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Abstract 

Bacterial genomics is increasingly used for infectious diseases surveillance, 

outbreak control and prediction of antibiotic resistance. With expanding availability of 

rapid whole-genome sequencing, bacterial genomics data could become a valuable 

tool for clinicians managing bacterial infections, driving precision medicine strategies. 

Here, we present a novel clinician-driven bacterial genomics framework that applies 

within-patient evolutionary analysis to identify in real-time microbial genetic changes 

that have an impact on the outcome of severe Staphylococcus aureus infections, a 

strategy that is increasingly used in cancer genomics. Our approach uses a 

combination of bacterial genomics and novel microbiological testing to identify and 

track bacterial adaptive mutations that underlie antibiotic treatment failure. We show 

real-life examples of the impact of our approach and propose a roadmap for the use 

of bacterial genomics to advance the management of severe bacterial infections.  

Introduction 

Thanks to progress in high-throughput whole-genome sequencing (WGS), bacterial 

genomics has transformed public health microbiology and hospital infection control 

(Ballard, Sherry, and Howden 2023), and is increasingly used to predict antibiotic 

resistance (Sherry et al. 2023). However, compared to human and cancer genomics, 

bacterial genomics has rarely found its application in the clinical setting. This is partly  

due to turn-around-times that are not suitable for acute infections but also due to still 

insufficient evidence regarding the impact of bacterial genetic factors on clinical 

outcomes (Giulieri, Tong, and Williamson 2020).  

However, the high degree of resolution achieved through bacterial WGS enables an 

accurate characterisation of the patient’s individual bacterial strains, which could 

inform precision infectious diseases management. One of the most promising 
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insights delivered by bacterial genomics is an understanding of the unique 

evolutionary trajectory of infecting strains during clinical infection. Adaptive evolution 

plays a key role in bacterial infections, driving antibiotic resistance, infection 

persistence and immune evasion (Giulieri et al. 2022), yet it is not routinely assessed 

in clinical practice. This is in contrast to cancer management, where genomics is 

used to detect mutations acquired de novo by cancer cells either at diagnosis or 

during treatment (Andre et al. 2022). 

Here we propose a bacterial genomics framework to assess adaptive evolution 

during persistent or recurrent infections. We focus on invasive Staphylococcus 

aureus infections, due to the clinical relevance of persistence (Kuehl et al. 

2020)(Holland, Bayer, and Fowler 2022) and recurrence (Choi et al. 2021). We 

hypothesise that bacterial genomics (supported by phenotypic testing) can assist 

clinicians in determining the cause of treatment failure in S. aureus infections, and 

potentially guide salvage treatments (Holland, Bayer, and Fowler 2022). This 

conceptual framework is outlined in Figure 1 and Table 1. First, an accurate 

determination of the genetic distance between isolates collected at baseline and at 

treatment failure can help distinguish reinfection from relapse, which require different 

management strategies. Second, genomics and specialised antibiotic susceptibility 

testing can reveal previously unrecognised resistance mechanisms. Third, 

meticulous within-host evolution analysis (both phenotypic and molecular) can 

identify signatures of adaptive evolution, particularly to antibiotics, information that 

could be useful when selecting a salvage regimen. Finally, if the above investigations 

remain negative, this suggests lack of adaptive evolution. This finding supports 

continuing the same antibiotic regimen but suggests the presence of a persistent 
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focus which might warrant more aggressive source control or increase in the 

antibiotic dose. 

 

Methods 

In a preliminary study we offered our genomics investigation framework to teaching 

hospitals in the state of Victoria, Australia between 2020 and 2023. The 

investigations were initiated by clinicians in cases of suspected antibiotic treatment 

failure in invasive S. aureus infections indicated by microbiological persistence or 

recurrence, or unusual phenotypic characteristics of clinical strains noted by medical 

microbiologists (e.g. increase in minimum inhibitory concentration [MIC], small 

colony variants).  Strains were referred to the Microbiological Diagnostic Unit Public 

Health Laboratory in Melbourne, where they underwent broth microdilution antibiotic 

susceptibility testing using the Sensititre® GPN3F and GN6F panels and EUCAST 

interpretive breakpoints. In addition the cefazolin inoculum effect was assessed as 

described in (Nannini et al. 2009). Briefly, cefazolin MICs were determined using 

broth microdilution with a standard (5x105 cfu/ml) and high inoculum (5x107 cfu/ml) 

dilution. S. aureus ATCC 25923 was used as the negative control strain. A > 4-fold 

increase in the cefazolin MIC with the high inoculum compared to the MIC obtained 

with the standard inoculum was considered evidence of the cefazolin inoculum 

effect.  Bacterial whole-genome sequencing of same-episode strains was performed 

as previously described (Giulieri et al. 2022). Single colonies were sequenced using 

a Illumina Nextseq instrument. Quality control and reads assembly was performed 

using a standardised pipeline (https://github.com/MDU-PHL/mdu-

tools/blob/master/bin/mdu-qc) that calculates reads depth and quality, computes the 

fraction of S. aureus reads using Kraken and assembles reads using Shovill 
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(https://github.com/tseemann/shovill), based on SPAdes (Bankevich et al. 2012). 

Assemblies were annotated with Prokka (Seemann 2014). Multi-locus sequence type 

(MLST) was inferred from the assembled contigs using the mlst tool 

(https://github.com/tseemann/mlst) and resistance genes were detected with 

Abricate (https://github.com/tseemann/abricate) using the NCBI AMRFinderPlus 

database (Feldgarden et al. 2021). The within-host evolution genomic analysis (i.e. 

comparative genomics of bacterial isolates collected at time of failure vs. baseline 

isolates) was performed using a bespoke pipeline as described in (Giulieri et al. 

2022) and available at https://github.com/stefanogg/staph_adaptation_paper. This 

pipeline uses Snippy (https://github.com/tseemann/snippy) to call variants using the 

baseline strain draft assembly as a reference. To increase the accuracy of the 

variant calling, additional filtering steps are added (Giulieri et al. 2018).  

Clinicians were provided with two reports: the first included standard antimicrobial 

susceptibility and the cefazolin inoculum effect results, plus basic genomic 

characterisation (MLST and resistance gene detection).  The second report 

described the within-host evolutionary analysis and proposed an interpretation based 

on the structured approach described above (Table 1) and available published 

evidence regarding the identified mutations.  

 

Results 

From May 2019 to August 2023, we received 65 clinical strains from 13 episodes of 

invasive S. aureus infections from 7 hospitals (median 2 strains per episode, 

interquartile range 2-4). Details of each episode are provided in Table 2. In all cases, 

the clinical syndrome was S. aureus bacteraemia, of which 9 were recurrent and 2 

persistent (in two cases only baseline strains were referred to investigate 
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mechanisms of antibiotic resistance). The investigation was initiated by the treating 

clinician in 8 cases and by the clinical microbiologist in 5. Antimicrobial susceptibility 

testing (broth microdilution) showed an increase in oxacillin MIC (> 4-fold) between 

the baseline and subsequent isolates in 2 cases, high baseline oxacillin MIC (1 mg/l) 

in 3 cases and heteroresistant methicillin-resistant S. aureus (MRSA) in one case 

(oxacillin MIC 0.38/16/32 mg/l). Cefazolin effect testing was done in 3 cases and was 

found to be present in one.  

 

Basic genomic data and within-host evolution analysis are shown in Table 2.  

Using a structured interpretation, we categorised antibiotic failure as likely due to 

persistent focus in 7 cases and bacterial adaptation in 4 cases. In two cases our 

analysis was not conclusive. No cases of co-infection/re-infection were found. Thus, 

our approach provided bacterial genomic evidence of within-host adaptive evolution 

in a third of sequentially collected strains. This highlights the clinical relevance of 

bacterial adaptation during invasive S. aureus infections and the interest to trace it 

using a strategy of sequencing serially collected strains.  

 

Adaptive mutations were observed in genes that have been linked to adaptive 

antibiotic resistance. For example, mutations in the cyclic-di-AMP phosphodiesterase 

gdpP were found in two of these cases. These were recently shown by multiple 

groups to drive non-mec mediated oxacillin resistance in S. aureus (mec-

independent oxacillin non susceptible S. aureus, MIONSA) (Sommer et al. 2021; 

Argudín et al. 2018; Ba et al. 2019; Giulieri 2023; Giulieri et al. 2020). Mutations in 

the regulatory serine-threonine phosphatase stp1 were detected in two isolates. This 

gene, which has been linked to vancomycin (Cameron et al. 2016) and oxacillin 
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resistance (Chatterjee, Poon, and Chatterjee 2020), displayed one of the strongest 

statistical signals of adaptive evolution in our large-scale within-host evolution 

analysis of almost 400 episodes of S. aureus infections (Giulieri et al. 2022). 

 

Discussion 

Treatment failure in S. aureus invasive infections is challenging for both patients and 

clinicians. Our clinician-initiated, genomics-informed highlights the potential 

contribution of within-host evolution analysis to its investigation. We show that an 

evolutionary genomics framework can provide useful answers for clinical 

management, for example by identifying mutations in genes that are associated with 

pathoadaptation or by providing molecular evidence of infection relapse from a 

persistent focus.  

 

While the work presented here is preliminary and limited to a small number of 

episodes and to a bacterial species, it provides the proof-of-concept for a structured 

approach to identify and track bacterial adaptive mutations underlying antibiotic 

treatment failure using a combination of bacterial genomics and antibiotic 

susceptibility testing. Full assessment of clinical impacts and utility were not included 

in the current study, but importantly need to be addressed in future work. 
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Figures and tables 

 

 

Figure 1. Proposed approach to identify and track bacterial adaptive mutations 

underlying antibiotic treatment failure.  

 

Table 1: Analysis framework 

Clinical question Bacterial genomics 

information 

Potential clinical impact 

Reinfection with new 

strain/clone? 

Large genetic distance 

between baseline and follow-

up strain 

Look for source of reinfection – No change of 

treatment 

Antibiotic resistance not 

detected by routine testing 

Detection of resistance 

genes/mutations in both 

baseline and follow-up strain 

Change antibiotic treatment 

Antibiotic adaptation Detection of ‘driver 

mutations’ in the follow-up 

strain 

Consider change antibiotic substance or class 

(consider cross-resistance) 

Persistent infection focus? Minimal genetic distance 

between baseline and follow-

up strain 

Aggressive focus search, source control, increase 

antibiotic dose 
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Table 2: Description of cases 

Hospital # 
isolates 

Clinical  
syndrome 

Persistent/ 
recurrent 

Initiated by Phenotypic 
finding 

Sequence 
type 

Resistance 
genes 

# 
mutations 

Final 
assessment 

Genes with 
adaptive 

mutations 
A 4 SAB Recurrent Clinician Baseline: 

penicillin S. 
Follow-up: 
penicillin R 

novel  0 Persistent focus  

A 3 SAB None Microbiologist MRSA 
heteroresistance 

novel blaZ, mecA 3 No interpretation  

A 2 SAB Recurrent Microbiologist Oxacillin MIC 
increase 

25 blaZ 7 Adaptation stp1, gdpP, fmtA 

A 2 SAB Recurrent Clinician None novel, 88 blaZ 3 Persistent focus  

B 2 SAB None Microbiologist High baseline 
oxacillin MIC  

novel, 5 blaZ 2 No interpretation  

C 16 SAB Recurrent Microbiologist Oxacillin MIC 
increase 

188 blaZ 24 Adaptation stp1, gdpP, rpoB, 
pbp1, pbp3, pbp4 

D 3 SAB Recurrent Clinician High baseline 
oxacillin MIC 

novel blaZ 1 Persistent focus  

C 2 SAB Recurrent Clinician Cefazolin 
inoculum effect 

8 blaZ 2 Adaptation parC 

E 2 SAB Persistent Microbiologist High baseline 
oxacillin MIC 

88 blaZ 2 Persistent focus 
 

F 2 SAB Recurrent Clinician None novel blaZ, dfrG, 
fusC 

1 Persistent focus 
 

G 2 SAB Recurrent Clinician None 5 blaZ 2 Persistent focus 
 

A 4 SAB Recurrent Clinician None 15 blaZ 4 Adaptation 
rpoB 

A 21 SAB Persistent Clinician None 30 blaZ 34 Persistent focus 
 

# mutations: total number of point mutations identified when comparing subsequently collected strains to the baseline strain. SAB: Staphylococcus aureus 
bacteraemia, MRSA: methicillin-resistant S. aureus. MIC: minimum inhibitory concentration. 
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