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 33 

Abstract 34 

Small populations (e.g., hospitals, schools or workplaces) are characterised by high contact 35 

heterogeneity and stochasticity affecting pathogen transmission dynamics. Empirical 36 

individual contact data provide unprecedented information to characterize such 37 

heterogeneity and are increasingly available, but are usually collected over a limited period, 38 

and can suffer from observation bias. We propose an algorithm to stochastically reconstruct 39 

realistic temporal networks from individual contact data in healthcare settings (HCS) and test 40 

this approach using real data previously collected in a long-term care facility (LTCF). 41 

Our algorithm generates full networks from recorded close-proximity interactions, using 42 

hourly inter-individual contact rates and information on individuals’ wards, the categories of 43 

staff involved in contacts, and the frequency of recurring contacts. It also provides data 44 

augmentation by reconstructing contacts for days when some individuals are present in the 45 

HCS without having contacts recorded in the empirical data. Recording bias is formalized 46 

through an observation model, to allow direct comparison between the augmented and 47 

observed networks. We validate our algorithm using data collected during the i-Bird study, 48 

and compare the empirical and reconstructed networks. 49 

The algorithm was substantially more accurate to reproduce network characteristics than 50 

random graphs. The reconstructed networks reproduced well the assortativity by ward (first–51 

third quartiles observed: 0.54–0.64; synthetic: 0.52–0.64) and the hourly staff and patient 52 

contact patterns. Importantly, the observed temporal correlation was also well reproduced 53 
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(0.39–0.50 vs 0.37–0.44), indicating that our algorithm could recreate a realistic temporal 54 

structure. The algorithm consistently recreated unobserved contacts to generate full 55 

reconstructed networks for the LTCF. 56 

To conclude, we propose an approach to generate realistic temporal contact networks and 57 

reconstruct unobserved contacts from summary statistics computed using individual-level 58 

interaction networks. This could be applied and extended to generate contact networks to 59 

other HCS using limited empirical data, to subsequently inform individual-based epidemic 60 

models. 61 

 62 

Author summary 63 

Contact networks are the most informative representation of the contact heterogeneity, and 64 

therefore infectious disease transmission risk, in small populations. However, the data 65 

collection required is costly and complex, usually limited to a few days only and likely to suffer 66 

from partially observed data, making the practical integration of networks into models 67 

challenging. In this article, we present an approach leveraging empirical individual contact 68 

data to stochastically reconstruct realistic temporal networks in healthcare settings. The 69 

algorithm accounts for population specificities including the hourly distribution of contact 70 

rates between different individuals (staff categories, patients) and the probability for contact 71 

repetition between the same individuals. We illustrate and validate this algorithm using a real 72 

contact network measured in a long-term care facility. Our approach outperforms random 73 

graphs informed by the same data to accurately reproduce observed network characteristics 74 

and hourly staff-patient contact patterns. The algorithm recreates unobserved contacts, 75 

providing data augmentation for times with missing information. This method should improve 76 

the usability and reliability of contact networks, and therefore promote integration of empiric 77 

contact data in individual-based models.   78 
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Introduction 79 

Limiting the burden of infectious diseases requires a good understanding of how they spread. 80 

For pathogens transmitted mostly via close-proximity interactions, the rate at which 81 

individuals come into contact with each other is strongly correlated with the expected spread 82 

of the disease across the population [1]. In large populations such as cities or countries, 83 

contact structures are usually approximated by grouping individuals into relatively broad 84 

categories (neighbourhood, age…), and assuming that contact rates are heterogeneous 85 

between categories, but homogeneous within [2,3]. In small populations such as healthcare 86 

institutions, schools, or workplaces however, disease transmission is affected by high contact 87 

heterogeneity and stochasticity [4]. Capturing these characteristics requires a detailed, 88 

individual-level description of contacts instead of only relying on summary contact rates by 89 

groups [5,6]. 90 

Contact networks are increasingly used to fully capture the interactions between individuals 91 

in small populations [7,8]. These networks explicitly represent the links between all individuals 92 

in such populations, as opposed to contact matrices which capture average contact rates 93 

between groups of individuals [9,10]. Temporal contact networks further capture the time-94 

changing nature of contacts, therefore representing individual interactions more accurately 95 

than static networks [11–15]. Contact networks can be coupled with individual-based 96 

mathematical models to help design effective interventions against the spread of infectious 97 

diseases, since they enable the identification of highly connected individuals who can be 98 

targeted to lead to the greatest impact on transmission [10]. Recently, empirical data 99 

collected to build inter-individual temporal networks has become increasingly available to 100 

inform contact networks. For example, studies have used sensors to record close-proximity 101 

interactions between individuals [16–18], and contact tracing programs have relied on the 102 

integrated Bluetooth technology in mobile phones [19]. 103 

However, the detailed empirical data required to build temporal contact networks remain 104 

subject to several limitations [20,21]. These data are typically collected over a few days only 105 

[22,23], and may be subject to observation bias; sensors might not be properly placed to 106 

register contacts [24], or individuals may disable Bluetooth on their mobile phones at different 107 

times [19]. Due to the resulting missed contacts, the networks derived from these data may 108 
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only be partially observed. Transmission rates estimated using these partially observed 109 

networks would be overestimated compared to reality due to the lower number of contacts, 110 

which could lead to an incorrect evaluation of the impact of interventions [25–27]. By 111 

comparison, although they do not provide individual-level information, contact matrices and 112 

summary statistics such as contact rates between individual groups are more readily available, 113 

as they can be inferred using simple cross-sectional survey data [28–30]. 114 

Here, we propose an algorithm to stochastically reconstruct realistic contact networks from 115 

partially observed contact data in healthcare settings (HCS). To validate our approach, we use 116 

close-proximity data collected in a long-term care facility (LTCF) during the i-Bird study [17,31]. 117 

We first illustrate the typical complexity of contact structures in HCS through the i-Bird 118 

network example. We then compute summary contact parameters from these data to 119 

generate reconstructed contact networks and compare these synthetic contact networks with 120 

the observed data.  121 
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Methods 122 

Building synthetic contacts in a HCS 123 

Algorithm outline 124 

We built an algorithm to stochastically reconstruct a realistic full temporal network of inter-125 

individual close-proximity interactions (CPIs, at less than 1.5m) in a HCS using parameters 126 

estimated from empirical individual contact data. This algorithm generates a new synthetic 127 

network which notably reconstructs contacts at times when individuals were known to be 128 

present in the HCS but had no contact data recorded, which we consider to be a recording 129 

bias. The synthetic network hence includes both the observed and unobserved parts of the 130 

empiric network. This approach first involves the calculation of contact rates and durations 131 

between individuals, stratified by the individuals’ ward, category (patient, or staff profession), 132 

type of day (weekday or weekend) and hour. The algorithm then reconstructs a new network, 133 

taking as input these summary statistics as well as data on presence days for each individual 134 

in the facility. Each CPI is generated stochastically, with individuals chosen in order to promote 135 

recurring contacts, based on a probability estimated from the data.  136 

 137 

Estimation of contact rates from the data 138 

Contact rates per hour (h from 00h to 23h), category of individual (Ci, i.e. patient, or hospital 139 

staff profession) and ward Wi are estimated from the data as: 140 

𝑇 ℎ,𝑐1𝑤1→𝑐2𝑤2
=

∑ ∑ ∑ 𝑉𝑖,𝑗,𝑘
𝑁ℎ,𝑖
𝑘=1𝑗∈𝐶2𝑊2 𝑖∈𝐶1𝑊1

∑ 𝑁𝐶1𝑊1,l
𝑁ℎ
𝑙 = 1

 (1) 141 

where Th,c1w1→c2w2 is the average per-person contact rate at the hour h between individuals 142 

from category C1 belonging to ward W1 and individuals from category C2 belonging to ward 143 

W2. For given hour h and individual i, Nh,i is the number of instances of the hour h where at 144 

least one contact was recorded for individual i. For example, if i had a contact recorded on 145 

Tuesday 11th August at 10h, and on Tuesday 18th August at 10h, N10,i would be equal to 2. For 146 

two individuals i from C1W1 and j from C2W2, Vi,j,k indicates whether contacts have been 147 

recorded between them on instance k of the hour h: it equals 1 if i and j had at least one 148 

contact recorded at that time, and 0 otherwise. Finally, Nh is the total number of instances of 149 
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the hour h in the full dataset and, for a given instance l of the hour h, NC1W1,l is the number of 150 

individuals from C1W1 that had any contact recorded during that hour. 151 

 152 

This estimation is conducted separately for contacts during weekdays and contacts during 153 

weekends. 154 

 155 

Estimation of recurring contacts 156 

For each individual i, we calculate the probability of recurring contact for each day d between 157 

the first (d0) and last (dmax) days where a contact was recorded for i, according to 158 

𝑝𝑖,𝑑 =
|𝑈𝑖,𝑑 ∩𝑈𝑖,[𝑑0,𝑑[|

|𝑈𝑖,𝑑|
  (2) 159 

Where Ui,d is the set of unique individuals with whom i had a contact on day d, Ui,[d0,d[ is the 160 

set of unique individuals with whom i had at least one contact on any day between the first 161 

day d0 and the current day d (d non-included), and the notation |x| indicates the cardinal of 162 

the set x. For example, if i had a contact with four unique individuals on day d, and previously 163 

had a contact with two of those on any day between d0 and d, the probability of recurring 164 

contact for day pi,d would be 2/4 = 0.5. 165 

 166 

We then calculated the mean daily probability of recurring contacts for individual i across all 167 

days as 168 

𝑝𝑖 =
∑ 𝑝𝑖,𝑑

𝑑𝑚𝑎𝑥
𝑑=𝑑0

1+(𝑑𝑚𝑎𝑥−𝑑0)
  (3) 169 

Finally, we calculated the mean probability of recurring contacts by individual category c 170 

(patient or staff) as 171 

𝑝𝑐 =
∑ 𝑝𝑖𝑖∈𝐶

|𝐶|
   (4) 172 

Where C represents the set of individuals belonging to category c. 173 

 174 

Generation of synthetic CPIs: number and identity of individuals in contacts 175 

For each hour of our period of interest, we estimate the number of contacts between 176 

individuals present in the HCS during that hour, determined using admission data and staff 177 

schedule. We generate the number of individuals n from category C2S2 in contact with an 178 

individual i from category C1S1 during an hour h by sampling from a Poisson distribution with 179 
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the mean being the contact rate as described above. Before selecting these n individuals, since 180 

contacts are generated dynamically, we check if i is already included in the contacts of 181 

individuals from C2S2 during h. If n’ individuals from C2S2 have already had a contact with i 182 

during h, we only select n-n’ new individuals from those available, in order to avoid double 183 

counting. 184 

 185 

These individuals are selected by favouring contacts between individuals who have already 186 

met at any other time previous to h. Let pc be the probability of a recurring contact for 187 

category c (patient or staff) of the individual i. To determine the identity of the n individuals 188 

in contact with i, we draw a random number r ~ Uniform(0,1) 189 

• If r ≤ pc, a recurring contact is generated: j is chosen among S, the subset of C2S2 190 

individuals who previously met i, according to probability pi→j: 191 

𝑝𝑖→𝑗 =  
𝑁𝑖→𝑗

∑ 𝑁𝑖→𝑘𝑘∈𝑆
   (5) 192 

Where 𝑁𝑖→𝑗  is the number of previous contacts between i and j before hour h, and 193 

∑ 𝑁𝑖→𝑘𝑘∈𝑆  is the number of previous contacts between i and each individual k belonging 194 

to S. 195 

• Otherwise, the contact is not recurring: the individual j in contact is randomly and 196 

uniformly chosen among S’, the subset of C2S2 individuals who have not yet met i. 197 

 198 

Generation of contact durations 199 

For each contact between two given individuals i from C1S1 and j from C2S2 the duration of 200 

contact is sampled from a log-normal distribution calibrated from the observed mean and 201 

variance of contact durations between individuals from C1S1 and C2S2 on hour h.  202 

 203 

Validation dataset: the i-Bird network 204 

Dataset description 205 

We validate our algorithm by applying it to data collected during the Individual-Based 206 

Investigation of Resistance Dissemination (i-Bird) study [17,31]. This study took place in a 207 

rehabilitation and long-term care facility (LTCF) from the beginning of July to the end of 208 

October 2009. Over this period, each participant (patient or hospital staff) was wearing an 209 

RFID sensor that recorded CPIs every 30 seconds. Here, we only used contacts recorded 210 
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between 27 July to 23 August 2009 (included). This period corresponds to the weeks between 211 

two sensor battery replacements and hence avoids interference due to loss of contact. A 212 

temporal network of proximities was therefore available over 28 days with information on 213 

individual ID and ward of affectation. 214 

The LTCF was structured into five wards: three neurological wards, one nutritional care ward 215 

and one geriatric ward. Patients were systematically linked to a ward, whilst some staff were 216 

mobile and not linked to a specific ward. For the purpose of this work, we considered here 217 

that mobile staff belonged to an “artificial” 6th ward, to compute contact rates according to 218 

the algorithm detailed above. Staff were divided into 13 professions: administrative, 219 

animation/hairdresser, logistic, hospital service agent, porter, occupational therapist, 220 

physiotherapist, other rehabilitation staff, nurse, head nurse, care assistant, medical 221 

student/resident, and physician. A total of 200 patients and 213 hospital staff were included 222 

and had contacts recorded during the 28 days of study.  223 

We used hospital staff schedules to determine the hourly presence of each staff and 224 

compared these schedules to the dates and times when staff had any contact recorded. We 225 

assumed that, in reality, staff would have at least one contact with any other individual during 226 

any given hour of their presence time, hence if no contact was recorded for a given hour of 227 

presence we considered this was missing data rather than true absence of contact. Through 228 

this, we estimated that the median percentage of a staff’s total presence time when no 229 

contact data was recorded was 40.0% (interquartile range (IQR): 0-75.0%). We repeated this 230 

analysis for patients at the daily instead of hourly level, as we only had access to admission 231 

and discharge dates for patients. We estimated that the median time when no contact data 232 

was recorded was 33.3% (interquartile range (IQR): 10.5-53.6%) of a patient’s presence days.  233 

Although the overall compliance was high (90% of individuals agreed to wear a sensor), there 234 

was therefore substantial heterogeneity in the individual coverage of the raw i-Bird network 235 

(Supplementary Figure 1). Interestingly, there was no correlation between the proportion of 236 

presence time during which contact data were recorded for a given individual and their 237 

average number of contacts on presence days where data were available, nor their total 238 

presence time (Supplementary Figure 2). 239 

 240 

 241 
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Observation bias process 242 

As mentioned earlier, the observed i-Bird network, as any real-life data, includes recording 243 

biases leading to some periods of non-recording of CPIs, with the extent of this bias varying 244 

between individuals. To make our reconstructed networks comparable to the observed one, 245 

we therefore introduced an observation bias process. For each individual in the observed 246 

network, we identified the hours with no contact recorded. We then removed those 247 

individuals on those hours before proceeding with the algorithm described above. The 248 

resulting “reconstructed biased network” and the observed network hence suffer from the 249 

same bias and are comparable. 250 

 251 

Simulations and analysis 252 

From the analysis of the i-Bird empiric network and data, we used our algorithm to generate 253 

100 full synthetic reconstructed networks, and 100 reconstructed networks with observation 254 

bias. For comparison, we also generated 100 pseudo-random contact networks with 255 

observation bias, and 100 without. The latter networks simulate contacts without taking into 256 

account the ward, staff category, and probability of recurring contact in the calculation of 257 

contact rates and durations. The patient-patient, staff-staff, and patient-staff contact rates 258 

are calculated as detailed in the section “Estimation of contact rates from the data”, treating 259 

all staff as if they were part of the same profession, and all individuals as if they were part of 260 

the same ward. At each contact, the individual encountered is therefore chosen randomly 261 

from all those present in the LTCF at that time, regardless of whether or not the individual was 262 

previously encountered.  263 

 264 

We implemented the algorithm in C++ with the repast HPC 2.3.0 library. All simulations were 265 

performed on the Maestro cluster hosted by the Institut Pasteur. The networks were analysed 266 

in R [32], using the igraph package [33]. The relevant contact networks and analysis code are 267 

available in the following GitHub repository: https://github.com/qleclerc/network_algorithm. 268 

 269 

 270 

 271 

 272 
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Validation of the full reconstructed networks 273 

For validation, we also applied the algorithm to each of the 100 reconstructed networks with 274 

bias, considering them as empiric networks. This allowed us to generate 100 new full 275 

reconstructed networks from fully known networks, and confirm these “re-simulated 276 

networks” were similar to the full reconstructed networks generated from the observed data.  277 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.10.23.23296945doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.23.23296945
http://creativecommons.org/licenses/by-nc/4.0/


Results 278 

Description of HCS contact heterogeneity: the example of the i-Bird dataset 279 

In this section, we illustrate the typical complexity of contact structures in HCS using the i-Bird 280 

network. While the algorithm makes use of data at the hourly level, in this section the contact 281 

data are aggregated at the daily level, so that if two individuals have two separate contacts 282 

with each other at different times of the day, this is only counted once. The contact network 283 

is considered undirected, since contacts are assumed to be reciprocal. Daily-averaged contact 284 

matrices built from these data are described in a previous work [31]. 285 

 286 

We first summarise the observed temporal network recorded in the LTCF during the i-Bird 287 

study, comparing the total daily network and subgraphs with only patient-patient, staff-staff, 288 

or patient-staff contacts (Figure 1a-d). Table 1 provides the degree, global efficiency, density, 289 

transitivity, assortativity and temporal correlation of these four networks. The mean degree 290 

of the total network per day is 12.99 (standard deviation: 3.53), which corresponds to the 291 

average number of unique contacts per individual per day. In the subgraphs, the degree is 292 

highest in the patient-staff subgraph (8.09; sd: 1.89), although we still note a relatively 293 

important number of patient-patient contacts, with a degree of 5.25 (sd: 1.87) in the 294 

corresponding subgraph. The distribution of individual degrees for all individuals and all days 295 

across the total network is heterogeneous, with a squared coefficient of variation equal to 296 

0.44 (Figure 1e). The global efficiency of the total network is 0.40 (sd: 0.05), meaning that on 297 

average the shortest path between any two individuals has a distance of 2.5 (whereby the 298 

shortest path between two individuals in direct contact would be of distance 1). As expected, 299 

the efficiencies are lower in the subgraphs, since we remove individuals and hence increase 300 

the distance between those remaining (patient-patient: 0.25 (sd: 0.08, distance: 4); staff-staff: 301 

0.32 (sd: 0.10, distance: 3.1);  patient-staff: 0.31 (sd: 0.05, distance: 3.2)). Densities in the total 302 

network and subgraphs are relatively low (< 0.1), indicating that less than 10% of all possible 303 

connections between individuals in the network are actual observed connections. 304 

 305 

Transitivity in the total network is high (0.37; sd: 0.02), meaning that for any two individuals a 306 

and b both in contact with the same third individual c, the probability that a and b are also in 307 
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contact is 0.37. Transitivity is also high in the patient-patient and staff-staff subgraphs, but 308 

this metric is not relevant for the patient-staff subgraph – it is impossible for a triangle of 309 

contacts to occur in this subgraph as it excludes staff-staff and patient-patient contacts by 310 

design. Assortativity by degree is negative in the total network (-0.13; sd: 0.10), indicating that 311 

highly connected individuals are more likely to be in contact with less connected individuals. 312 

It is also strongly negative in the patient-staff subgraph (-0.42; sd: 0.14), reflecting the 313 

expected disassortivity of healthcare contacts, where each staff member is in contact with 314 

multiple patients, whilst each patient is contact with relatively few staff members. In the 315 

patient-patient and staff-staff subgraphs, assortativity by degree is positive, as frequently 316 

seen in social networks. 317 

 318 

Table 1: Summary of network characteristics for the observed i-Bird total network, patient-319 

patient subgraph, staff-staff subgraph, and patient-staff subgraph. Values were estimated 320 

for each day of the 28-days period and summarised here with the mean and standard 321 

deviation (sd). Transitivity is not calculated for the patient-staff subgraph as triangles of 322 

contacts cannot occur in this network. 323 

 Total Patient-patient Staff-staff Patient-staff 

Degree (sd) 12.99 (3.53) 5.25 (1.87) 5.82 (1.87) 8.09 (1.89) 

Global efficiency (sd) 0.40 (0.05) 0.25 (0.08) 0.32 (0.10) 0.31 (0.05) 

Density (sd) 0.07 (0.01) 0.05 (0.01) 0.09 (0.01) 0.05 (0.00) 

Transitivity (sd) 0.37 (0.02) 0.41 (0.05) 0.56 (0.07) NA 

Assortativity (sd)     

By degree -0.13 (0.10) 0.22 (0.10) 0.14 (0.14) -0.42 (0.14) 

By ward 0.59 (0.08) 0.77 (0.11) 0.72 (0.09) 0.47 (0.09) 

Temporal correlation 0.47 (0.11) 0.65 (0.07) 0.35 (0.16) 0.41 (0.12) 

 324 

 325 
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 326 

Figure 1: Representation of the observed network recorded during the i-Bird study: (a) total 327 

network, and (b) patient-patient, (c) staff-staff and (d) patient-staff subgraphs on a single 328 

day. The date of 28th of July 2009 was chosen arbitrarily. The layout was calculated using the 329 

Kamada-Kawai algorithm, with no weights applied to edges. e) Distribution of individual 330 

degrees for the total network per person per day, across the entire study period. The dashed 331 

red line indicates the mean degree (13.59). CV: coefficient of variation (standard 332 

deviation/mean). 333 
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Visually, we observe that contacts are naturally clustered by ward (Figure 1a-d). This is 334 

reflected in the assortativity by ward, which is systematically high (> 0.45) and indicates that 335 

individuals in a ward are always more likely to have contacts with other individuals in the same 336 

ward than with individuals in other wards (Table 1). We also observe that contacts exist 337 

between all grouped staff professions and patients in different wards, although the 338 

distribution is heterogeneous (Figure 2a-b). For example, the median number of wards with 339 

which a care assistant (orange) is in contact with is two, while almost all porters (yellow) have 340 

contacts with patients from all five wards (Figure 2b). 341 

 342 

Overall, contacts are relatively well maintained over time, as shown by the temporal 343 

correlation coefficient of 0.47 (sd: 0.11, Table 1). This corresponds to the average probability 344 

that, between two subsequent days, an individual maintains the same number of unique 345 

contacts, with the same individuals. This metric is highest in the patient-patient subgraph 346 

(0.65, sd: 0.07) and lowest in the patient-staff subgraph (0.35, sd: 0.16), indicating that 347 

patients tend to have the same contacts with each other every day, whilst contacts amongst 348 

healthcare workers often vary between subsequent days. This consistency over time is 349 

reflected in the high probability of recurring contacts (mean probability: 0.78 for patients, 0.71 350 

for staff), although we note more variability amongst staff than patients (Figure 2c). 351 

 352 

All the characteristics described above differ between weekdays and weekends in the network 353 

and indicate that there are fewer contacts during weekends (Supplementary Table 1). This 354 

difference is reflected in the temporal correlation, which tends to be high when comparing 355 

Sunday to Saturday, but low when comparing Saturday to Friday and Monday to Sunday, 356 

indicating that the structure of the network changes the most between these timepoints 357 

(Supplementary Figure 3). 358 
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 359 

Figure 2: Description of contact heterogeneity and recurrence across the facility. a) 360 

Repartition of contacts between grouped staff professions and patient wards. A link 361 

between one staff category and one patient ward indicates that, at any point during the 362 

investigation period, a staff member from that category had a contact with a patient from that 363 

ward. For ease of visualisation, occupational therapists, physiotherapists, and other re-364 

education staff are grouped into “Reeducation”; administrative, animation/hairdresser, 365 

logistic, and hospital service agents are grouped into “Other”; and nurses, head nurses, and 366 

students/interns are grouped into “Nurses”. Porters, doctors and care assistants are not 367 

grouped. b) Distribution of number of wards with which each staff member has had at least 368 

one contact with during the study period. c) Distribution of probabilities of recurring 369 

contacts. Each observation is calculated over the entire studied period, and corresponds to 370 

the average probability for one staff or one patient to form a new contact with a previously-371 

met individual (staff or patient) over the studied period rather than a new individual. 372 

Diamonds indicate the mean values. 373 

 374 

 375 
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Comparison of synthetic and observed networks  376 

To illustrate and validate our algorithm, we applied it to the i-Bird network described above 377 

to stochastically construct four types of synthetic networks using the estimated contact 378 

parameters: 100 full reconstructed networks, 100 reconstructed networks incorporating 379 

observation bias, 100 full pseudo-random networks, and 100 pseudo-random networks 380 

incorporating observation bias. We expected that the characteristics of the reconstructed 381 

networks with observation bias would be broadly similar to those of the observed i-Bird 382 

network. Summary network characteristics are reported in Figure 3 and Supplementary Figure 383 

4. 384 

 385 

The daily degrees in the reconstructed networks were slightly higher than the observed 386 

network (Figure 3a). Global efficiency was similar between the observed and reconstructed 387 

networks, but slightly higher in the reconstructed network with bias (Figure 3b). This is 388 

because the algorithm with bias removed individuals from the network at times when they 389 

did not wear their sensor during the study, hence reducing the average distance between 390 

remaining individuals. For the same reason, the density of the reconstructed network with 391 

bias was slightly higher than the observed (Supplementary Figure 4). Transitivity was slightly 392 

higher for the reconstructed network with observation bias than without, but lower than the 393 

observed network in any case (Figure 3c), as expected since the algorithm did not take into 394 

account any element of transitivity when constructing synthetic networks. Finally, 395 

assortativity by degree and by ward, as well as temporal correlation, were all well preserved 396 

in the reconstructed networks (Figure 3d-f). As a comparison, the random networks with or 397 

without bias either substantially over- or under-estimated the values for all metrics compared 398 

to the observed network (Figure 3a-f), although we note that transitivity was similar to the 399 

other synthetic networks (Figure 3c). 400 

 401 
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 402 

Figure 3: Comparison of network characteristics. The reconstructed networks with 403 

observation bias exclude individuals from the network at times when they were known to not 404 

wear their sensors. The random networks did not take into account the ward-level structure 405 

of the contacts or the probability of recurring contacts. Boxplots for the observed network 406 

show the distribution of values calculated for each day. Boxplots for all reconstructed and 407 

random networks show the distribution of the median values calculated for each day across 408 

100 networks. 409 

 410 

The hourly distributions of numbers of unique patient-patient, staff-patient and staff-staff 411 

contacts in the reconstructed network with bias align with those in the observed network 412 

(Figure 4a). Whilst these two networks are only partially observed since individuals in the i-413 

Bird study did not have contacts recorded during all their presence days, those unobserved 414 

contacts are present in the reconstructed network without bias, leading to approximately 415 

twice as many contacts in that network (Figure 4a). Similarly, the random network without 416 

bias which is only informed by the hourly distribution of patient-patient, staff-staff and 417 

patient-staff contact rates is aligned with the reconstructed network (Figure 4a).  418 

 419 
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Finally, the distributions of contact durations in the synthetic networks were similar to the 420 

distribution in the observed network, although there were slightly less contacts with short 421 

durations (Figure 4b). This is because all networks sample their contact durations from a 422 

lognormal distribution parameterised by the mean and variance estimated from the data, 423 

which puts less emphasis on very short contacts of less than one minute (Supplementary 424 

Figure 5). 425 

 426 

 427 

Figure 4: Comparison of network contact number and duration. a) Distribution of number 428 

of unique contacts per hour, separated by type of day (weekday or weekend). Points 429 

correspond to the median, and the shaded areas correspond to the interquartile range. b) 430 

Distribution of contact durations. For ease of visualisation, outliers are not shown on the 431 

graph. 432 

 433 

In supplementary analyses, we assessed the robustness of our algorithm by quantifying the 434 

variability of network characteristics across 100 reconstructed networks without bias 435 

(Supplementary Figure 6). The variability across reconstructed networks was not statistically 436 

significant for any metric (Kruskal-Wallis test, p value > 0.05) except for assortativity by degree 437 

(p < 0.001). We also aimed to validate our approach by generating “re-simulated” networks 438 
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informed by summary statistics derived from the reconstructed networks with bias. These re-439 

simulated networks are similar to the full reconstructed networks, indicating that our 440 

algorithm consistently recreates realistic networks and reconstructs unobserved contacts 441 

(Supplementary Figure 7). However, the number of patient-patient contacts in the re-442 

simulated networks is slightly higher than in the reconstructed networks (Supplementary 443 

Figure 7).  444 
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Discussion 445 

Summary of findings 446 

In this article, we present an approach to construct stochastic synthetic temporal contact 447 

networks in HCS from partially observed contact data. The i-Bird network illustrates the typical 448 

complex contact structures in HCS, notably with a strong assortativity by ward, varying contact 449 

rates between different staff categories and patients, and different contact structures on 450 

weekends compared to weekdays. Importantly, we observed temporal correlation between 451 

subsequent days in the network, and we estimated that individuals were generally more likely 452 

to have contacts with other individuals they previously met rather than new individuals.  Our 453 

reconstruction algorithm successfully captured the heterogeneity of the observed network by 454 

taking into account contact rates by hour, type of day (weekday or weekend) and staff 455 

category, and probabilities of recurring contacts estimated for patients and staff. The resulting 456 

reconstructed networks reproduced well the characteristics of the observed network, as well 457 

as the specific distribution of unique contacts per hour. 458 

 459 

The value of approaches to stochastically generate realistic contact networks has been 460 

previously discussed for schools or workplaces [6,34], although the complexity of the contact 461 

structures in those settings is arguably lower than what we observed here. While these 462 

approaches extended networks by either repeating contact structures at fixed intervals or 463 

randomly shuffling links [6,34], our algorithm dynamically and stochastically constructs new 464 

contacts at each hour based on the empirical contact rates. Previous algorithms also 465 

attempted to reconstruct missing contacts for non-participants [35]. While this was not 466 

accounted for here (e.g. visitors, see below for details), here we conduct this reconstruction 467 

at a higher resolution, since in reality participating individuals can also have contact data 468 

missing only for some hours or days of their total presence time. Finally, the novelty of our 469 

approach here is that we conduct a direct comparison between the output of our algorithm 470 

and the observed contact network, as opposed to other algorithms which attempted to build 471 

networks directly from contact diaries and hence did not have access to an observed network 472 

for comparison [36]. 473 

 474 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.10.23.23296945doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.23.23296945
http://creativecommons.org/licenses/by-nc/4.0/


Similarities between the observed and reconstructed networks 475 

Although 90% of individuals agreed to wear a sensor during the study, the i-Bird contact 476 

network was only partially observed, since the median time when contacts were not recorded 477 

was 33.3% (IQR: 10.5-53.6%) of a patient’s presence days (40.0%, IQR: 0-75.0% for staff). This 478 

could have occurred for a number of reasons which we cannot distinguish, including depleted 479 

batteries, sensor malfunction, imperfect sensor-wearing compliance, or temporary patient 480 

releases from the facility (see Limitations below). However, since the average contact rates of 481 

individuals did not correlate with the proportion of their presence time during which no 482 

contact data were recorded (Supplementary Figure 2), it can be assumed that contact patterns 483 

during unobserved times were similar to those on observed times. With that assumption, we 484 

were able to reconstruct contacts at those times when individuals were present but had no 485 

reported contact data. The resulting full reconstructed network is a valuable representation 486 

of individual interactions, as it represents the “true” contact network, compared to the i-Bird 487 

empirical network which was only partially observed. Although we were inherently limited in 488 

our ability to validate this network since the real, fully observed network was not available, 489 

we compared it to a re-simulated network which used the reconstructed network with 490 

observation bias as input. The reconstructed and re-simulated networks without bias were 491 

almost identical with regards to all the network metrics we considered (Supplementary Figure 492 

7), demonstrating the consistency of our algorithm to reconstruct contacts. 493 

 494 

The reconstructed network with bias and the observed network had similar positive 495 

assortativity by ward, as expected since the input data captured the contact structure by ward. 496 

The negative assortativity by degree was also similar, however we noted variability between 497 

different networks generated independently by the algorithm (Supplementary Figure 6). Since 498 

the algorithm did not directly account for assortativity when simulating networks, this 499 

similarity stems from our use of a recurring contact probability coupled with the contact rates 500 

estimated by staff categories, resulting in a non-random contact structure with regards to this 501 

metric. The hourly contact distribution of patient-patient, staff-staff, and patient-staff 502 

contacts was also successfully reproduced by our algorithm. 503 

 504 
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A key metric of interest here is temporal correlation, which indicates how conserved the 505 

network structure is over time. This type of metric is useful to determine the efficiency of 506 

disease spread across temporal networks over time [37–40]. Since our algorithm took into 507 

consideration the probability of recurring contacts between individuals, our reconstructed 508 

networks displayed similar temporal correlation as observed, whilst random networks 509 

substantially underestimated this. This aspect is therefore an important strength of our 510 

approach, compared to only using estimated average contact rates to construct synthetic 511 

contacts. 512 

 513 

Limitations of the algorithm 514 

Density and global efficiency in the reconstructed network with bias were slightly higher than 515 

in the observed network. This is a likely consequence of our observation process which forcibly 516 

removed individuals from the network at times when they had no contacts recorded, hence 517 

reducing the number of nodes available in the network. Simultaneously, there was still a need 518 

at those times to generate some novel contacts between individuals who never previously 519 

met, since the probability of recurring contacts was less than 1. Combined, these elements 520 

increased the overall connectivity amongst all individuals in the reconstructed network with 521 

bias. Although this could facilitate disease transmission across these reconstructed networks 522 

if they are used for such purpose [41], the high assortativity by ward may counter this effect 523 

by slowing down transmission across the entire healthcare facility. 524 

 525 

Our algorithm did not specifically account for transitivity when recreating contacts. This is 526 

likely why the resulting transitivity was similar to that of the random network and 527 

underestimated the observed value (Figure 3). Similarly to density and global efficiency 528 

mentioned above, any transitivity in the reconstructed network was likely an indirect 529 

consequence of assortativity by ward, restricting the pool of available individuals to generate 530 

contacts and leading to interconnectivity between individuals present in the same ward. 531 

Whilst we could extend our algorithm to consider transitivity when choosing the individuals 532 

to put in contact, we decided not to do this here to maximise the generalisability of our 533 

approach by not requiring such highly detailed contact data. In any case, this may not 534 

substantially affect disease transmission simulated across these networks, since previous 535 
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work has shown that transitivity is a poor predictor of the total number of individuals who 536 

would be infected across the network [41]. 537 

 538 

Although our algorithm can capture individual presence and absence times, information about 539 

patient temporary releases from the LTCF (e.g., for weekends with their families, or for 540 

shopping outside) was not available in the i-Bird data, hence such events were not accounted 541 

for here, although they may occur frequently in a LTCF. Consequently, the number of presence 542 

days/hours may have been overestimated, leading to an overestimation of contact days 543 

among patients. Although this is negligible when comparing the observed and reconstructed 544 

network with bias, this is likely why the re-simulated networks slightly overestimated the 545 

number of patient-patient contacts compared to the full reconstructed network 546 

(Supplementary Figure 7). We expect that this overestimation would be absent in HCS with 547 

more complete information on individual presence, or in acute care facilities with shorter 548 

patient lengths of stay and where temporary releases are less common. Similarly, our 549 

algorithm does not consider the contacts of visitors in the hospital, and we did not have data 550 

in the i-Bird study on visitors which we would have required to validate the synthetic 551 

networks. Consequently, our description of the contact structure in the LTCF is not exhaustive, 552 

although this does not affect the ability of our algorithm to reproduce patient-staff contacts. 553 

 554 

When reconstructing missing contacts, we assumed that if a staff member (patient) was 555 

present in the facility at a given time but did not have any contact with anyone else recorded 556 

at that hour (day), this represented unobserved data. In reality, there may be rare instances 557 

where individuals truly did not have any contact with anyone else over a time period. In such 558 

instances, our algorithm would over-estimate contacts by forcibly reconstructing contacts for 559 

those individuals at those times. However, we expect this would only occur at times with 560 

limited contact rates (e.g. during the night), therefore the empirical contact rates would be 561 

small and only a couple of contacts may be erroneously reconstructed by the algorithm. 562 

 563 

Future work 564 

In this study, we show that our algorithm can accurately reproduce the contact structure using 565 

as input contact data from a given long-term care facility. A first important next step would 566 
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be to repeat this analysis using data collected in a different HCS such as acute care, over a 567 

different time period. This is because contact structures are known to vary between different 568 

HCS such as long-term or acute, with more/less contacts between different individual 569 

categories, varying recurring contact probabilities etc. Similarly, even though we tested our 570 

algorithm using substantial data covering four weeks, this contact structure may not be 571 

representative of other time periods. Notably, the i-Bird data we used was collected in the 572 

middle of the summer, which is a holiday period in France and may have affected contact 573 

patterns. Although we do not expect that our algorithm will perform differently since it has 574 

been designed to be generalisable, the strengths and limitations we have highlighted above 575 

may be more or less relevant in these different settings. For example, in a setting with low 576 

transitivity, the fact that our algorithm underestimates this metric would be less problematic. 577 

 578 

Here we directly re-used patient admission and discharge data as well as staff schedules to 579 

identify which individuals were present in the facility at each hour, and hence whom the 580 

algorithm had to build contacts for. While this choice was coherent since our aim was to 581 

compare the observed and reconstructed networks, a second possible extension of our work 582 

would be to simulate the presence of individuals over time. This could be implemented by 583 

extracting admission and discharge rates for each category of staff and patients and using 584 

these values to recreate new presence times for individuals by sampling from relevant 585 

probability distributions while maintaining constrains on each population size. This would 586 

allow us to further account for possible variability in the structure of the population in the 587 

facility, add flexibility in building synthetic networks for settings where this data may not be 588 

fully available, and hence add further stochasticity in our algorithm. 589 

 590 

Since contact data may only be available for short periods of time (e.g. a few days [22]), a third 591 

question of interest would be to understand the volume of data required to generate realistic 592 

temporal contact networks using our algorithm. In our main analysis, we used the entire four 593 

weeks available to both derive contact parameters and compare the reconstructed and 594 

observed networks. For sensitivity, we also considered smaller timer periods to calculate the 595 

summary contact parameters required by the algorithm (Supplementary Figure 8). As 596 

expected, this led to variability amongst the reconstructed networks depending on the length 597 

of the period used, since this reduced the number of data points used to estimate the average 598 
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contact rates used by the algorithm. In any case, the main risk of using only a short period of 599 

time is to miss out on some contacts between categories. For example, during a single week, 600 

by chance there may not be any observed contact between patients from one ward w1 and a 601 

nurse from another ward w2, while in reality over a longer period of time we may observe a 602 

few of such contacts. In that case, the algorithm will systematically assume that such contacts 603 

never occur during the entire period over which the reconstructed networks are generated 604 

and will therefore construct an incomplete network. A further extension of our algorithm 605 

could include the possibility of creating such unobserved links, but this would still require 606 

either assumptions or information on the nature of those links. Therefore, it is essential for 607 

users to be confident that the data they use include contact rates for all relevant categories in 608 

their setting and for typical representative days. 609 

 610 

As discussed above, taking into account the probability for contacts to be recurring instead of 611 

assuming a uniform distribution is a key element of our approach. Here, we estimate the 612 

average probabilities of recurring contacts in the studied LTCF over the studied period as 0.71 613 

for staff and 0.78 for patients, but we note some individual variation in this value (Figure 2, 614 

interquartile range for staff: 0.63-0.84, for patients: 0.77-0.85). In addition, our estimation 615 

here is made using the entire observed contact networks over the study period, but this may 616 

be difficult in instances where only limited data are available. For sensitivity, we investigated 617 

the impact of manually setting the probabilities to 0.1, 0.5 and 0.9 for both staff and patients 618 

(Supplementary Figure 9). This led to important variations in assortativity by degree and 619 

temporal correlation compared to using the estimated probability. A greater understanding 620 

of this recurring contact probability in various settings would be key to better understand 621 

contact formation and heterogeneity, and could be directly taken into consideration in our 622 

algorithm since it has been designed to use this probability. In healthcare settings, this 623 

probability could likely be estimated without requiring complete contact data, using 624 

information on staff schedules and patient ward or room allocation instead. 625 

 626 

Finally, other methodological approaches could be considered to reconstruct realistic contact 627 

networks. For example, deep learning algorithms such as graph convolutional networks (GCN) 628 

have become increasingly popular for this purpose, particularly in the context of infectious 629 

disease transmission [42–46]. It would be interesting to compare the performance of these 630 
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approaches with our algorithm to estimate network characteristics and reconstruct 631 

unobserved contacts. However, traditional GCN approaches do not account for temporal 632 

dependencies between contacts such as the ones we observed in the i-Bird network where 633 

the probability of recurring contacts plays a key role [47,48]. On the other hand, temporal 634 

graph networks can capture this temporal dependency [49,50], but require substantial 635 

computational resources to be applied to a network such as i-Bird, with hundreds of 636 

interactions recorded every 30 seconds during several weeks. Finally, deep learning methods 637 

require large amounts of training data. Democratising their use would therefore first require 638 

new studies to collect close-proximity interaction data in different settings and time periods, 639 

presenting further logistical challenges. 640 

 641 

Implications  642 

Our algorithm relies on computing summary statistics from an observed network, then using 643 

these statistics to stochastically reconstruct contact networks. Such statistics can be derived 644 

directly from other observed networks, as we have done here to validate our approach. In 645 

that case, instead of only relying on a single observed network, our approach provides 646 

multiple realistic reconstructed networks enabling to consider the impact of stochasticity of 647 

the contact structure and on subsequent epidemic risk in a given setting. Our approach, by 648 

providing data augmentation, also enables to infer information on potentially unobserved 649 

contacts and generate extended realistic temporal dynamics over longer time periods than 650 

the period of data collection. 651 

 652 

Alternatively, summary contact statistics could be more simply collected from cross-sectional 653 

surveys or even derived exclusively from individual schedules, which would not require a 654 

detailed and costly follow-up using sensors. In this scenario, the only other data required 655 

would be individual presence times, which should either be routinely available (e.g. in 656 

healthcare settings or schools) or relatively easy to collect (e.g. in workplaces). Although as 657 

mentioned in the Limitations, the amount of data our algorithm requires to generate realistic 658 

networks is still unclear, our approach could ultimately be used to generate contact networks 659 

from contact matrices. This would substantially facilitate research on the impact of contact 660 

heterogeneity in various populations and settings, as others have previously discussed [36]. 661 
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In conclusion, our algorithm can generate temporal contact networks in a healthcare setting 662 

by taking into consideration empirically measured contact rates based on close-proximity 663 

sensors, as opposed to most available packages which only construct static networks and rely 664 

on hyperparameters [51,52]. These temporal networks can then be analysed with 665 

mathematical models to evaluate the potential impact of interventions against disease 666 

transmission [11–14]. In particular, this will improve the wider applicability of individual-based 667 

model which make it possible to account for detailed contact heterogeneity in testing the 668 

effect of interventions targeting highly specific individuals.  669 
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