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Abstract 

Background: The 2030 target for schistosomiasis is elimination as a public health problem 

(EPHP), achieved when the prevalence of heavy intensity infection among school-aged 

children (SAC) reduces to <1%. To achieve this, the new World Health Organization (WHO) 

guidelines recommend a broader target of population to include pre-school (pre-SAC) and 

adults. However, the probability of achieving EPHP should be expected to depend on patterns 

in repeated uptake of mass drug administration (MDA) by individuals.  

Methods: We employed two individual-based stochastic models to evaluate the impact of 

school-based and community-wide treatment and calculated the number of rounds required to 

achieve EPHP for Schistosoma. mansoni by considering various levels of the population 

never treated (NT). We also considered two age intensity profiles, corresponding to a low and 

high burden of infection in adults. 
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Results: The number of rounds needed to achieve this target depends on the baseline 

prevalence and the coverage used. For low and moderate transmission areas, EPHP can be 

achieved within seven years if NT ≤10% and NT <5%, respectively. In high transmission 

areas, community wide treatment with NT<1% is required to achieve EPHP. 

Conclusions: The higher the intensity of transmission, and the lower the treatment coverage, 

the lower the acceptable value of NT becomes. Using more efficacious treatment regimens 

would permit NT values to be marginally higher. A balance between target treatment 

coverage and NT values may be an adequate treatment strategy depending on the 

epidemiological setting, but striving to increase coverage and/or minimise NT can shorten 

programme duration. 

Keywords: schistosomiasis, mass drug administration, MDA, modelling, elimination as a 

public health problem, community-wide, never treatment 

   

Introduction  

Schistosomiasis is a neglected tropical disease (NTD) caused by the trematode worm 

Schistosoma and transmitted through dermal contact with water contaminated by cercariae, 

the infectious stage of schistosomes, which are released by the intermediate host snail [1]. 

The major disease-causing species are S. mansoni, S. haematobium and S. japonicum. In 

2016, schistosomiasis was estimated to account for 1.9 million disability adjusted life years, 

likely a gross underestimate [2,3]. In 2021, the World Health Organization (WHO) Roadmap 

on NTDs proposed elimination of schistosomiasis as a public health problem (EPHP; defined 

as prevalence of heavy intensity infection reducing to <1% in SAC) in all 78 endemic 

countries by 2030 [4]. 

Globally, 240 million people reside in areas endemic for schistosomiasis, with 91% of the 

population at risk living in Africa [5]. Efforts to control and eliminate the disease have been 

predominantly through preventive chemotherapy (PC) treatment with praziquantel (PZQ), 

which kills the adult worms [4]. Over the years, PZQ has been targeted at school aged 

children (SAC, 5-14 years) in endemic settings, who have the highest risk of infection [6]. To 

achieve EPHP, the 2022 WHO treatment guidelines recommend inclusion of adults, pre-

school aged children (pre-SAC) and women of reproductive age (including pregnant women 
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from the first trimester), with a target of at least 75% treatment coverage of eligible 

population per treatment round [7]. The treatment of pre-SAC would require a new, 

paediatric formulation of PZQ. The proportion of population never treated (NT) after 

continuous rounds has been reported to influence the success of mass drug administration 

(MDA) campaigns, and the likelihood of achieving elimination targets for helminthiases [8]. 

Mathematical models have been used to estimate the impact of MDA in achieving disease 

elimination, while accounting for the pre-control endemicity, treatment coverage and 

frequency [9,10]. However, the implications of the proportion NT are understudied.  

In this work, we used mathematical models to provide insights into the impact of NT on 

achieving the 2030 EPHP target. Specifically, we assessed what proportion of NT would 

influence the likelihood that schistosomiasis programmes achieve EPHP (defined as 

achieving <1% heavy-intensity prevalence in SAC) target, different treatment regimens 

(annual, bi-annual), intensity profile and coverage levels. 

Methods 

We used two individual-based stochastic transmission models developed by Imperial College 

London (ICL) [11–13] and the University of Oxford (SCHISTOX) [14] to simulate the effect 

of different levels of NT and MDA coverage among SAC and community on the probability 

of reaching EPHP for low (<10%), moderate (10-50%) and high baseline prevalence (>50%) 

areas as defined by the magnitude of the basic reproduction number, R0 (ranging from 1.2 to 

4). Both models had similar processes, except for one important difference. The ICL model 

assumed that the number of eggs produced is a non-linear function (density-dependent egg 

production) of the female worm burden assuming monogamous sexual reproduction. In 

contrast, SCHISTOX assumed that the number of eggs produced is proportional to the 

number of worm pairs (male and female worms).  Both models were calibrated with the same 

baseline settings, by varying the R0 in the ICL model, and the overall contact rate (one term in 

the denominator of R0) in the SCHISTOX model.  

We modelled a population of 500 individuals without migration, and various levels of NT 

(measured after five rounds of MDA) among eligible individuals (ranging from 0% to 40%), 

depending on treatment coverage, following Dyson et al [8]. 
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We assessed the impact of coverage for 60% and 75% of the community (treating those aged 

≥2) and 75% of SAC (5-14 years), with annual treatment frequency in low to moderate 

prevalence areas and biannual (6-monthly) in high prevalence areas. We also considered two 

age-intensity profiles of infection, corresponding to low or high burden of infection in adults 

[10,15,16]. Table 1 provides parameter values used in the models.  

  

Table 1. Parameter values for Schistosoma. mansoni. 

Parameter SCHISTOX ICL Reference 

Fecundity (eggs/female/sample) 0.34  0.34  [12,17,18] 

Aggregation parameter 0.04-0.24 0.04-0.24 [6,16] 

Density dependent fecundity 0.0007 0.0007 [6,19] 

Worm life span (years) 5.7 5.7 [6,12,20] 

  

Low adult burden setting: 

Age specific contact rates for 0-5, 

5-10, 10-16, 16+ years old 

0.01, 1.2, 1, 0.02 0.01, 1.2, 1, 0.02 [19,21] 

High adult burden setting: 

Age specific contact rates for 

0-5, 5-12, 12-20, 20+ years old 

0.01, 0.61, 1, 0.12 0.01, 0.61, 1, 0.12 [19,21] 

  

Drug efficacy 86.3% 86.3% [22] 

Contact rate  0.03-0.18 - - 

Basic reproduction number  - 1.2-4 - 

Population size 500 500 - 
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At the end of the 20-year treatment duration, we evaluated the heavy intensity infection to 

determine whether the proposed EPHP threshold had been met. Each scenario was run 500 

times and we considered EPHP to be achieved when 90% of the simulations were below 1% 

of heavy intensity prevalence in SAC, which was measured by single Kato-Katz on two 

samples per individual, regardless of the burden of infection in adults.  

 

Results 

In low prevalence areas, treating 60% of the community with 1% NT would achieve the 

EPHP target within five years, regardless of the burden of infection in adults. Increasing the 

coverage to 75% of the community increases the probability of elimination (EPHP) and 

reduces the required number of rounds to achieve the target by one year (Table 2). To achieve 

EPHP within seven years, the NT should not exceed 15% in low adult burden and 10% in 

high adult burden settings when treating the community (those aged ≥2 years). Achieving the 

same target while treating 75% of SAC only would require the NT to be 15% and 1% in 

settings with low and high burden of infection in adults, respectively.  

In moderate prevalence areas, the EPHP target would be achieved within seven years for all 

treatment strategies with NT=0% (random treatment), regardless of the burden of infection in 

adults. Increasing the NT to 1% increases the required number of treatment rounds to achieve 

the target by one year, whereas for NT = 10% more than ten years would be required (Table 

2).  

In high prevalence areas, the EPHP target would be achieved within seven years by treating 

75% of the community (those aged ≥2 years), regardless of the burden of infection in adults 

provided that NT=0%. Treating SAC only in high prevalence areas would not achieve EPHP 

target within seven years, and a proportion NT = 1% would require more than 12 years of 

biannual treatment to achieve EPHP. 

 

Table 2. Model recommended treatment strategies for achieving elimination as a public health 

problem (EPHP) for low and high burden of infection in adults with different proportions of 

population never treated (NT). Coverage and NT values are among eligible population. Results are 

generated using the ICL and SCHISTOX models. The dark green shade shows EPHP achieved within 
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seven years, orange within eight to 14 years, and red above 14 years. The light green and light red 

shades show the borderline values within seven and 8-14 years and 8-14 years and >14 years 

respectively. The grey areas show scenarios that cannot be simulated, based on the treatment 

coverage. 

    Coverage: Low adult burden Coverage: High adult burden 

    75%  
(SAC 
only) 

60% 
(≥2 years 
of age) 

75%  
(≥2 years 
of age) 

75% 
 (SAC 
only) 

60%  
(≥2 years 
of age) 

75%  
(≥2 years 
of age) 

Baseline 
prevalence 

NT             

Low 0% 3 3-4 2-3 6-7 4 3 

  1% 3 3-4 2-3 7-8 5 3-4 

  5% 4 4-5 3-4 11 7-8 5-7 

  10% 5 6-7 5 11-12 7-8 7 

  15% 7 7-8 6 19- >20 11-12 9-10 

  20% 10-11 10-11 6-9 >20 14-15 12-13 

  25% 11-13 12-14 8-11 >20 18-19 14-15 

  30%   13-15     >20   

  35%   16-17     >20   

  40%   >20     >20   

                

Moderate 0% 4-7 4-6 3-5 5-7 3-6 2-5 

  1% 4-7 4-8 3-5 5-8 5-8 4-7 

  5% 6-10 7-12 5-9 7-11 8-13 7-10 

  10% 9-12 8-15 7-11 >20 13-19 11-15 

  15% 11-15 13-18 12-14 >20 >20 14-19 

  20% 14-18 16->20 13-18 >20 >20 >20 

  25% 16->20 >20 16 - >20 >20 >20 >20 

  30%   >20     >20   

  35%   >20     >20   

  40%   >20     >20   

                

High 0% 9-12 3-8 2-6 10-13 3-8 2-6 
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  1% 11-15 5-11 4-8 13-16 5-10 5-9 

  5% 13-18 11-17 11-15 15-19 12-18 11-15 

  10% 17->20 14-19 13-17 >20 16->20 15-20 

  15% >20 17->20 15-18 >20 >20 19->20 

  20% >20 18->20 17->20 >20 >20 >20 

  25% >20 >20 >20 >20 >20 >20 

  30%   >20     >20   

  35%   >20     >20   

  40%   >20     >20   

SAC: School aged children, 5 – 14 years; for low and moderate baseline infection prevalence treatment 
frequency is annual; for high baseline infection prevalence treatment frequency is biannual (and therefore 
the number of treatment rounds is the number of years multiplied by two). Low baseline prevalence = 
<10%; moderate baseline prevalence = 10–50%; high baseline prevalence > 50%. The number of years is 
that required to achieve EPHP90, defined as 90% of the (500) simulations reaching <1% prevalence of 
heavy infection intensity (proportion of the population with ≥400 epg). 

  

For a low burden of infection in adults, the success of a SAC only treatment programme 

depends on the baseline prevalence, and the NT proportion. For baseline prevalence above a 

threshold (67% for ICL and 76% for SCHISTOX), an increase in SAC coverage and 

inclusion of adults is recommended to achieve the target within seven years of treatment. 

Specific results from each model are presented in Supplementary Material Table S1.  

Elimination probability (EPHP) results for a high prevalence setting when NT=0% are shown 

in Figure S1. 

 

Discussion 

We find that community-wide treatment including the use of the new formulation of 

praziquantel to treat pre-SAC can achieve elimination as a public health problem within a 

short time frame provided MDA coverage is good and individual compliance to treatment is 

effectively random at each round. Independent of MDA coverage, the outcome depends on 

the burden of infection in adults and the baseline prevalence (determined by the magnitude of 

R0). The higher the MDA coverage and treatment compliance, (Table 2) the lower the 

number of rounds required to achieve this target.  
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Despite the target being achieved in some areas for different treatment strategies, there is a 

high risk of resurgence following MDA cessation if control efforts are not maintained. The 

worm aggregation in a community is unevenly distributed, and it is challenging to measure 

the variability after MDA treatment. The worm aggregation may increase after many rounds 

of MDA if there is a small proportion of people with heavy-intensity infection that has never 

been treated. These individuals are a reservoir of infection and increase the risk of 

resurgence. To prevent resurgence, it is important to maintain EPHP with reduced efforts 

(less frequent or lower coverage of MDA) or move toward the interruption of transmission 

goal [10, 21]. The likelihood of maintaining the EPHP target will critically depend on the 

strategy adopted and the transmission setting, whereby more intense efforts are required in 

high transmission areas. 

For a given NT value, treatment coverage is an important driver of programme duration: the 

greater the coverage of eligible population the shorter the projected number of years to 

achieve EPHP. This is because as prevalence falls in the majority of the population, infection 

levels in NT individuals also decrease due to a lower incidence of new infections through 

lower transmission, and natural death of existing worms that are replenished at a lower rate. 

As long as there are only a few NT individuals harbouring reproductively active worms, 

transmission in the overall population may fall sufficiently low that eventually, infection 

levels in NT individuals are not able to sustain infection for the entire population above 1% 

prevalence of heavy intensity infection in SAC. 

There is a clear need for more studies of individual compliance patterns in PZQ MDA-treated 

communities, as very few longitudinal studies of compliance have been conducted [23]. In 

future work we will use data from the ongoing Geshiyaro project in Ethiopia which is 

following a large population treated with PZQ over many rounds of MDA and recording 

individual adherence behaviours [24]. 

Whilst our models consider closed populations, human movement between communities 

(either as short-term commuting or long-term migration, including population displacement 

as a result of civil unrest and/or climate change) can hamper the success of MDA 

programmes by reducing the probability of elimination (or increase the rate of resurgence 

upon cessation of MDA) due to spatial diffusion between communities with differing levels 

of treatment coverage [22]. This is particularly important when programmes transition from 

EPHP towards elimination of transmission. It is also important to consider the sensitivity of 
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the diagnostic technique. In this study, the prevalence of infection was measured by Kato-

Katz which has a low sensitivity in detecting infection at very low prevalence areas. 

Alternative diagnostic techniques such as the point-of-care circulating cathodic antigen 

(POC-CCA) could be helpful as it has a greater sensitivity at low prevalence than Kato-Katz 

[25–27].  

Additional interventions, such as improving water, sanitation, and hygiene (WASH), the 

future use of an efficacious vaccine (if one were to become available) and/or snail control 

could reduce the number of years of MDA required to achieve EPHP. 
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epg: eggs per gram of faeces; EPHP: elimination as a public health problem; EPHP90: 

probability of reaching EPHP in 90% of model runs; EOT: elimination of transmission; 

MDA: mass drug administration; NT: proportion (of eligibles) never treated; NTD: neglected 

tropical disease; pre-SAC: pre-school age children; PZQ: praziquantel; R0: basic reproduction 

number; SAC: school-age children; WHO: World Health Organization. 
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