± 

349.05 

-3.42 

(0.001) 

VLF 473.01 ± 534.06 

467.98 ± 

443.44 

0.334 

(1.96) 

175.5 ± 

276.48 

29.222 

(0.000) 

LFn 56.17 ± 20.8 55.98 ± 20.55 

0.388 

(0.698) 

48.66 ± 24.3 

13.869 

(0.000) 

HFn 43.83 ± 20.79 43.87 ± 20.38 

-0.08 

(0.936) 

51.36 ± 24.29 

-13.901 

(0.000) 

LF/HF 2.23 ± 2.79 2.25 ± 2.83 

-0.295 

(0.768) 

1.99 ± 3.61 

3.12 

(0.002) 

mHR 73.66 ± 8.43 73.66 ± 8.37 

-0.008 

(0.994) 

73.38 ± 8.51 

1.395 

(0.163) 

RMSSD 27.06 ± 13.84 26.98 ± 13.51 

0.259 

(0.796) 

27.59 ± 14.57 

-1.548 

(0.122) 

SDNN 35.59 ± 13.41 35.28 ± 11.88 

1.025 

(0.306) 

32.13 ± 13.57 

10.721 

(0.000) 
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In most of the 3,489 cases, Rec-1 more closely approximated Raw-3 than Raw-1. The TP of 

Raw-3, Rec-1, and Raw-1 was 1061.99 ± 906.47, 1051.81 ± 847.87, and 763.52 ± 854.51, 

respectively, in terms of average ± SD. The TP of Rec-1 (p = 0.628) was not significantly 

different from that of Raw-3, whereas that of Raw-1 (p = 0.000) was different. The 

measurements of the other frequency and time-domain indices are presented in Table 4. 

 

3.2. Pearson’s correlation between the Raw-3 vs. Rec-1 and Raw-3 vs. Raw-1 indices 

The measurements of all the Rec-1 indices showed a good correlation with those of 

Raw-3. The coefficient of determination (R2) demonstrated that Rec-1 was more strongly 

correlated with Raw-3 than Raw-1 in the frequency domain indices. The R2 of the time-domain 

indices of Rec-1 was similar to that of the time-domain indices of Raw-3. The R2 of Raw-3 vs. 

Rec-1 and of Raw-3 vs. Raw-1 for TP was 0.9307 and 0.4727, LF was 0.9773 and 0.4421, HF 

was 0.9929 and 0.8147, VLF was 0.6979 and 0.2433, LFn was 0.9553 and 0.5177, HFn was 

0.9579 and 0.5167, LF/HF was 0.9099 and 0.4345, mHR was 0.982 and 0.981, RMSSD was 

0.9537 and 0.9597, and SDNN was 0.7811 and 0.7681, respectively. Thus, we can conclude 

that Rec-1 shows a strong correlation with Raw-3. 
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Figure 3. Correlation of indices between Raw-3 vs. Rec-1 and Raw-3 vs. Raw-1  
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The coefficients of determination (R2) for TP, LF, HF, VLF, LFn, HFn, LF/HF, mHR, RMSSD, 

and SDNN are shown. Among all frequency domain indices, Rec-1 demonstrated a better 

correlation with Raw-3. 
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Figure 4. Agreement of Rec-1 and Raw-3  
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The differences (Raw-3 – Rec-1) in the measurements of all indices are scatter-plotted. The 

red-dotted lines show 95% confidence interval of the LoA. 

 

3.3. Prediction error between the indices of Rec-1 and Raw-3 

The Bland–Altman plot in Figure 4 shows the difference in each measurement between 

Rec-1 and Raw-3 for all indices. The x-axis represents Raw-3, and the y-axis represents the 

difference between Rec-1 and Raw-3. The upper and lower limits of the LoA are expressed as 

bias ± 1.96 SD, and the number inside the parentheses is the percentage of data within the LoA. 

For example, for HFn, where Raw-3 was 30.29, its Rec-1 was 36.52; therefore, the prediction 

error was 6.23, and a blue dot was placed in the coordinate (30.29, 6.23). This plot shows the 

magnitude of the prediction error. The scattering of points in all indices show that the Rec-1 is 

in good agreement with the Raw-3. 

 

4. Discussion 

Long-term recording (≥ 24 h) reliably assesses lower-frequency indices and is the 

reference standard for clinical evaluation because of its superior predictive validity [4,14]. 

Predictive outcomes such as mortality after acute MI and diabetic neuropathy are best assessed 

with long-term measurements, whereas changes in RR intervals during and immediately after 

abnormal respiratory events, such as obstructive sleep apnea, can be best assessed with 

ultrashort-term measurements [15-17].  

Despite the benefits of HRV testing in health care, the 5-min recording time is 

impractically long compared with other clinical tests, such as blood pressure measurement and 

fasting blood sugar, which can be routinely performed in a primary care center or at home. 

Interest in shorter measurement times prompted researchers to investigate in ultrashort-term 

HRV test to assess its reliability against short-term tests [18-20]. Previous studies that tested 
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the minimum testing time showed a high correlation between ultra- and short-term analyses [7-

9]. Minimum requirement time for each HRV indices differed, for instance 10 seconds(s) for 

HR, 20 s for HF, 30 s for RMSSD, and 90 s for LF [8].  

Our study challenged the time limit by employing a deep learning algorithm. In this 

study, the results of independent samples t-tested across all indices showed no significant 

differences between the groups, including the indices sensitive to measurement time, such as 

SDNN, VLF, and TP (p < 0.05). The Pearson’s correlation coefficient showed very high 

correlations, from a minimum of 0.78 (SDNN) to a maximum of 0.99 (HF), with p < 0.000 for 

both. In the Bland–Altman plot, the difference in most indices fell within the LoA. This 

indicates that the raw data and predicted values are in good agreement, with minimum tolerable 

errors.  

The coefficient of correlation from previous research that compared 5 and 3-min HRV 

data was higher for time-sensitive indices such as mHR (0.998 vs. 0.982), SDNN (0.961 vs. 

0.781), RMSSD (0.986 vs. 0.953), and VLF (0.866 vs. 0.698) compared with that of our study’s 

results [2]. However, our results showed better correlations in frequency measures such as TP 

(0.923 vs. 0.931), HF (0.987 vs. 0.993), and LF (0.955 vs. 0.977). 

HRV testing in 1-min allows for a quick assessment of the autonomic nervous system 

function, which can have various health uses from surveillance to treatment. Myocardial 

infarction survivors could benefit from frequent HRV screening to stratify future arrhythmic 

risk, and individuals with chronic heart failure could easily assess disease severity by routinely 

measuring their HRV at home [21,22]. Patients with psychological conditions such as 

depression, anxiety, and panic disorder could benefit from HRV biofeedback as adjunctive 

therapy in inpatient or outpatient settings [23-25]. 

Despite the findings, the learning process and structural issues associated with deep 

learning should be considered for further improvement. Larger error values tend to result from 
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greater measurement values. Also, there were cases in which the deviation of some predicted 

values was greater; however, the error was small for the group average because the learning 

was based on the absolute error of the group average.  

In summary, we employed deep learning methods in HRV analysis for the first time to 

reduce the recording time to 1-min, and our prediction accuracy was comparable to that of 3-

min HRV measurements. Ultrashort-term HRV measurements with deep learning could 

contribute to the possibility of a nearly real-time health assessment. 

 

5. Conclusions 

This study demonstrated that a 1-min HRV measurement reconstructed by deep 

learning can reliably predict 3-min HRV data. Our findings suggest the possibility of assessing 

the autonomic nervous system function in real time using HRV.  
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