
1 

Deep learning-assisted multiple organ segmentation from 
whole-body CT images 
 

 

Yazdan Salimi1*, Isaac Shiri1*, Zahra Mansouri1 and Habib Zaidi1,2,3,4† 

 

1 Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, 
Geneva, Switzerland 

2 Geneva University Neurocenter, Geneva University, Geneva, Switzerland 
3 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University 

Medical Center Groningen, Groningen, Netherlands 
4 Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark 

 

*Yazdan Salmi and Isaac Shiri contributed equally to this work  

 

 

†Corresponding Author:  

Habib Zaidi, Ph.D 
Geneva University Hospital 
Division of Nuclear Medicine and Molecular Imaging 
CH-1211 Geneva, Switzerland 
Tel: +41 22 372 7258 
Fax: +41 22 372 7169 
email: habib.zaidi@hcuge.ch 
 
 
 
Short running title: Deep learning-assisted multiple organ segmentation 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 21, 2023. ; https://doi.org/10.1101/2023.10.20.23297331doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.10.20.23297331


2 

Abstract 

Background: Automated organ segmentation from computed tomography (CT) images facilitates a 
number of clinical applications, including clinical diagnosis, monitoring of treatment response, 
quantification, radiation therapy treatment planning, and radiation dosimetry. 

Purpose: To develop a novel deep learning framework to generate multi-organ masks from CT 
images for 23 different body organs. 

Methods: A dataset consisting of 3106 CT images (649,398 axial 2D CT slices, 13,640 
images/segment pairs) and ground-truth manual segmentation from various online available databases 
were collected. After cropping them to body contour, they were resized, normalized and used to train 
separate models for 23 organs. Data were split to train (80%) and test (20%) covering all the 
databases. A Res-UNET model was trained to generate segmentation masks from the input 
normalized CT images. The model output was converted back to the original dimensions and 
compared with ground-truth segmentation masks in terms of Dice and Jaccard coefficients. The 
information about organ positions was implemented during post-processing by providing six anchor 
organ segmentations as input. Our model was compared with the online available “TotalSegmentator” 
model through testing our model on their test datasets and their model on our test datasets. 

Results: The average Dice coefficient before and after post-processing was 84.28% and 83.26% 
respectively. The average Jaccard index was 76.17 and 70.60 before and after post-processing 
respectively. Dice coefficients over 90% were achieved for the liver, heart, bones, kidneys, spleen, 
femur heads, lungs, aorta, eyes, and brain segmentation masks. Post-processing improved the 
performance in only nine organs. Our model on the TotalSegmentator dataset was better than their 
models on our dataset in five organs out of 15 common organs and achieved almost similar 
performance for two organs. 

Conclusions: The availability of a fast and reliable multi-organ segmentation tool leverages 
implementation in clinical setting. In this study, we developed deep learning models to segment 
multiple body organs and compared the performance of our models with different algorithms. Our 
model was trained on images presenting with large variability emanating from different databases 
producing acceptable results even in cases with unusual anatomies and pathologies, such as 
splenomegaly. We recommend using these algorithms for organs providing good performance. One of 
the main merits of our proposed models is their lightweight nature with an average inference time of 
1.67 seconds per case per organ for a total-body CT image, which facilitates their implementation on 
standard computers.  

 

Keywords: Segmentation, Organs at Risk, Computed Tomography, Deep Learning, Computational 
Models. 
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Introduction 

Segmentation of healthy organs from Computed Tomography (CT) images is critical and beneficial in 
a number of applications, including the generation of anthropomorphic computational models, 
delimitation of organs at risk in radiation therapy (RT) treatment planning (1-4), and other kinds of 
computer-assisted applications, such as pathologic detection (5, 6), prognosis and outcome prediction 
(7, 8), image quantification (9, 10), and radiation dosimetry calculations (11-13). The manual slice-
by-slice segmentation of organs can be labor-intensive and time-consuming, in addition to the high 
inter- and intra-observer variability reported for segmentation of healthy organs and malignant lesions 
(14, 15). Since the emergence of machine learning and deep learning (DL) algorithms in medical 
imaging research, especially medical image segmentation, a number of studies focused on automatic 
segmentation of structures from CT images and other imaging modalities (16-18). Most published 
studies attempted to improve segmentation accuracy (commonly quantified by the Dice coefficient), 
robustness and generalizability on new unseen dataset acquired with different imaging settings on 
disparate patient characteristics and including a large number of organs (19-21). Newly developed 
neural network architectures, loss functions, and image processing algorithms contributed to the 
improvement of the performance of image segmentation models. Yet, the number of datasets and their 
diversity remains the bottleneck for successful implementation of deep learning-based algorithms 
(22). Most studies conveyed the performance of the developed models on a test set excluded from the 
training set, thus reaching very high Dice coefficients as reported in few challenges held on multiple 
organ segmentations (23). Yet, the majority of these studies didn’t investigate models’ performance 
on unseen external datasets. Xu et al. (24) focused on the occurrence of outliers during image 
segmentation and how to solve this problem. Recent studies addressed the limitations and benefits of 
DL-based organ segmentation in real-life clinical scenarios (14, 25). The comparison of the results 
achieved by different techniques using private/local databases is not straightforward given that the 
used datasets are not publicly available. Besides, it’s well established that acquisition, scanner, and 
demographic parameters can affect the performance of a model on external unseen datasets from other 
centers (14, 26). Ma et al. (19) described the low performance of segmentation models trained and 
inferenced on different databases for abdominal organs segmentation task. In this context, a 
segmentation model trained on a dataset presenting with a large variability and tested on an unseen 
dataset may be beneficial in estimating the performance in real clinical scenarios. 

In this study, we aimed to develop a deep neural network to segment multiple healthy organs (28 
organs) from total-body CT images targeting improvement of the accuracy and generalizability 
compared to previously developed models. We also compared the performance of our models with 
existing methods and considered the effect of post-processing algorithms to take into account organ-
specific anatomical information during the segmentation process. 

Materials and Methods 
Patient population 

This study included 3106 CT images (649,398 axial 2D CT slices, 13,640 3D image/segment pairs) 
collected from multiple online available datasets (27-32). A total of 300 pediatric cases with 18.9 ± 
4.13 cm effective diameter and 2806 adult cases with 27.53 ± 5.35 cm effective diameter as defined 
by the AAPM #204 Report (33) were included. The average age was 6.32 ± 4.34 years for pediatric 
patients and 66.98 ± 9.84 years for adult patients. It should be noted that the age, gender, and 
acquisition parameters were available only in a limited number of datasets, the rest were either 
anonymized or in NIFTI format without additional information. The number of slices and patient size 
characteristics were summarized in supplementary Table 1. The data were split into training and test 
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set for each organ according to the number of cases from each database to ensure the test and train 
data use cases from each available database, i.e., the training (80 %) and testing (20%) data for each 
organ include cases from all databases.

 

Figure 1 depicts the number of CT images used for training each model for each organ segmentation. 
The number of training and test datasets are summarized in Table 1. The detailed number of training 
cases from each database is provided in supplementary Table 2. The masks (segmentations) of the 23 
different organs were used to train separate segmentation models. The summed gastrointestinal 
segment (GIs) was defined by adding distinct segmentations of the duodenum, small intestine, and 
colon together to define a single organ. 
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Figure 1. Number of 3D CT images extracted from the clinical studies included in all databases used for 
training and testing of the models. The upper (color) bar depicts the test, whereas the bottom (gray) bar depicts 
the training numbers. UB: Urinary Bladder, SC: Spinal Cord, GB: Gall Bladder, AG: Adrenal Gland, IVC: 
Inferior Vena Cava, SI: Small Intestine, GIs: Gastrointestinal. 

Preprocessing and Network architecture 

The external body contour was extracted from axial CT images through image processing algorithms 
developed and used in previous studies (34, 35). The CT images were cropped to a bounding box 
(BB) including the body contour in the lateral and AP directions to remove the background area. The 
images were cropped to 30 slices in the superior direction and 30 slices in the inferior direction 
according to the BB covering organ segmentation in the Z-axis (cranio-caudal direction). The model 
was trained in 2D fashion, meaning that the input to the network consisted of 2D axial images with 
the output being the corresponding segmentation masks. A Res-UNET neural network architecture 
used in a previous PET segmentation study (36) was employed in this work (Figure 2). The 2D images 
and masks were resized to 304 (right to left) × 224 (anterior posterior) pixel dimensions. The image 
intensities were clipped between -70 HU and +170 HU and normalized between zero and one and 
then discretized to 240 intensity values. 

The cropped information was stored in the image header and used later to reverse the cropped 
model output segmentation to the original image dimensions. Figure 3 summarizes the steps 
performed to train the network. 
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Figure 2. The Res-UNET neural network architecture adopted for multi-organ segmentation from CT images. 
Conv2d: 2D convolution layer. 

Post-processing and prior knowledge implementation 

Organ-specific post-processing algorithms were used to take into account the anatomical locations of 
the organs. For all test datasets, segmentation masks of six anchor organs including the liver, spleen, 
lung, femoral head, bladder, and kidneys were generated by our trained models. These generated 
segmentation masks were used to perform organ-specific post-processing. For each organ, a specific 
algorithm was used to remove the segmented voxels outside of the BB delimitating each organ. For 
instance, for spleen post-processing, the post-processing function input was the liver, lung, and 
femoral head segmentation. The BB of the femur and lung were determined considering the known 
prior anatomical information that the liver is in the abdomen and always higher than the femoral head 
BB and lower than the lungs apex. We used the same strategy for other organs, such as the gall 
bladder (GB), and adrenal glands (AG) to remove unwanted (false positive) voxels from the network 
output by exploiting the fact that the gall bladder is at the inferior part of the liver and the adrenal 
gland are upper than kidneys. In the end, the network performance evaluation was compared 
with/without organ-specific post-processing. 

Evaluation metrics 

For each organ segmentation task, 20% of each database was randomly defined and used as the test 
dataset. The predicted segmentation masks were compared to the ground truth masks by measuring 
Dice and Jaccard coefficients. 
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Figure 3. The flowchart of training and inference steps followed in implementing the segmentation algorithm. 
From left to right: The upper axial slices show CT images, with the liver mask defined with the yellow contour, 
segmented body contour, and pre-processed (cropped, normalized, and resized) images. The lower segmentation 
shows the 3D visualization of the network output after post-processing. 

Real-life evaluation on external datasets 

To evaluate the performance of our model in real clinical scenarios on an external unseen dataset and 
compare our method to previously reported deep learning models, we tested our trained models on the 
online available TotalSegmentator dataset published recently by Wasserthal et al. (37) and then tested 
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their trained model on the databases we used for testing. The dataset used in the above reference was 
local for the involved centers and could be considered completely unseen data for our models, In 
addition, they separated the test and train dataset to make the comparison more reproducible. They 
have used state-of-the-art nnU-Net (38) network/training methodology and managed to won 9 out of 
10 MICCAI 2020 (39) and AMOS (23) challenges. We compared the performance of our model and 
models reported in the reference above for organs included in both studies (15 organs listed in  

Table 2). Figure 4 shows the dataflow in this study. Overall, we performed three evaluations: a) our 
model tested on our test dataset (23 organs), b) our model tested on the TotalSegmentator test dataset 
(15 organs), and c) the TotalSegmentator model tested on our dataset (15 organs). TotalSegmentator 
trained model was collected from GitHub on April 28, 2023. 

 

Figure 4. The Dataflow adopted for external evaluation. Green, light blue, and dark blue lines show the 
dataflow for strategies (a), (b), and (c), respectively. 

Statistical analysis 

We used the Wilcoxon rank t-test to evaluate the effect of post-processing on each organ. 

Results 

Evaluation on the test dataset 

Table 1 summarizes the Dice and Jaccard image segmentation metrics for our model on test sets 
separated from our data (strategy (a) mentioned in the Methods section). The highest Dice coefficients 
were achieved for the lung, spleen, liver, and brain organs, while the lowest values were obtained for 
the thymus, adrenal gland organs. Organ-specific post-processing increased the Dice coefficient in 
seven organs by more than 0.15 absolute value and this increase was statistically significant. 
However, it did not increase or even significantly decrease the Dice coefficient for the remaining 
organs. These seven organs were the heart, spleen, UB, SC, aorta, GB, and thymus. Figure 5 depicts 
examples of 3D visualization of segmentations of CT images corresponding to different subjects 
shown from eight different perspectives. Supplementary figure 1 extends the examples shown in 
Figure 5 for pediatric cases and cases with unusual anatomical variations such as splenomegaly. Figure 
6 depicts the Dice coefficients in different organs with/without post-processing. The detailed results 
of segmentation accuracy for each database included in the assessment are presented in supplementary 
Table 2. 
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External comparison 

 

Table 2 summarizes the Dice and Jaccard evaluation metrics for strategies (b) and (c). A relative 
difference larger than 2% for the Dice coefficient was considered as significant when comparing 
strategies (b) and (c). Our model outperformed TotalSegmentator for five organs, including the liver, 
pancreas, spleen, UB, and femur heads, while the outcome was the same for the lungs and kidneys. 
For the remaining organs listed in  

Table 2 (7 organs), the TotalSegmentator models outperformed our models. The brain mask was not 
valid due to the blurring generated on the face area for privacy preserving concerns on 
TotalSegmentator dataset. Organ-specific post-processing improved the segmentation accuracy, 
reflected by higher Dice coefficients for strategy (b) in seven other organs, including the liver, 
kidneys, spleen, UB, esophagus, femur heads, and GB. Table 3 compares our model’s performance in 
strategy (a) to recent studies reported in the literature for common organs. 

 

Figure 5. 3D visualization of segmentation masks of different organs showing: the kidneys (dark green), 
femoral heads (lime), bones (yellow), liver (dark red), aorta (light red), spleen (cyan), heart (purple), stomach 
(light green), spinal cord (dark blue), urinary bladder (light blue), and the rectum (pink). 
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Figure 6. Box plots of Dice coefficients achieved for different organ segmentations before and after post-
processing. The red, blue, and green reference lines depict 60%, 80%, and 90% Dice coefficients, respectively. 
UB: Urinary Bladder, SC: Spinal Cord, GB: Gall Bladder, AG: Adrenal Gland, IVC: Inferior Vena Cava, SI: 
Small Intestine, GIs: Gastrointestinal. 
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Table 1. Summary of image segmentation metrics, including Dice, Jaccard coefficients and the effect of post-processing, and the number of cases in the 
train/validation and test groups in strategy (a). UB: Urinary Bladder, SC: Spinal Cord, GB: Gall Bladder, AG: Adrenal Gland, IVC: Inferior Vena Cava, SI: 
Small Intestine, GIs: Gastrointestinal. 

Organ Train# Test# Dice_network Dice_post Dice_gain_post Dice_P-value Jaccard_network Jaccard_post Jacc_gain_post Jacc_P-value 

Liver 908 227 96.93 ± 1.67 96.98 ± 1.62 0.06 ± 0.14 <0.001 94.08 ± 3.01 94.19 ± 2.93 0.11 ± 0.25 <0.001 

Heart 368 92 91.60 ± 6.52 91.95 ± 6.13 0.35 ± 0.87 <0.001 85.08 ± 9.82 85.62 ± 9.38 0.54 ± 1.32 <0.001 

Pancreas 984 246 77.52 ± 15.99 76.24 ± 17.02 -1.28 ± 5.07 0.563 65.76 ± 19.15 64.25 ± 19.78 -1.50 ± 5.89 0.662 

Bones 300 75 94.08 ± 4.84 93.84 ± 4.75 -0.24 ± 0.32 <0.001 89.17 ± 7.77 88.72 ± 7.60 -0.45 ± 0.56 <0.001 

Kidneys 548 137 94.03 ± 4.80 94.13 ± 5.05 0.10 ± 0.79 <0.001 89.07 ± 7.57 89.28 ± 7.89 0.21 ± 1.24 <0.001 

Spleen 732 183 94.29 ± 9.88 94.68 ± 9.28 0.39 ± 3.26 <0.001 90.28 ± 11.81 90.85 ± 11.16 0.57 ± 4.33 <0.001 

UB 464 116 83.41 ± 17.99 83.78 ± 17.97 0.37 ± 1.34 <0.001 74.75 ± 21.24 75.24 ± 21.40 0.50 ± 1.84 <0.001 

Esophagus 720 180 73.20 ± 10.90 72.35 ± 12.55 -0.84 ± 4.07 0.010 58.76 ± 12.27 58.01 ± 13.73 -0.75 ± 3.98 0.010 

Femur Heads 220 55 95.65 ± 2.78 95.72 ± 2.79 0.07 ± 0.14 <0.001 91.78 ± 4.77 91.92 ± 4.79 0.14 ± 0.24 <0.001 

Lungs 1240 310 97.63 ± 1.18 96.56 ± 4.70 -1.07 ± 4.61 <0.001 95.39 ± 2.18 93.42 ± 9.06 -1.97 ± 8.46 <0.001 

SC 588 147 89.69 ± 3.65 89.85 ± 3.70 0.17 ± 0.39 <0.001 81.49 ± 5.63 81.76 ± 5.72 0.28 ± 0.64 <0.001 

Aorta 184 46 92.99 ± 2.85 93.55 ± 2.22 0.56 ± 1.34 <0.001 87.03 ± 4.77 87.95 ± 3.77 0.93 ± 2.18 <0.001 

GB 384 96 78.74 ± 16.92 79.32 ± 16.78 0.57 ± 5.35 0.095 67.60 ± 19.56 67.39 ± 21.00 -0.21 ± 9.09 0.298 

AG 380 95 54.64 ± 17.40 51.62 ± 17.52 -3.02 ± 5.86 <0.001 39.38 ± 15.21 30.14 ± 18.41 -9.24 ± 13.01 <0.001 

IVC 184 46 80.57 ± 11.30 62.59 ± 11.44 -17.98 ± 10.78 <0.001 68.77 ± 14.33 40.97 ± 13.22 -27.80 ± 11.26 <0.001 

Colon 224 56 70.61 ± 11.97 67.48 ± 15.25 -3.13 ± 7.05 0.167 55.76 ± 13.20 52.16 ± 16.96 -3.60 ± 8.15 0.133 

Rectum 228 57 77.90 ± 13.31 77.70 ± 13.33 -0.20 ± 2.44 0.064 65.41 ± 15.13 65.14 ± 15.23 -0.26 ± 3.31 0.048 

SI 228 57 70.79 ± 14.23 71.45 ± 14.52 0.66 ± 1.00 <0.001 56.35 ± 14.63 56.67 ± 16.10 0.32 ± 4.34 <0.001 

Stomach 408 102 86.22 ± 10.76 75.13 ± 12.17 -11.09 ± 11.46 <0.001 77.12 ± 14.36 57.20 ± 18.80 -19.92 ± 18.09 <0.001 

Thymus 108 27 64.11 ± 23.55 65.36 ± 23.57 1.25 ± 2.63 <0.001 50.89 ± 22.67 52.26 ± 22.75 1.37 ± 3.01 0.002 

Gis 220 55 88.88 ± 8.87 89.26 ± 8.22 0.38 ± 1.44 <0.001 80.91 ± 11.79 81.40 ± 11.14 0.50 ± 1.66 <0.001 

Eyes 404 101 91.13 ± 3.13 91.13 ± 3.15 0.00 ± 0.09 0.860 83.84 ± 5.09 25.75 ± 38.89 -58.09 ± 39.10 <0.001 

Brain 276 69 97.39 ± 1.66 96.72 ± 5.26 -0.67 ± 4.48 0.909 94.95 ± 3.03 33.10 ± 44.58 -61.85 ± 44.10 <0.001 
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Table 2. Results of the external evaluation using Wasserthal et al. (37) algorithm in strategies (b) and (c). * The brain images were distorted and blurred in 
Wasserthal et al. dataset. UB: Urinary Bladder, SC: Spinal Cord, GB: Gall Bladder, AG: Adrenal Gland, IVC: Inferior Vena Cava, SI: Small Intestine, GIs: 
Gastrointestinal. 

 Wasserthal et al. model on our test data (c) Our model on Wasserthal et al. test data (b) 

Organ Test # Dice_summary_test Jaccard_summary_test Test # Dice_network Dice _post Jaccard_network Jaccard_post 

Liver 227 87.18 ± 27.58 83.87 ± 27.11 46 94.96 ± 3.57 95.02 ± 3.67 90.60 ± 6.11 87.40 ± 16.82 

Pancreas 246 57.61 ± 35.31 48.04 ± 30.94 37 70.36 ± 19.36 68.60 ± 19.31 57.05 ± 19.35 29.73 ± 24.94 

Kidneys 137 91.44 ± 6.34 84.76 ± 9.36 39 88.47 ± 7.60 90.41 ± 7.56 80.03 ± 10.75 79.44 ± 21.59 

Spleen 183 90.38 ± 19.37 85.84 ± 19.51 45 93.13 ± 6.31 93.68 ± 4.97 87.73 ± 10.00 85.57 ± 15.39 

UB 116 75.03 ± 26.66 65.63 ± 26.79 36 77.91 ± 18.06 80.17 ± 17.18 66.67 ± 20.29 65.25 ± 26.47 

Esophagus 180 72.25 ± 13.46 58.05 ± 14.36 44 51.75 ± 14.69 53.42 ± 17.00 36.18 ± 13.22 24.86 ± 26.43 

Femur Heads 55 81.15 ± 17.30 70.94 ± 18.91 30 79.24 ± 12.72 86.52 ± 10.44 67.30 ± 16.56 71.41 ± 25.32 

Lungs 310 97.81 ± 1.10 95.74 ± 2.04 47 96.64 ± 2.33 96.33 ± 3.53 93.60 ± 4.23 85.06 ± 26.90 

Aorta 46 90.98 ± 2.57 83.56 ± 4.26 46 82.01 ± 7.85 82.53 ± 10.37 70.20 ± 10.64 69.90 ± 16.12 

GB 96 77.63 ± 17.72 66.07 ± 18.74 31 69.72 ± 25.72 72.59 ± 26.15 58.24 ± 25.09 57.86 ± 30.36 

AG 95 55.46 ± 20.49 41.07 ± 19.40 36 44.12 ± 21.95 43.98 ± 22.10 30.72 ± 17.78 15.95 ± 16.57 

Colon 56 65.55 ± 14.22 50.28 ± 14.83 42 46.83 ± 19.88 45.28 ± 18.82 32.59 ± 16.12 27.67 ± 17.78 

SI 57 58.85 ± 16.82 43.63 ± 16.71 39 39.62 ± 17.72 41.10 ± 18.38 26.24 ± 14.34 25.79 ± 17.11 

Stomach 102 88.59 ± 11.43 80.80 ± 12.86 46 59.42 ± 26.78 58.14 ± 25.73 46.95 ± 25.49 22.45 ± 17.98 

Brain* 69 90.13 ± 17.80 85.29 ± 20.51 9 66.52 ± 37.45 65.51 ± 36.75 58.62 ± 35.63 35.59 ± 42.47 
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Table 3. Model performance reported in terms of Dice coefficient in strategy (a) compared to recent studies in the field. UB: Urinary Bladder, SC: Spinal Cord, 
GB: Gall Bladder, AG: Adrenal Gland, IVC: Inferior Vena Cava. 

Study Liver Heart Pancreas Kidneys Spleen UB Esophagu
s 

Femur 
Heads 

Lungs SC Aorta GB AG IVC Colon Rectum Stomach Eyes Brain 

This study 96.98 91.95 77.52 94.13 94.68 83.78 73.20 95.72 97.63 89.85 93.55 79.32 54.62 80.57 70.60 77.90 86.22 91.13 97.39 

Tang et al. (40) 96.60 
 

76.00 93.80 96.30 
 

78.80 
   

92.30 82.60 73.60 85.30 
  

85.70 
  

Duan et al. (41) 
     

93.00 
 

96.00 
       

85.00 
   

Xiao et al. (42) 96.00 
  

84.00 
 

92.00 
 

95.00 
  

90.00 83.00 
 

78.00 
 

83.00 89.00 
  

Song et al. (43) 95.35 
 

74.81 
 

94.07 83.81 78.26 
         

89.01 
  

Wang et al. (44) 96.76 
 

81.22 
92.57 (L) 
88.06 (R) 

84.21 
     

90.76 
     

80.93 
  

Crespi et al. (45) 
 

93.20 
    

75.90 
 

96.98 (R) 
97.36 (L) 

89.42 
         

Shi et al. (1) 98.00 96.90 90.70 97.90 96.90 
95.50 (Male) 

90.20 (Female) 
97.50 98.10 98.80 91.10 93.40 94.40 

  
87.40 93.70 97.80 

97.70 (R) 
97.20 (L) 

99.30 

Ma et al. (19) 
                   

Zhao et al. (21) 95.47 
 

74.52 95.49 96.15 
 

76.92 
    

84.79 
    

90.21 
  

Siciarz et al. (46) 
      

84.00 
  

86.00 
       

90.00 (R) 
92.00 (L) 

97.00 

Chen et al. (47) 95.56 93.88 
 

94.02 
  

81.60 
 

99.33 
       

89.15 
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Discussion 

Automated organ segmentation is a critical step in a wide range of clinical applications, including 
personalized radiation dosimetry and quantification, and radiation treatment planning. The availability of 
a fast and reliable organ segmentation tool can facilitate the automation of these procedures and their 
adoption/deployment in clinical setting. In this work, we developed novel deep learning models to 
segment multiple organs from total-body CT images and compared the performance of our models with 
previous algorithms reported in the literature. Our model was trained on images presenting with high 
variability using large datasets, including adults, pediatrics and patients presenting with a wide range of 
pathologies and anatomic pathologies. The proposed model demonstrated an acceptable outcome even on 
cases with uncommon anatomies and pathologies, such as splenomegaly as shown in Error! Reference 
source not found.Error! Reference source not found.. Besides, we used prior anatomical knowledge 
for some organs in the body for organ-specific post-processing to improve the outcome. This 
methodology enabled to successfully improve the results in nine organs by achieving higher Dice 
coefficients in strategy (a) and could help improving the Dice coefficient in more than five organs in 
strategy (b). We used the model output anchor organ segmentation as reference for prior knowledge 
implementation i.e., no manual segmentation or ground truth segmentation was needed in post-
processing. The error in anchor organ masks was used as input for the post-processing function that can 
propagate to the post-processed mask and accumulated errors can be problematic. One possible 
explanation is that our decision algorithm to exclude false positive segmented voxels was not successful 
in a number of organs. We believe that using ground truth anchor organ segmentations for post-
processing can improve the post-processing capabilities. According to the results achieved through post-
processing, we suggest using these algorithms for organs achieving good performance ( 

Table 2 and Table 3). 

To evaluate the performance of the proposed model on real-world unseen external datasets, we tested 
our model on the online available dataset provided by Wasserthal et al. (37). Our model outperformed 
their model for five organs in strategies (b) and (c). For most small organs and gastrointestinal organs, our 
model’s performance was inferior to their model, which can be explained by the different 2D and 3D 
training strategies used in our and their models, respectively. They have used the nn-Unet (38) model 
which demands a high computational burden for both training and inference. Their images were 
resampled to 1.5 mm isotropic voxel dimension in a specific orientation. Conversely, we resampled the 
images again during cropping and resizing in strategy (b), while our test set in strategy (c), the images 
were in the original dimensions and the used preprocessing steps were similar to the training step in their 
model. As shown in 

Table 2, the number of valid cases in the testing group was limited and the effect of statistical 
difference can be significant, while the number of our test dataset was larger. It should be mentioned that 
their brain images were blurred in the face region to preserve the privacy of subjects. This has affected the 
performance of our model in strategy (b). In addition, their initial model was trained and improved based 
on models trained on the same dataset used for training our models and then manually edited the 
segmentations. As such, our test dataset was not really unseen for their model in strategy (c), while in 
strategy (b) their local data were completely unseen for our model. The effect of post-processing 
improved the performance of image segmentation of five organs and there is still scope for improvement 
that can be explored in future studies by changing the number of anchor organs or providing manual 
edited segmentation as an aid to generate robust post-processing without initial anchor segmentation 
errors. 
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The comparison of our models with recent studies revealed that our model’s performance was better or 
at least comparable to algorithms reported in the literature for most organs, except for small and 
gastrointestinal organs (Table 3). One of the main merits of our proposed model is its lightweight 
requiring a small number of parameters (533 K). In addition, for each organ, we have a separate light 
model, and the user can select a lower number of organs to be segmented to save time. We calculated the 
inference time on an NVIDIA RTX 4090 GPU where the average inference time for a total body CT was 
1.67 seconds per case per organ. Besides, we tested inferring our model on an Intel Corei9 13900KF CPU 
and the inference time on the CPU was 14.5 seconds per study and per organ, which is a bearable and 
acceptable inference time for centers lacking access to dedicated GPUs. 

We trained different deep learning models to segment 23 organs from total-body CT images which can 
be beneficial in various clinical tasks. We evaluated our models on an external dataset. The number of 
cases was limited to a few organs, and the segmentation criteria were different for each manual 
segmentation available from the online databases, inherently causing inter-observer variability, e.g., some 
databases provided whole segmented kidneys while others excluded pelvicalyceal systems. These 
differences may mislead our models and affect their performance. 

Conclusion 

We have developed a fully automated deep learning algorithm capable of generating accurate masks for 
multiple organs from CT images in an affordable computing time. After training these models on a 
diverse dataset comprising images from various databases, we compared the performance of our model 
with other algorithms on external datasets in real clinical scenarios. The proposed model exhibited 
remarkable capabilities even in cases involving uncommon anatomies and pathologies, such as 
splenomegaly. 

Based on our analysis and results, we recommend using this algorithm especially for organs achieving 
excellent performance. One key advantage of our proposed models is their lightweight nature, enabling to 
run them efficiently on standard devices without access to dedicated GPUs in a bearable time. With an 
average GPU inference time of only 1.67 seconds per organ for a total-body CT image, they provide fast 
results and can be exploited in most routine tasks, even for verification in RT positioning. Overall, a 
reliable organ segmentation tool enables wider adoption by medical professionals in clinical setting. 
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