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ABSTRACT
Breast cancer is globally the leading type of cancer in terms of both incidence and mortality.
BRCA1 and BRCA2 gene variants have long been linked to and studied in context of the disease.
Rapid variant discovery has further been made freely accessible by advances in Next-generation
sequencing, making it a demanding task to accurately interpret these variants for clinical and
research applications. To establish the nature of these variants, the American College of Medical
Genetics and Genomics and the Association of Molecular Pathologists (ACMG-AMP) have issued
a set of guidelines for variant classification. However, given the huge number of variants
associated with the two large and well-studied genes, functional studies or ACMG-AMP
classification is a mountainous challenge. Here we describe brca-NOVUS, a machine learning
approach trained on a gold-standard ACMG-qualified dataset for the accurate interpretation of
variants at large scale. Using two independent test and validation datasets of ACMG-qualified
variants, we show that brca-NOVUS can be used to for the classification of variants in clinical as
well as research settings.

INTRODUCTION
Female Breast cancer is the most commonly diagnosed cancer globally, and is the leading cause
of cancer death in women, according to the GLOBOCAN 20201 data. Early diagnosis can greatly
increase survival outcomes, however regular screening may neither be indicated, nor be possible
for all. The presence of causative variants in the BRCA genes puts a carrier at a higher lifetime risk
of cancer than the general population - up to 72% of women with pathogenic mutations will
develop breast cancer by 70–80 years of age2. Thus population screening can lead to the
identification of at-risk individuals who can then go in for regular screening procedures. The
accurate interpretation of genetic variants plays a crucial role here in determining the course of
action for potential carriers.

Since the discovery of BRCA1 and BRCA2 about 30 years ago3, significant efforts have gone into
studying the genes and their variants causing breast and ovarian cancer. Advances in
Next-generation sequencing (NGS) technology and its increasing affordability have enabled
newer variants to be detected and discovered at a very fast pace. However, the accurate
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classification of these variants presents a huge challenge for functional approaches to tackle at a
commensurate rapid pace. While the American College of Medical Genetics and Genomics and
the Association of Molecular Pathologists (ACMG-AMP) have issued a set of guidelines for
accurate variant classification, their implementation is a time intensive and expertise-dependant
process.

Machine learning approaches in clinical medicine have greatly increased our ability to analyse and
interpret large-scale medical data in a number of scenarios. Here we describe amachine learning
model trained on ACMG-AMP qualified data that can be used to rapidly classify large numbers of
variants. We validate the model on an independent ACMG-qualified validation set. We further
demonstrate the model’s utility by classifying and comparing an independent dataset of variants
classified by an expert panel following the ENIGMA classification guidelines with the predictions
generated by our tool. A public implementation of the algorithm is available at
https://github.com/aastha-v/brca-NOVUS.

MATERIALSANDMETHODS
Datasets
The ClinVar4 database was queried for BRCA1 and BRCA2 variants that had been annotated as
per the ACMG/AMP guidelines.

Training Dataset
Variants that were definitively classified as either Pathogenic or Benign by the ClinVar expert
panel according to the ACMG & AMP guidelines were collected for model training. The datasets
contained a total of 3340 BRCA1 and 4107 BRCA2 variants based on the human genome hg38
assembly. All non-exonic variants, Variants of Uncertain Significance, and variants that were not
SNVs were removed. This resulted in a total of 2753 BRCA1 variants, of which 2189 were
annotated as Pathogenic / Likely Pathogenic, and 563 as Benign / Likely Benign. Similarly for
BRCA2, out of 3492 remaining variants, 2629 were annotated as Pathogenic / Likely Pathogenic,
and 863 as Benign / Likely Benign.

Test Dataset
The remaining variants from the ClinVar dataset that had been ACMG/AMP annotated, but had
not yet been reviewed by the expert panel were collected for the Test dataset. Out of 8802
BRCA1 variants, 1577 exonic SNVs that were not Variants of Uncertain Significance were
collected, out of which 945 were Pathogenic / Likely Pathogenic and 632 were Benign / Likely
Benign. For BRCA2, out of 9895 BRCA2 variants, 3492 reminded after processing, out of which
2629 were annotated as Pathogenic / Likely Pathogenic, and 863 as Benign / Likely Benign.

Independent ACMG-Qualified Validation Dataset
Our validation dataset consisted of variants collected from the IndiGen dataset, that were
manually classified as per the ACMG/AMP guidelines. Upon processing, 99 BRCA1 variants (64
Pathogenic/Likely Pathogenic and 35 Benign / Likely Benign), and 91 BRCA2 (37
Pathogenic/Likely Pathogenic and 54 Benign / Likely Benign) were obtained.
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Machine Learning Algorithms
We compared several models from different algorithms for performance, including TabNet5, a
novel deep learning neural network designed specifically for tabular data, and XGBoost6, a
scalable tree boosting system. However, tree ensemble models (such as Random Forest) are
traditionally the gold standard in classifying tabular data. This was supported by our comparison
of model performance, and XGBoost which consistently outperformed TabNet was taken as the
algorithm of choice for classifying our variants.

Setup and Data Preprocessing
For preprocessing, local installations of ANNOVAR7 and Ensembl’s Variant Effect Predictor8 (VEP)
tools and data from the UCSC Genome Browser database9 were utilised. For model running,
Anaconda10 was used to enable the use of Scikit-learn11, Pandas12, Matplotlib13 and Seaborn14 for
analysis and visualisation.

Computing Parameters
A total of 73 attributes were used for model building. These are summarised in Supplementary
Table 1. A number of genomic parameters were computed using the ANNOVAR software,
including allele frequencies from global datasets (GnomAD15, 1000Genomes16 and GME17), along
with pathogenicity scores from several tools (SIFT18, CADD19 etc). Further parameters were
computed and encoded using bespoke scripts, including positions of both the nucleotide and
protein changes, information if the variant was a high confidence Loss of Function variant in the
canonical transcript, information about whether the variant fell into a Pfam important domain, as
well as what its exonic function was (e.g. Stopgain/Startloss, frameshift insertion/deletion etc.).
Finally, all Pathogenic/Likely Pathogenic variants were encoded as “1”, and all Benign/Likely
Benign variants as “0”. The scripts are available on github.

Cross Validation
Model hyper-parameters were selected and evaluated using a 5-fold cross validation approach.
The data was tested on a number of set splits, including 70% train and 30% test, and 80% train
and 20% test sets to enable testing.

Accuracy Estimates
The following accuracy estimates were used for evaluating the models. a) Sensitivity, b)
Specificity c) Accuracy and d) Matthews Correlation Coefficient (MCC).

Independent Validation Dataset
We queried all BRCA variants from BRCA Exchange, one the the largest publicly accessible
repositories of BRCA variants, that offers variant classification by an expert panel based on the
ENIGMA classification guidelines. We ran our models on the data, and compared our predictions
with the classificationsmade by the expert panel.
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RESULTS
MLModels
BRCA1: Our best performing BRCA1 model trained on a train-test split of 80-20, and using the
following parameters: scale_pos_weight=3.888099467, base_score=0.5, booster='gbtree',
callbacks=None,
colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.3,
early_stopping_rounds=None, enable_categorical=False,
eval_metric=None, gamma=0.4, gpu_id=-1, grow_policy='depthwise',
importance_type=None, interaction_constraints='',
learning_rate=0.1, max_bin=256, max_cat_to_onehot=4,
max_delta_step=0, max_depth=4, max_leaves=0, min_child_weight=1,
monotone_constraints='()', n_estimators=150,
n_jobs=0, num_parallel_tree=1, predictor='auto', random_state=0,
reg_alpha=0, reg_lambda=1, missing=nan, seed=123

For our training data, our model yielded an accuracy of 0.998, with an AUC of 0.999 andMCC of
0.994. On our test dataset of ClinVar variants, it further gave an accuracy of 98.92%, and an
accuracy of 98% on our independent validation IndiGen dataset.

BRCA2: For BRCA2, our best model trained on a train-test split of 70-30, using the following
parameters: scale_pos_weight=3.046349942, base_score=0.5, booster='gbtree', callbacks=None,
colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.3,
early_stopping_rounds=None, enable_categorical=False,
eval_metric=None, gamma=0.3, gpu_id=-1, grow_policy='depthwise',
importance_type=None, interaction_constraints='',
learning_rate=0.2, max_bin=256, max_cat_to_onehot=4,
max_delta_step=0, max_depth=15, max_leaves=0, min_child_weight=5,
monotone_constraints='()', n_estimators=50, n_jobs=0,
num_parallel_tree=1, predictor='auto', random_state=0,
reg_alpha=0, reg_lambda=1, missing=nan, seed=124

It yielded an accuracy of 0.999 on the training data, with an AUC and MCC of 1 and 0.997
respectively. On our ClinVar test data, it classified at an accuracy of 98.36%, and an accuracy of
97.80% on our independent validation IndiGen dataset.

The feature importance, ROC, and Confusion Matrix of each model are shown in Figures 1,2 and
3.
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Figure 1: Plot depicting the feature importance of the top 15 features of each gene’s model. The
x-axis depicts the F-score for each feature.
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Figure 2: Plot depicting the ROCmetric for each gene’s model.
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Figure 3: Plot depicting the confusionmatrices for (A) BRCA1 and (B) BRCA2models.

Comparisonwith OtherModels
To the best of our knowledge, our models are the only models trained on a gold standard dataset
of ACMG-AMP qualified BRCA1 and BRCA2 variants. To establish the robustness of the model
therefore, we looked at the BRCA-ML20 which is trained on data made available by
high-throughput functional studies. We compared all variants that were present in our Test
dataset as well as had prediction scores generated by their model. We found 613 such variants,
243 belonging to BRCA1 and 370 belonging to the BRCA2 gene. Using the ClinVar classification
of these variants as measure, we compared the accuracy of prediction, the positive and negative
predictive values (PPV and NPV respectively), and the Matthews Correlation Coefficient (MCC)
metrics for eachmodel across both genes. The results are shown in Table 1.

BRCA1 BRCA2
brca-NOVUS BRCA-ML brca-NOVUS BRCA-ML

Accuracy 0.958 0.716 0.951 0.402

PPV 0.986 0.989 0.947 0.925

NPV 0.911 0.549 0.961 0.339

MCC 0.911 0.549 0.885 0.177

Table 1: Comparison between brca-NOVUS and BRCA-ML using different metrics.

The brca-NOVUS models for each gene significantly outperform the corresponding BRCA-ML
model across parameters.
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Independent Validation Dataset
We obtained a total of 71,804 BRCA variants from BRCA Exchange, from which we collected
7,445 variants that were ENIGMA expert-classified. We ran our models on each gene, and
obtained predictions for 6330 exonic variants. Of 2787 BRCA1 variants, our predictionsmatched
the expert classification for 2786 variants (Accuracy: 99.96412), and of 3543 BRCA2 variants
classified, our model’s predictions matched for 3540 variants (Accuracy: 99.91533). The
breakdown of the predictions made are given in Table 2. Thus, our models exhibit a high level of
accuracy across independently expert classified sets as well.

BRCA1 BRCA2

Benign 597 909

Pathogenic 2190 2634

Total 2787 3543

Table 2: Table depicting the number of ENIGMA expert-classified BRCA Exchange variants
classified as pathogenic and benign by each of our models

DISCUSSION
In our work we have shown how brca-NOVUS can be used as an effective tool to classify genetic
variants in the BRCA1 and BRCA2 genes. Genetic testing is an essential tool that can be leveraged
to successfully identify pathogenic mutation carriers, who can then, through increased
surveillance either catch the cancer early and thus increase their chances of survival, or in certain
cases prevent the cancer entirely through indicated prophylactic measures. Genetic testing is
additionally indicated for family screening, especially with a known family history of cancer.
However, genetic testing is only beneficial if an accurate clinical interpretation of the variants can
be made. Our work can be used to successfully classify variants of uncertain significance or
conflicting interpretations. We have shown the accuracy of our model on an independent
ACMG-qualified dataset, as well as an independent ENIGMA-expert panel classified dataset.
Additionally, we have also proved the accuracy of bothmodels using amodel trained on functional
validation studies. The key limitation of our work is that it can only be used to classify exonic
variants in both genes, leaving out other variants that may also be disease causing in nature.
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