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Abstract  

Background: Mass drug administration (MDA) is the cornerstone for the elimination of 

lymphatic filariasis (LF). The proportion of the population that is never treated (NT) is a 

crucial determinant of whether this goal is achieved within reasonable timeframes. 

Methods: Using two individual-based stochastic LF transmission models, we assess the 

maximum permissible level of NT for which the 1% mf prevalence threshold can be achieved 

(with 90% probability) within 10 years under different scenarios of annual MDA coverage, 

drug combination and transmission setting. 

Results: For Anopheles-transmission settings, we find that treating 80% of the eligible 

population annually with ivermectin+albendazole (IA) can achieve the 1% mf prevalence 

threshold within 10 years of annual treatment when baseline mf prevalence is 10%, as long as 

NT <10%. Higher proportions of NT are acceptable when more efficacious treatment 

regimens are used. For Culex-transmission settings with a low (5%) baseline mf prevalence 

and Diethylcarbamazine+Albendazole (DA) or 

Ivermectin+Diethylcarbamazine+Albendazole (IDA) treatment, elimination can be reached if 

treatment coverage among eligibles is 80% or higher. For 10% baseline mf prevalence, the 

target can be achieved when the annual coverage is 80% and NT ≤15%. Higher infection 

prevalence or levels of NT would make achieving the target more difficult. 

Conclusions: The proportion of people never treated in MDA programmes for LF can 

strongly influence the achievement of elimination and the impact of NT is greater in high 

transmission areas. This study provides a starting point for further development of criteria for 

the evaluation of NT. 

Key words: lymphatic filariasis, never treatment, elimination, ivermectin, albendazole, 

Diethylcarbamazine 
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Introduction 

Lymphatic filariasis (LF) is a mosquito-borne neglected tropical disease (NTD) caused by 

three parasites, namely, Wuchereria bancrofti, Brugia malayi and Brugia timori [1]. LF can 

cause chronic morbidity, such as hydrocele or lymphedema which are associated with 

disability, pain, mental health problems, reduced productivity, and social stigmatisation [2–

4]. In 2000, the World Health Organization (WHO) established the Global Programme to 

Eliminate Lymphatic Filariasis (GPELF) with the target of eliminating the disease as a public 

health problem (EPHP)  [5]. The two key goals of the programme are (i) interruption of 

transmission by using community-wide mass drug administration (MDA) for at least 5 years 

using a two-drug combination (ivermectin + albendazole [IA] in onchocerciasis co-endemic 

areas in Africa, and diethylcarbamazine citrate + albendazole [DA] elsewhere), and (ii) to 

reduce the suffering of patients by managing morbidity and preventing disability. In areas 

where W. bancrofti is endemic and Anopheles and/or Culex are the principal vectors, the first 

goal is considered to be met when the level of infection is reduced to less than 1% 

microfilaraemia (mf) prevalence in the population aged 5 years and above. The achievement 

of this goal is measured through a series of transmission assessment surveys (TAS) [6].  

Great progress has been made towards the WHO target. By 2019, more than 8.6 billion 

treatments had been successfully distributed resulting in a 74% reduction in the number of 

individuals infected with LF [7]. WHO aims to validate elimination as a public health 

problem in 81% of endemic countries by 2030 [1]. To accelerate progress towards this goal in 

areas lagging behind, the WHO has recommended to use a combination of all three drugs, 

known as the triple drug (IDA) therapy in eligible settings [8,9]. Due to the risk of adverse 

events, this combination is not recommended in those African countries with LF-

onchocerciasis or LF-loiasis co-endemic areas [8,9]. 

LF elimination programmes have been successful in some, but not all areas. An important 

determinant of reaching the 1% mf prevalence threshold is the population coverage of MDA 

programmes, which needs to be sufficiently high and is recommended to be at least 65% of 

the total population [5]. However, in addition to population coverage, prospects of achieving 

<1% mf prevalence have been recognised to depend on patterns regarding who does/does not 

take treatment in MDA programmes [10]. Especially in settings with persistent transmission 

after many rounds of MDA, the question arises as to whether there are groups of individuals 
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who are sustaining transmission due to repeatedly missing treatment [15,16]. There are many 

reasons why someone may never take treatment, including intentional factors (i.e., refusal, 

non-attendance, failure to ingest, fear of side-effects) and unintentional factors (i.e., out of the 

village at the time of MDA, treatment not offered, not eligible for treatment) [11–14]. The 

term ‘never treated’ (NT) has been proposed to capture all causes for never treatment, 

irrespective of the reason or intentionality and refers to individuals who have never been 

treated across consecutive treatment rounds [15,16]. Other terms related to people not being 

treated (e.g., systematic non-compliance, non-participation, non-attendance) may refer to 

specific causes for non-treatment and those terms are not used in this work. 

The achievement of the WHO 2030 goals may be hampered if too many people remain never 

treated [10,21,26,27]. Therefore, quantifying NT levels (and ultimately, understanding the 

reasons behind them so they can be minimised) is critically important. The programmatic 

implications of a particular level of NT are currently unclear. In this work, we provide 

modelling insight into the impact of NT on the likelihood that LF programmes achieve the 

1% mf prevalence threshold in epidemiological settings where Anopheles or Culex 

mosquitoes are the main vectors.  

 

Methods 

We use two individual-based stochastic models, namely, TRANSFIL and LYMFASIM to 

simulate the impact of NT on the probability of reaching the <1% mf prevalence threshold. 

Details of the two transmission dynamics models and their parameterization have been 

published previously [17–26,28].  

Models for never treatment patterns in MDA 

There are many approaches to modelling patterns regarding the proportion of the population 

never treated [10,27]. In LYMFASIM, NT is the result of an input parameter for the 

proportion of people who will ultimately never be treated (dashed horizontal line in Figure 1) 

and the overall population coverage of MDA. Patterns in repeated (non-)treatment of eligible 

individuals are assumed to be the result of a mix of systematic and random factors, which is 

achieved by assigning simulated individuals a trait for their inclination to participate in MDA. 

This means that the proportion of eligible people that has never been treated at some time 

point is higher than expected under random treatment. However, the level of NT among 
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eligibles is directly tied to the overall coverage level (such that for increasing MDA coverage 

there is a limit to the NT values that can be simulated). Therefore, in LYMFASIM, we 

simulate different levels of NT for a given MDA coverage by changing the parameter for the 

proportion of people who will never be treated.  

In the version of TRANSFIL used here, patterns of repeated (non-)treatment are modelled 

based on Griffin et al. [29] (as reformulated by Dyson et al. [10]). The model contains a 

parameter, �, which controls the correlation of individuals attending treatment in different 

rounds. This parameter governs the relative contribution of random and systematic factors to 

the probability of an individual being treated across consecutive treatment rounds (� � 0 

corresponds to completely random and independent probability of attendance in each round; 

� � 1 corresponds to completely systematic). For TRANSFIL, we simulate different levels 

of NT by varying the parameter �. In addition to the above, both models consider age-

dependent eligibility for treatment. 

NT is dynamic over time as it depends on how many rounds have been administered 

(illustrated in Figure 1). In the current study, we define NT as the proportion of people who 

are never treated after 5 rounds of MDA among individuals who are eligible (based on their 

age and health status) for treatment during each of those MDA rounds. We quantify NT after 

5 rounds of MDA, as this is the time-point at which most LF programmes evaluate infection 

prevalence and programme success, and coverage surveys are likely to be implemented. This 

definition excludes individuals that were or became eligible for treatment during those MDA 

rounds. The proportion never treated will be higher in young children who were ineligible 

during all or some of the 5 MDA rounds. 

Other than age-dependent eligibility for treatment, no age/sex-specific variation in treatment 

probabilities (e.g., related to work and mobility or pregnancy status) is considered in the 

current study. We also assume that ‘drugs received’ are ‘drugs swallowed’ (e.g., there is no 

coverage-compliance gap). Both models assume no association between treatment and 

exposure to infection. 

Simulated settings and scenarios 

In this analysis we consider two treatment-naïve settings (i.e., without previous history of 

control by MDA): the first one representing Africa-like populations with Anopheles gambiae 

sensu lato (s.l.)-driven transmission and the second one representing India-like populations 

with Culex quinquefasciatus-driven transmission. The main difference in the models for these 
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two settings is in assumptions around uptake of parasites by the mosquito. In addition, for the 

Indian setting, the LYMFASIM model considers density-dependent parasite establishment as 

a result of L3-driven host immunity. For both settings we consider a range of baseline mf 

prevalence levels in those aged 5 years and older (10%, 20% and 30% in Africa; 5% and 10% 

in India) and different treatment regimens (IA, DA, or IDA in Africa, and DA, or IDA in 

India). Table 1 provides an overview of treatment efficacy parameters and age criteria for 

treatment eligibility considered in the simulations. For all settings, we assume that no bed-

nets are implemented. To generate the range of pre-control prevalences, we vary transmission 

parameters and select simulations and associated parameter values that result in equilibrium 

prevalences close to the desired baseline mf prevalence (see Supplementary Material for 

details). The human population size is fixed at 1000. 

 

Table 1: Treatment efficacy assumptions and eligible age groups according to drug 
combination (taken from [26]).  

Treatment 

regimen 

Proportion of 

adult worms 

killed (%) 

Duration of adult 

female worm 

sterilization 

(months) 

Proportion of 

microfilariae 

killed (%) 

Age group treated 

D+A 55 6 95 2+ years of age 

I+D+A 

(optimistic)* 

55 Permanent 100 2+ years of age 

I+A 35 9 99 5+ years of age 

D+A: diethylcarbamazine + albendazole; I+D+A: ivermectin + diethylcarbamazine + 

albendazole; I+A: ivermectin + albendazole. 

*Triple-drug regimen, for which we adopted previously published optimistic treatment 

efficacy assumptions. 
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Figure 1: Proportion of the all-time eligible population (y-axis) that has been treated in N 
MDA rounds (grey colour) by the X-th round (x-axis) as predicted by the model for MDA 
participation implemented in LYMFASIM, assuming an annual coverage of 65% of the 
eligible population, and assuming that 5% will never participate in the long run (dashed 
horizontal line). The never treated proportion (black) is highest in the first round and declines 
with the number of treatment rounds, approaching the proportion that will never participate. 
The all-time eligible population is the subgroup of the population who were eligible for 
treatment during all X treatment rounds. 
 

The impact of NT will depend on its magnitude, as well as the overall population coverage 

per round and the baseline mf prevalence. Therefore, for an LF program with up to 20 years 

of annual MDA, we investigated different scenarios with regard to: 1) MDA coverage among 

the eligible population (Table 1) of 65%, 80%, and 90%. Due to the different age-related 

eligibility criteria for the drug combinations that can typically be used in each setting, these 

coverage levels of eligible population correspond, respectively, to 55%-63%, 68%-78%, and 

76%-87% among total population for Africa-like or India-like settings.  2) range of NT 

among eligible individuals varying from 0% to 35% measured after 5 years of MDA. 

Calculation of the probability of mf prevalence � 1% 

For all settings, treatment strategies and levels of NT, we calculate the probability of reaching 

the 1% mf prevalence threshold as the percentage of 500 repeated simulations that achieve 

the target in the population aged 5 years and above. This percentage is calculated at yearly 

intervals, just before the next treatment round. We compare the effect of different coverage 

and NT levels in terms of the number of annual MDA rounds required to achieve the 1% mf 
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prevalence threshold with 90% probability (Figure S1) and identify those scenarios that 

achieve this within 10 years of annual MDA.  

 

Results 

In Table 2, and Supplementary Material Tables S1�S4 we present the number of annual 

MDA rounds, as a range over both models, required to achieve the 1% mf prevalence 

threshold with 90% probability for different treatment regimens, MDA coverage, NT, and 

baseline endemicity levels in treatment-naïve settings. For each setting, we find that: (i) the 

higher the value of NT (going down the rows in each panel), the higher the number of MDA 

rounds required for the programme to achieve the target; (ii) the higher the coverage, the 

fewer the number of rounds required to achieve the target (going across the columns in each 

panel), and (iii) the higher the baseline mf prevalence (going down the panels), the lower the 

value of NT tolerable by the programme to achieve the target. 

Anopheles-transmission settings 

In Africa-like Anopheles transmission settings with a baseline mf prevalence of 10% in those 

aged �5 years and IA treatment at 80% coverage of the eligible population, it is likely that 

the 1% mf prevalence threshold will be achieved within 10 years of annual treatment when 

NT <10%. For a baseline mf prevalence between 20% and 30%, this goal could be achieved 

within a similar timeframe, but only if NT ≤1% (Table 2). This means that in areas with 

higher pre-control mf prevalence, a nearly perfect MDA coverage would need to be achieved 

to reach the target within 10 years of MDA treatment. For NT values greater than these levels 

(10% for a baseline mf prevalence of 10% and 1% for a baseline mf prevalence of 

20%�30%), 90% probability of <1% mf prevalence can only be reached within 10 years of 

MDA if treatment coverage is very high (e.g., 90% of the eligible population; Table 2) or if a 

more effective drug combination were used in areas not co-endemic with onchocerciasis or 

loiasis (e.g., DA or IDA; Supplementary Material Tables S1�S2).  
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Table 2: Africa-like settings with anopheline transmission, annual treatment with IA. 
The number of years, as a range over both models, required to achieve a 90% probability of 
reaching the 1% mf prevalence threshold interruption of transmission under annual treatment 
with IA. Coverage and NT levels are among the eligible population. Abbreviations: NT, 
proportion of the all-time eligible population that has never been treated after 5 rounds of 
mass drug administration; mf, microfilaremia. Shaded areas = the 1% mf prevalence 
threshold achieved within 10 years (green), 10-20 years (orange), or >20 years (red); grey 
shaded areas= scenarios not possible to simulate. 
 

Required number of annual MDA rounds to reach the 1% mf 
prevalence threshold  

  Coverage 
  65% 80% 90% 
Baseline mf 
prevalence NT    

10% 0% 8-9 6-7 5-6 
 1% 8-9 6-7 5-6 
 5% 9-10 7-8 6-7 
 10% 10-12 8-11 7-8 
 15% 11-14 10-13   
 20% 13-16 12-15   
 25% 15-18     
 30% >20     
 35% >20     
       

20% 0% 10-11 8-9 8 
 1% 10-11 9-10 8 
 5% 14-15 11-12 10-11 
 10% 16-17 15-16 12-14 
 15% 20 18-20   
 20% >20 >20   
 25% >20     
 30% >20     
 35% >20     
     

30% 0% 11-14 9-10 9 
 1% 11-14 10-11 9 
 5% 15-18 14-15 13-14 
 10% >20 >20 18-19 
 15% >20 >20   
 20% >20 >20   
 25% >20     
 30% >20     
 35% >20     
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Culex-transmission settings 

For India-like settings (with Culex vector) with a baseline mf prevalence of 5% in those aged 

� 5-years, and DA or IDA treatment at 80% coverage of eligibles, it is likely that the 1% mf 

prevalence threshold will be achieved within 10 years of treatment, regardless of the NT 

value (up to the value that are feasible to simulate) (Table S3). If coverage level was 

decreased to 65% of the eligible population, it would be possible to reach <1% mf prevalence 

within 10 years of annual DA treatment if NT ≤20%. However, treatment with the triple drug 

(IDA) therapy could achieve this target within 10 years, if NT <25% (Table S3). 

In settings with higher mf baseline prevalence (10%), a coverage level of 80% of eligibles is 

projected to achieve the target in 10-11 years if NT ≤15%, and this outcome applies for both 

DA and IDA treatment (Table S3 and Table S4). However, the programme duration (number 

of years required to achieve <1% mf prevalence) is shortest when treating with IDA (Table 

S3). Treating 90% of the eligible population with DA or IDA can achieve the target within 7 

years. By contrast, if coverage were 65%, annual DA treatment could achieve the target 

within 10 years if NT ≤10%, whilst the tolerable value of NT could increase to ≤15% if IDA 

were used (Table S3 and Table S4). 

 

Discussion 

Our findings indicate that the level of NT above which the 1% mf prevalence threshold 

cannot be achieved depends on the baseline endemicity, the employed drug combination, and 

the MDA coverage levels. The MDA coverage needed to achieve <1% mf prevalence 

depends on transmission setting, baseline endemicity level, drug combination and the level of 

NT. In Africa, after five rounds of MDA, the proportion of NT among all-time eligible 

individuals should not exceed 10% in low endemic settings or 1% in high-endemic settings. 

The use of more effective drug combinations (DA and IDA compared to IA) can bring these 

NT thresholds up to some extent, although these cannot be used everywhere (e.g., in areas co-

endemic for onchocerciasis or loiasis). In India and other culicine transmission settings, after 

five rounds of annual MDA at 65% coverage, the proportion of NT should not exceed 20% in 

low endemic areas. A higher coverage level leads to more optimistic outcomes, in which any 

NT level can be permitted to achieve <1% mf prevalence. For higher endemic areas, we 

obtain similar NT thresholds as for the Africa-like settings with anopheline transmission 
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when using the same treatment regimen, coverage level and for a baseline mf prevalence of 

10%. 

 

It should be noted that these outcomes are highly dependent on the assumptions that (i) NT 

occurs completely at random (not clustered in households or sub-communities) and (ii) NT is 

independent of exposure/infection status. In reality, the first assumption may not necessarily 

apply: never treated individuals may be clustered geographically, leading to hotspots of 

ongoing transmission and a larger negative impact of never treatment on required treatment 

duration.  

Regarding the second assumption, the potential (positive or negative) correlation between an 

individual risk of infection acquisition (e.g., via exposure to mosquito bites) and the 

probability that an individual has never been treated can influence the impact of NT on 

achieving the TAS epidemiological thresholds. A positive correlation, where a higher bite-

risk corresponds to a higher NT value, decreases the impact of MDA in achieving <1% mf 

prevalence and would make our results more pessimistic. This is particularly important in 

settings for which our models predict that the 1% mf prevalence threshold can be achieved 

with relatively low MDA coverage and high NT values (i.e., in India settings, treating with 

DA at 65% coverage and 20%NT), which in case of positive correlation, would allow for 

relatively large reservoirs of infection in untreated people. A negative correlation, where a 

higher bite-risk corresponds to a low NT, can increase the probability of elimination, and 

impact the time in achieving the 1% mf prevalence threshold. 

Pragmatically, a coverage-NT combination may be acceptable when such a combination 

permits reaching the 1% mf prevalence threshold, within 10 years of MDA, even though a 

lower value of NT could have led to achieving the target faster. For example, we can achieve 

the 1% mf prevalence threshold within 8 years when the annual MDA coverage is 80% and 

NT is 20% (Table S3-S4). However, we can achieve this target twice as fast when the annual 

MDA coverage is 80% and NT is 1%. In both scenarios, we use the same number of MDA 

tablets per round, but over the total programme duration (to reach the 1% mf prevalence 

threshold) many more tablets are needed when NT is high. Therefore, in order to 

optimize/prioritize drug use, given limited resources, we need to minimize NT.  
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Our results can inform policy makers on optimal treatment strategies and show the 

importance of quantifying the level of NT in a community/implementation unit (and 

ultimately understanding the reasons behind NT). However, in practice, it might be 

challenging to quantify NT levels, as it is difficult to identify individuals who have never 

been treated without implementing longitudinal surveys that record the treatment-related 

behaviour of each individual during any round of MDA. Although many LF studies have 

measured the level of NT [30–32], very few longitudinal studies of never treatment have been 

conducted [33]. Furthermore, most of these studies have measured the level of NT 

retrospectively and not at each round of MDA, mostly due to financial and logistical 

constraints. In order to properly model the impact of NT, longitudinal cohort studies with 

information on who is treated (disaggregated by age, gender, occupation, education) and 

when, are essential.  

It should be noted that there are other factors, not included in this analysis, which can 

influence the impact of NT on achieving elimination. One of these factors is age/gender-

variation in coverage and NT, which depends on age-related patterns of exposure and 

contribution to transmission and can increase the number of years required to achieve 

elimination. Here we have explored the impact of MDA as a standalone intervention upon 

achieving the 1% mf prevalence threshold for a range of NT values. Consideration of other 

interventions, such as the addition of vector control could alter the results presented here by 

reducing the vector/human ratio (a component of the vector biting rate, which is a key 

determinant of the basic reproduction ratio (��) of the infection and hence, of baseline 

endemicity) and the vector biting rate more generally, helping to decrease the number of 

years required to achieve the 1% mf prevalence threshold [21].  

Human movement (migration) can also play an important role, particularly as elimination is 

approached, which can either reduce the probability of elimination by adding a source of 

infective material acting as an external reservoir or increase the probability of elimination by 

reducing the prevalence of infection in that area [34,35]. This impact depends on human 

demographic and sociological factors of the area. 
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