Specific morphology of coronary artery aneurysms in mainly 1

Caucasian Kawasaki Disease patients - Initial data from the Cardiac 2

Catheterization in Kawasaki Disease registry 3

- Julia Weisser¹, Leonie Arnold¹, Wolfgang Wällisch², Daniel Quandt³, Bernd Opgen-Rhein⁴, 4
- Frank-Thomas Riede⁵, Florentine Gräfe⁵, Jörg Michel⁶, Raoul Arnold⁷, Heike Schneider⁸, 5
- Daniel Tanase⁹, Ulrike Herberg¹⁰, Christoph Happel¹¹, Mali Tietje¹², Gleb Tarusinov¹², Jochen 6
- Grohmann¹³, Johanna Hummel¹³, André Rudolph¹⁴, Nikolaus Haas¹, André Jakob¹ 7

Affiliations: 8

- ¹Department of Pediatric Cardiology and Pediatric Intensive Care, Ludwig-Maximilians-9
- Universität München, Marchioninistraße 15, 81377 München, Germany 10
- ²Department of Pediatric Cardiology, Universität Erlangen, Loschgestraße 15, 91054 11
- 12 Erlangen, Germany
- ³Department of Pediatric Cardiology, Kinderspital Zürich, Steinwiesstraße 75, 8032 Zürich, 13
- Switzerland 14
- ⁴Department of Pediatrics, Charité Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany 15
- 16 ⁵Department of Pediatric Cardiology, Herzzentrum Leipzig, Strümpellstraße 39, 04289
- Leipzig, Germany 17
- ⁶Department of Pediatric Cardiology, Pulmonology and Pediatric Intensive Care Medicine, 18
- 19 University Children's Hospital Tübingen, Hoppe-Seyler-Str.1, 72076 Tübingen, Germany
- ⁷Department of Pediatric Cardiology, Universitätsklinikum Heidelberg, Im Neuenheimar Feld 20
- 430, 69120 Heidelberg, Germany 21
- ⁸Kinderherzklinik UM Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany 22
- ⁹Department of Pediatric Cardiology, Deutsches Herzzentrum München, Lazarettstraße 36, 23
- 80636 München, Germany 24
- ¹⁰Department of Pediatric Cardiology and Congenital Heart Disease, Universitätsklinikum 25 26 RWTH Aachen, Pauwelsstraße 30, 52074 Aachen
- ¹¹Department of Pediatric Cardiology, MH Hannover, Carl-Neuberg-Straße 1, 30625 27
- Hannover, Germany 28
- 29 ¹²Department of Pediatric Cardiology, Herzzentrum Duisburg, Gerrickstraße 21, 47137 Duisburg, Germany 30
- ¹³Department of Congenital Heart Disease/Pediatric Cardiology, Heart and Diabetes Center 31
- NRW, Ruhr-University Bochum, Georgstraße 11, 32545 Bad Oeyenhausen 32
- ¹⁴Pediatric Heart Center, Astrid Lindgren Children's Hospital, Karolinska University Hospital, 33
- Eugeniavägen 23, 171 64 Stockholm, Sweden 34
- NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 35

36 **Abbreviated title:** Cardiac catheterization in Kawasaki disease

- 37 **Corresponding Author:** André Jakob, Department of Pediatric Cardiology and Pediatric
- 38 Intensive Care, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377
- 39 München, Germany E-Mail: andre.jakob@med.uni-muenchen.de, Tel,; +49 89 4400 73941
- 40 **Total word count of the manuscript:** 5210
- 41

42 Abstract

Aims and Background: Patients with a history of Kawasaki disease (KD), especially those with 43 diagnosed coronary artery involvement, are known to require long-term cardiac care. 44 45 However, specific evidence-based recommendations on long-term medical strategies are 46 missing. Cardiac catheterization (CC) is still considered the gold-standard for diagnosing 47 detailed coronary pathology. Therefore, and to better understand coronary artery pathology 48 development in the long-term, we conducted a survey to document and evaluate CC data in 49 a European population. Here we describe initial data on the first catheter examination these 50 patients underwent.

51 **Method:** We administered a standardized questionnaire to retrospectively analyze CC data 52 from KD children from the year 2010 until April 2023. This register covers basic acute phase 53 clinical data and, more importantly, detailed information on morphology, distribution and 54 the development of coronary artery pathologies. Data on participating departments of 55 pediatric cardiology, mainly from Germany, were evaluated, with this study focusing on 56 investigating each patient's first CC exclusively.

Results: We analyzed a total of 164, mainly Caucasian, patients (65% male) across 14 pediatric cardiology departments. A relevant number of patients had no coronary artery aneurysm at the CC, facing the fact that distal CAAs were almost exclusively detected alongside proximal CAAs. Patients with multiple CAAs revealed a significant positive correlation between the number of CAAs and their dimensions, in diameter, as in length. Location of the CAA within the coronary artery, age at KD's onset or gender did not significantly influence CAA diameters, but CAAs were longer in older children and in males.

64 **Conclusion:** The fact of distal CAAs being only present together with proximal ones, will 65 hopefully reduce diagnostic CCs in KD patients without echocardiographically detected 66 proximal CAAs. Furthermore this study gives valuable insights into dimensional specifics of 67 CAAs in KD patients. As an ongoing register, future analyses will further explore long-term 68 outcomes and performed treatments, helping to refine clinical long-term strategies for KD 69 patients.

70

71 Clinical perspective:

- In Caucasian Kawasaki disease (KD) patients, distal coronary artery aneurysms (CAA)
 are usually diagnosed in association with proximal CAAs. Additional imaging such as
 conventional coronary artery angiography may therefore be unnecessary, if no
 aneurysms are detectable echocardiographically.
- In this context, potentially unnecessary CCs hopefully will reduce in future.
- Not only the CAA diameters, but also CAA length and CAA count may influence
 cardiac related morbidity and should be considered in long-term follow-up care.
- The age at the acute phase of KD, such as gender and location of CAA within the
 coronary arteries seems to not affect CAA dimensions.
- 81

82 Clinical Trial Registration:

- Cardiac Catheterization in Kawasaki Disease data from the central European registry from
 2010 today
- 85 DRKS-ID: DRKS00031022, Date of Registration: 16.01.2023
- 86 Non-standard Abbreviations and Acronyms:
- 87 KD= Kawasaki Disease
- 88 CC= Cardiac Catheterization
- 89 CAA= Coronary Artery Aneurysm
- 90 AP= Acute Phase
- 91 IVIG= Intravenous Immunoglobulin
- 92 AHA= American Heart Association
- 93 JCS= Japanese Circulation Society
- 94 IQR= Interquartile Range
- 95 BSA= Body Surface Area
- 96 RCA= Right Coronary Artery
- 97 LCA= Left Coronary Artery

- 98 LAD= Left Anterior Descending Coronary Artery
- 99 LCX= Left Circumflex Coronary Artery
- 100 SNP= Single Nucleotide Polymorphism
- 101 ITPKC= Inositol 1,4,5-trisphosphate 3-kinase C
- 102 MMP= Matrix Metalloproteinases

104 Introduction:

The incidence of cardiovascular complications associated with Kawasaki Disease (KD) has 105 significantly dropped^{2, 3} with improved early diagnosis and standardized therapeutic 106 strategies, particularly the use of intravenous immunoglobulin (IVIG) and steroid treatment 107 108 during the disease's acute phase (AP). Cardiac involvement during the AP of KD was recently diagnosed in under 10%, with about a third of patients suffering from long-term 109 cardiovascular sequelae. Though coronary artery dilatations/aneurysms (CAAs) are the main 110 manifestations, valvular lesions, vascular stenosis and, rarely, myocardial infarction are also 111 being reported^{2, 4}. 112

113 Most CAAs caused by KD develop during its AP. Newly dilated coronary arterial lesions are rarely detected in KD's late period. Various molecular etiopathogeneses seem to apply 114 depending on the CAAs diameter, having an impact on long-term vascular sequelae. KD 115 CAAs, especially those with large diameters, are primarily attributed to necrotizing arteritis 116 characterized by severe inflammation and damage to the arterial walls. Due to chronic 117 vasculitis, i.e. smaller aneurysms can also form in KD's later stages and rarely even redevelop 118 out of previously regressed CAAs⁵. Aneurysms with diameters considered to be small or 119 medium are known to downsize, whereas giant CAAs do not tend to regress⁶⁻⁹. 120

121 Patients with a KD history, especially those with diagnosed coronary artery involvement, require long-term cardiac care. CC remains the gold standard for thorough coronary artery 122 123 evaluation in adults; but for children with a history of KD, there is no universal consensus regarding CC's diagnostic necessity. Existing KD-specific guidelines, with the American Heart 124 Association's (AHA) and Japanese Circulation Society's (JCS) being the most consulted, 125 recommend different approaches. The AHA's guidelines, apparently taking a more restrictive 126 approach on CC, suggest that it is optional for children with large coronary artery aneurysms 127 128 (\geq 8mm/Z-Score \geq 10) during the first year after the disease's AP. According to the AHA, CC can be done as follow-up procedure to assess the progression or resolution of aneurysms 129 over time for long-term monitoring of known persisting CAA. On the other hand, the JCS 130 recommends that all patients diagnosed with a CAA exceeding 6 mm undergo at least one CC 131 during the early reconvalescent phase of their disease. This suggests a more proactive 132 approach to CC by recommending the procedure for a broader range of aneurysm sizes. The 133 JCS also advises one follow-up CC when no further dilatation is echocardiographically 134

apparent, most likely to confirm the former coronary pathology's stability. German guidelines tend to follow the AHA's risk stratification; there is international consensus that during KD's acute inflammatory stage, interventional CC should only be done when there is evidence of myocardial ischaemia^{2, 9-12}.

139 We have little evidence of long-term outcomes after KD, particularly of a predominantly Caucasian population. To address this gap, we initiated a register for CCs performed on 140 patients with a history of KD in central Europe. This study was initiated by the working-group 141 of interventional pediatric cardiologists endorsed by the German Society of Pediatric 142 143 Cardiology and Congenital Heart Defects including participants from Austria and Switzerland. This register is open to any center to participate. A standardized questionnaire focused on 144 detailed characterization of diagnostic CC outcomes, on interventions and the 145 pharmacological strategies these KD patients experienced. In this present study we analyzed 146 data on each reported KD patient's first CC, focusing on a specific characterization of existing 147 coronary artery pathologies. 148

149

150 Material and Methods:

151 This multicentric register study functions as a retrospective surveillance study for CCs done 152 on children with a history of KD. The participating centers are requested to report data on all 153 CC procedures conducted from 2010 onwards.

154 As of now, we have acquired data from 14 departments of pediatric cardiology, with 12 155 thereof in Germany, one from Switzerland and another from Sweden.

A standardized questionnaire addresses patients' anthropometry as the main AP clinical 156 157 characteristics, i.e., whether the CAA was already present during KD's acute stage and whether IVIG had been administered. The questionnaire's principal focus was on a detailed 158 159 description of detected coronary artery pathologies: the number of CAAs present, including their specific location and each aneurysm's diameter and length. As the AHA's coronary 160 segment classification¹ was applied to assess the CAA's location, pathologies were allocated 161 162 not only to one of the coronary arteries' main branches, but to one of 12 specific segments. This distinction enabled both more specific CAA location assessment and differentiation 163 between proximal and distal CAAs. Striving for an age-and-body size-independent coronary 164

diameter evaluation, the CAAs' diameters were transferred to a coronary artery Z-Score via calculation proposed by Dallaire et al.¹³, acknowledging that these Z-Scores were originally applied for echocardiographic evaluation and primarily proximal coronary artery segments only. The aneurysm's length was determined by its absolute extent. The data in this study focusses on the patients' initial CC procedure.

170 <u>Statistical Analysis:</u>

The data's distribution was tested using QQ plots and Shapiro-Wilk tests. Data are presented 171 as median and interquartile range (IQR) or median and range. Categorical variables were 172 173 reported as absolute numbers along with their respective percentages. To analyze the 174 aneurysms' extent, their maximum Z-Score was calculated also including their absolute diameters and length. We relied on the largest CAA (maximum diameter/length) or mean of 175 all CAAs present (mean diameter/length) for our analysis of patients with multiple CAAs. The 176 number of CAAs per patient was determined by adding together all CAAs regardless of their 177 location. We ran a Kendall rank correlation to investigate the relationship between the CAA 178 number/s per patient and maximum Z-Score or length. The coherence of the CAAs' diameter 179 and length, absolute dimensions and body surface area (BSA) adapted measurements, with 180 181 the patients' sex and their age at AP was analyzed by Kendall Tau, the Wilcoxon rank sum 182 test and linear regression adjusted for BSA. Models for CAA dimensions and age at AP were not corrected for BSA due to a strong correlation between BSA and age at AP. 183

CAAs' distribution per coronary artery branch was presented with their absolute count 184 accompanied by their affiliated diameter and length. Z-Scores were presented as boxplots, 185 one specifically assigned for each segment. For patients diagnosed with more than one CAA 186 in a single segment, the larger one served for these size assessments. The Chi-square test 187 was done to compare the occurrence of CAAs in proximal versus distal segments. Segments 188 189 1, 5, 6 and 11 were defined as proximal, CAAs affecting segments 2, 3, 4, 7, 8, 9, 10 and 12 were considered to be distally located. All data was analyzed in R 4.2.2 (R Core Team, 2022 190 Vienna, Austria). 191

192 Results:

193 <u>General population:</u>

Our study includes a total of 164 patients, most of whom are male (65%). Median age at the time of catheterization was 3 years and 7 months; the time interval between the disease's AP and patient's first CC varied widely, ranging from month 0 to nearly 21 years. Median age at AP was 20 months, and 37.2% of the patients had been diagnosed with incomplete KD. Details on our patient cohort are in Table 1.

Specific questions addressed the existence of CAAs already present during the AP of KD. Put 199 into relation to the number of CAAs present at time of AP, Figure 1 depicts CAAs detected at 200 201 CC - revealing that 108 out of 138 (78,3%) had verified CAA early in the course of KD, but of 202 all 164 patients, 77 (46.9%) had at least one CAA at their first CC. Among the patients initially diagnosed with CAA, approximately 48.1% (52 out of 108) no longer revealed coronary 203 204 artery involvement via CC, indicating a relevant CAA regression rate. Only six patients had CAAs primarily detected during the CC, with five of them undergoing their initial CC within 4 205 months after the AP. An RCA aneurysm was detected at the CC performed 39 months after 206 207 the AP of one patient only.

208 <u>2. CAA(s) – numbers and allocation:</u>

Further analysis focused on detailed descriptions of the CAAs detected in 77 patients. Regarding the number of CAAs per patient, 57 out of 77 (74.0 %) had multiple CAAs. Two simultaneous CAAs were diagnosed in 22 patients, three in 20 patients. 10 patients were diagnosed with more than four simultaneous CAA, with eight the highest number of CAAs in a single patient.

With many patients having numerous CAAs, our study cohort comprises a total of 203 CAAs. 214 With 87 CAAs located in the RCA and 116 CAAs in the left coronary artery, the distribution of 215 these aneurysms is roughly equal between the two sides. To more precisely allocate the 216 CAAs, we assigned them to one specific coronary artery segment applying the AHA's 217 classification¹. CAAs continuously extending over more than one segment qualified as 218 multiple segments. The exact number of aneurysms identified in each segment is found in 219 220 Figure 2. The proximal RCA (segment 1) is the one most frequently affected by CAAs, 221 followed by the proximal part of the left anterior descending coronary artery (LAD) (segment 222 6). Distal coronary artery segments seldom reveal CAAs according to our register's data.

223 Not only do distal segments not tend to develop CAAs, there is distal coronary artery involvement almost exclusively when a CAA is also detected in one of the respective 224 proximal segments (see Table 2). We further analysed the presence of distal CAAs in relation 225 to coexisting proximal CAAs in any of the main coronary arteries, identifying only one patient 226 who seemed to have developed an isolated distal RCA-CAA (location: segment 3; 227 dimensions: diameter 4.4 mm/Z-Score 5.9 x length 4.4mm). However, this one was a "non-228 detected KD" patient suffering from acute coronary ischemia caused by a complete 229 230 thrombotic LAD-occlusion, he was assumed to have also had an underlying corresponding 231 proximal LAD aneurysm. None of our register patients presented an isolated distal CAA.

232 <u>CAA(s) – sizes and dimensional distribution</u>

Regarding CAA dimensions, we documented a significant range of CAA sizes in diameter and length. The largest CAA was located in the RCA, measuring 33.0 mm (Z-Score 78.3) in diameter and 85.0 mm in length. Each coronary artery's specific CAA dimensions are listed in Table 3. Besides the largest aneurysm present in the RCA, we found no significant difference in CAA diameters and lengths among all the main coronary arteries.

Although proximal segments develop CAAs more frequently, the aneurysm's size does not seem to be influenced by its distance from the coronary artery's origin, meaning that proximal CAAs are on average not significantly larger than more distally located ones. However, giant-sized CAAs are indeed primarily detected in proximal coronary artery segments (Figure 3).

We also analyzed potential CAA size-influencing factors. The number of CAAs diagnosed in a single patient indicates a significant positive correlation with both CAA diameter (R=0.45, p=0,0031) and its length (R=0.34, p = 0.00045). The more aneurysms a patient has, the larger they are (see Figure 4).

Moreover the influence of sex and age during the AP of KD on CAA development was investigated. As expected, older patients present larger CAAs than younger patients in absolute-dimension terms, demonstrated by a moderately significant correlation between age and CAA dimensions. This correlation disappears when accounting for a patient's BSA via coronary artery Z-Scores. We also examined the influence of gender and age on the diameter of each patient's largest (or only) CAA (max. diameter/length) and their patient-

specific means (mean diameter/length). In terms of the aneurysms' length, there is no adjustment for BSA. However, our register's data showed that the older the patients are, the longer their CAAs are as well. Furthermore, boys seem to develop significant longer CAAs than girls. The total number of CAAs on the other hand, does not seem to be influenced by either sex or age at disease onset (see Table 4).

258

259 Discussion:

This study describes a total of 164 patients from several pediatric cardiology departments. 260 261 With two university hospitals outside Germany participating, this register study represents KD in mainly Caucasian patients. Our data analysis reveals several key findings. This study 262 demonstrates a considerable regression rate in the numbers of CAAs when comparing CAA 263 numbers from the AP to those in the first CC, confirming established evidence from older 264 Japanese CC data^{7, 8}. The development rate of new CAAs is low throughout their later stages 265 266 - 3% according to our data. As our data analysis concentrated mainly on elaborating upon CAA morphology based on CC measurements, only patients with available data from specific 267 268 CAA(s), such as size and location, were included in further analyses. Studying the numbers of 269 CAAs locally, we identified aneurysms distributed about equally to both coronary arteries, 270 with the proximal RCA segment revealing most CAAs. Distal CAAs were diagnosed almost 271 exclusively when there was an additional coronary artery pathology in a proximal segment in fact, this cohort presented no isolated distal CAA. The rarity of distal aneurysms seems to 272 be generally accepted, as it is also reflected in the AHA KD guidelines⁹. However, there is no 273 concrete reference, and little research has been done on this topic to support this finding. 274 275 Most data relies on CT imaging, confirming distal-only CAAs as rare, as did a recent study evaluating CT coronary angiography in Indian children with KD¹⁴. Their study included 276 23/176 patients diagnosed with distal CAA(s), four of them had isolated distal coronary 277 artery pathologies. A coexisting proximal CAA was detected in 19 other patients, or proximal 278 CAAs that contiguously affected also distal segments. Despite these findings, there is a 279 paucity of reliable data on the occurrence of distal KD-linked coronary artery abnormalities, 280 with the great majority of current data from findings from studies on Asian children. The 281 282 significant difference in KD incidence among ethnicities, i.e. 254/100.000 in Japan and 6-7/100.000 in Germany highlighting the importance of ethnic-specific data, especially for KD 283 children of predominantly Caucasian origin^{9, 15, 16}. 284

285 A considerable number of our patients suffered from multiple simultaneous CAAs, with their 286 number correlating positively with their CAA's diameters and lengths. Boys and older children reveal significantly longer CAAs (noting that these specific parameters were not 287 BSA-adjusted). The aneurysm's length, especially its pathological impact on cardiac 288 morbidity, has not been adequately assessed to date. The number and diameters of CAAs do 289 not seem to be influenced by either age during the disease's AP or the patient's gender. 290 Moreover, our data indicates that CAA size seems to be independent of its location. CAA 291 dimensions did not differ in relation to the segment in which they had developed. This may 292 293 indicate that although distal CAAs are rarer, they can still develop large dimensions and thus have a direct impact on KD patients' long-term clinical outcomes. 294

The understanding of CAA pathogenesis in KD remains limited. Initially, mouse model data indicated that certain factors, including IL-ß117 and Single Nucleotide Polymorphisms (SNPs) in various genes, such as inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) and the TIFAB gene, play a role in predisposing individuals to KD and increasing the risk of CAA formation¹⁷⁻²⁰. Additionally, the expression of CD40 Ligand on CD4+ T-cells and platelets, as well as an imbalance in the levels of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs, may also influence the extent of coronary artery involvement in KD²¹.

While some data on the acute formation of CAAs exist, our molecular knowledge of longterm CAA development is notably lacking. A comprehensive understanding of the morphology of CAAs in the long term is essential not only for optimizing long-term clinical management but also for shedding light on the molecular pathomechanisms underlying CAA development.

307 Monitoring and correctly assessing the severity of CAAs in KD patients, echocardiography is the preferred noninvasive diagnostic tool. It is performed at the disease's onset and should 308 309 be repeated according to the patient's clinical presentation and follow-up evaluation later on. While it effectively reveals coronary artery involvement and usually enables assessment 310 of the disease's severity, its sensitivity and specificity in determining distal coronary artery 311 involvement as for detecting coronary artery stenosis and thrombosis are limited^{22 23}. CC is 312 generally still considered the "gold standard" for thorough evaluation of coronary arteries in 313 KD. However, CTCA has proven to be of similar diagnostic efficacy as CC. In fact, CTCA may 314 even be more precise, particularly for visualization of distal coronary arteries and intramural 315

anomalies²⁴⁻²⁸. Radiation exposure is considered to be similar in both procedures²⁸. MRCA, while radiation-free, has limited capacity to visualize distal segments, but it may be beneficial for patients with severe intramural calcifications, providing simultaneous information on cardiac function ²⁸.

This register study primarily aimed for a detailed (not favorizing) review of CC findings in 320 European patients diagnosed with KD specifically. CC can help to determine the severity of 321 KD's cardiac involvement, but alternative angiographic methods (also as substitute 322 323 strategies), should always be considered keeping CC's strengths and limitations in mind. As a general rule, the application of CC use should be clearly indicated especially as proximal 324 CAAs are sufficiently diagnosed echocardiographically. The number of possibly non-essential 325 CCs seems to have already dropped over the years. Comparing this study's data to Japanese 326 cardiac catheterization data from of the 1970s⁸ and -80s¹³ (when echocardiography was not 327 universally available or precise enough), the rate of CCs revealing only the absence of 328 coronary artery damage has more than halved. Stricter indications and better alternative 329 330 evaluation methods can be considered potentially causative factors behind this trend. 331 Although we still lack clear guidelines (for central European patients specifically), the number of CCs done in children presenting no coronary artery involvement (88 of 164 = 332 53,7%) remains fairly high. Considering CCs done mainly between 2010 and 2022, note that 333 the mean rate of CCs without any CAA detection per year varied from 62,5% in 2011 and 334 25,0% in 2022, indicating a reduction in potentially unnecessary CCs. We hope with the data 335 provided, future analysis hopefully will demonstrate a further and significant drop of this 336 number. 337

338 Data of this study was acquired retrospectively by standardized questionnaires, data quality 339 therefor depends on the reporting physicians themselves and could not be uniformly verified. Furthermore few aspects such as the CC's indication were not evaluable, mostly 340 applying to open question types. Aiming for a high total of analyzed CCs (and that our 341 registry study's primary aim was to address CC findings), we were only able to sketch other 342 343 disease aspects such as AP data and treatment strategies. We could not compare angiographic CAA measurements to their dimensions during the AP, as initial 344 echocardiographic data was not universally available. Nevertheless our register was 345 346 established to primarily collect specific, mostly CC related data on mainly Caucasian children

- 347 suffering from KD, giving valuable insights to specific CAA data, to optionally influence local
- 348 adaptations of follow-up clinical strategies.

349 Acknowledgments, Sources of Funding, & Disclosures

- 350 Acknowledgments: We thank all participating centers for providing valuable data and
- 351 detailed information on cardiac catheterizations. We also thank the German Society of
- 352 Pediatric Cardiology for supporting this registry.
- 353 Source of Funding: None
- 354 Disclosures: None
- 355

References: 356

357	1.	AHA. Aha coronary segment classification.
358	2.	Group JJW. Guidelines for diagnosis and management of cardiovascular sequelae in kawasaki
359		disease (jcs 2013). Digest version. Circulation Journal. 2014;78:2521-2562
360	3.	Newburger JW, Takahashi M, Beiser AS, Burns JC, Bastian J, Chung KJ, et al. A single
361		intravenous infusion of gamma globulin as compared with four infusions in the treatment of
362		acute kawasaki syndrome. N Engl J Med. 1991;324:1633-1639
363	4.	Nakamura Y, Yashiro M, Uehara R, Sadakane A, Tsuboi S, Aoyama Y, et al. Epidemiologic
364		features of kawasaki disease in japan: Results of the 2009-2010 nationwide survey. J
365		Epidemiol. 2012;22:216-221
366	5.	Tsuda E, Kamiya T, Ono Y, Kimura K, Echigo S. Dilated coronary arterial lesions in the late
367		period after kawasaki disease. <i>Heart</i> . 2005;91:177-182
368	6.	Kato H, Koike S, Yamamoto M, Ito Y, Yano E. Coronary aneurysms in infants and young
369		children with acute febrile mucocutaneous lymph node syndrome. <i>J Pediatr</i> . 1975;86:892-
370		898
371	7.	Kato H, Sugimura T, Akagi T, Sato N, Hashino K, Maeno Y, et al. Long-term consequences of
372		kawasaki disease. A 10- to 21-year follow-up study of 594 patients. <i>Circulation</i> .
373		1996:94:1379-1385
374	8.	Kato H. Ichinose E. Yoshioka F. Takechi T. Matsunaga S. Suzuki K. et al. Fate of coronary
375		aneurysms in kawasaki disease: Serial coronary angiography and long-term follow-up study.
376		Am J Cardiol. 1982:49:1758-1766
377	9.	McCrindle BW. Rowley AH. Newburger JW. Burns JC. Bolger AF. Gewitz M. et al. Diagnosis.
378		treatment, and long-term management of kawasaki disease: A scientific statement for health
379		professionals from the american heart association. <i>Circulation</i> . 2017:135:e927-e999
380	10.	Newburger JW. Takahashi M. Gerber MA. Gewitz MH. Tani LY. Burns JC. et al. Diagnosis.
381		treatment, and long-term management of kawasaki disease: A statement for health
382		professionals from the committee on rheumatic fever, endocarditis, and kawasaki disease.
383		council on cardiovascular disease in the young, american heart association. <i>Pediatrics</i> .
384		2004:114:1708-1733
385	11.	Neudorf U. Jakob A. Lilienthal E. Hospach T. <i>Leitlinie der gesellschaft für kinder-und</i>
386		jugendrheumatologie und der deutschen gesellschaft für pädigtrische kardiologie und
387		angeborene herzfehler-kawasaki svndrom. 2019.
388	12.	Scherler L. Haas NA. Tengler A. Pattathu J. Mandilaras G. Jakob A. Acute phase of kawasaki
389		disease: A review of national guideline recommendations. <i>Eur J Pediatr.</i> 2022:181:2563-2573
390	13.	Dallaire F. Dahdah N. New equations and a critical appraisal of coronary artery z scores in
391		healthy children. <i>J Am Soc Echocardioar</i> . 2011:24:60-74
392	14.	Singhal M. Pilania RK. Jindal AK. Gupta A. Sharma A. Guleria S. et al. Distal coronary artery
393		abnormalities in kawasaki disease: Experience on ct coronary angiography in 176 children.
394		Rheumatoloay (Oxford). 2023:62:815-823
395	15.	Makino N. Nakamura Y. Yashiro M. Ae R. Tsuboi S. Aovama Y. et al. Descriptive epidemiology
396		of kawasaki disease in japan. 2011-2012: From the results of the 22nd nationwide survey.
397		Epidemiol. 2015:25:239-245
398	16.	Jakob A. Whelan J. Kordecki M. Berner R. Stiller B. Arnold R. et al. Kawasaki disease in
399		germany: A prospective, population-based study adjusted for underreporting. <i>Pediatr Infect</i>
400		Dis J. 2016:35:129-134
401	17.	Onouchi Y. Gunii T. Burns IC. Shimizu C. Newburger IW. Yashiro M. et al. Itokc functional
402		polymorphism associated with kawasaki disease susceptibility and formation of coronary
403		artery aneurysms. Nat Genet. 2008:40:35-42
404	18.	Kuo HC. Yang KD. Juo SH. Liang CD. Chen WC. Wang YS. et al. Itokc single nucleotide
405		polymorphism associated with the kawasaki disease in a taiwanese population. PLoS One
406		2011;6:e17370

407	19.	Kwon YC, Kim JJ, Yu JJ, Yun SW, Yoon KL, Lee KY, et al. Identification of the tifab gene as a
408		susceptibility locus for coronary artery aneurysm in patients with kawasaki disease. Pediatr
409		Cardiol. 2019;40:483-488
410	20.	Noval Rivas M, Arditi M. Kawasaki disease: Pathophysiology and insights from mouse models.
411		Nat Rev Rheumatol. 2020;16:391-405
412	21.	Senzaki H. The pathophysiology of coronary artery aneurysms in kawasaki disease: Role of
413		matrix metalloproteinases. Arch Dis Child. 2006;91:847-851
414	22.	Yu Y, Sun K, Wang R, Li Y, Xue H, Yu L, et al. Comparison study of echocardiography and dual-
415		source ct in diagnosis of coronary artery aneurysm due to kawasaki disease: Coronary artery
416		disease. Echocardiography. 2011;28:1025-1034
417	23.	Capannari TE, Daniels SR, Meyer RA, Schwartz DC, Kaplan S. Sensitivity, specificity and
418		predictive value of two-dimensional echocardiography in detecting coronary artery
419		aneurysms in patients with kawasaki disease. J Am Coll Cardiol. 1986;7:355-360
420	24.	Wu MT, Hsieh KS, Lin CC, Yang CF, Pan HB. Images in cardiovascular medicine. Evaluation of
421		coronary artery aneurysms in kawasaki disease by multislice computed tomographic
422		coronary angiography. Circulation. 2004;110:e339
423	25.	Chu WC, Mok GC, Lam WW, Yam MC, Sung RY. Assessment of coronary artery aneurysms in
424		paediatric patients with kawasaki disease by multidetector row ct angiography: Feasibility
425		and comparison with 2d echocardiography. Pediatr Radiol. 2006;36:1148-1153
426	26.	Tsujii N, Tsuda E, Kanzaki S, Kurosaki K. Measurements of coronary artery aneurysms due to
427		kawasaki disease by dual-source computed tomography (dsct). Pediatr Cardiol. 2016;37:442-
428		447
429	27.	Kim JW, Goo HW. Coronary artery abnormalities in kawasaki disease: Comparison between ct
430		and mr coronary angiography. Acta Radiol. 2013;54:156-163
431	28.	Singhal M, Gupta P, Singh S, Khandelwal N. Computed tomography coronary angiography is
432		the way forward for evaluation of children with kawasaki disease. Glob Cardiol Sci Pract.
433		2017;2017:e201728
131		

435 **Tables:**

Patients' characteristics	
Number/sex of patients: n(m/f/missing)	164 (107/38/19)
Diagnosis: Complete/incomplete KD/missing	85/61/18
Age at AP: Median (range)	20 (0-243) months
Age at CC: Median (range)	43 (0-312) months
Δ Time AP – 1. CC: Median (range)	8 (0-251) months

Table 1: General population data 436

437

Proximal vs. distal CAA occurrence						
	Only prox.	prox. and distal	Only distal	Prox. And distal vs. only distal		
RCA	38	18	2	p-value<0.001		
LAD	39	10	0	p-value<0.001		
LCX	19	1	2	p-value<0.001		

Table 2: Occurrence of proximal and distal CAAs. Isolated distal CAAs vs. distal and 438

concurring proximal CAAs in the same coronary artery (p-values according to Fisher's exact 439 test)

440

441

CAAs' characteristics per coronary artery main branch					
	RCA	LCA	LAD	LCX	
Total number (n)	87	29	61	26	
-with size specification (n)	83	25	56	21	
Diameter (mm): Median (range)	6.0 (1.9-33.0)	5.8 (2.5-25.0)	5.5 (2.2-22.0)	4.0 (2.3- 11.0)	
Z-Score: Median (range)	9.7 (2.5-78.3)	8.6 (3.4-65.8)	8.4 (2.6-46.9)	5.7 (2.8- 27.1)	
Length: Median (range)	9.0 (2.0-85.0)	8.5 (3.0-30.0)	8.0 (1.3-85.0)	6.0 (2.7- 30.0)	

Table 3: CAA distribution with dimensional measurements 442

Impact of gender/age at AP on CAA characteristics						
	Male	female		Age at AP		
	Median (IQR)	Median (IQR)	p-value (Wilcoxon rank sum test/ linear regression)	Kendall Correlation (R)	p-value	
Max. diameter						
-Z-Score	10.81 ±	9.34 ± 6.74	0.860	0.07	0.460	
-absolute	8.28	6.00 ± 4.54	0.682	0.21	0.015	
dimension	7.20 ± 5.26					
Mean diameter						
-Z-Score	8.23 ± 5.02	8.12 ± 3.60	0.972	0.07	0.440	
-absolute dimension	5.54 ± 3.67	5.00 ± 2.06	0.543	0.27	0.002	
Mean length	10.00 ± 8.30	8.75 ± 3.72	0.162	0.32	< 0.001	
Max length	13.15 ± 16.95	13.80 ± 7.40	0.133	0.27	0.003	
CAA count	2.78 ± 1.79	2.56 ± 1.50	0.610	0.06	0.510	

Table 4 Median diameter/length and numbers of all CAAs per patient comparing boys and 444

girls indicating a significant difference in CAA length and Kendall's correlation coefficient (R) 445

446 with patient age at AP indicating no significant correlation between body size adapted Z-

scores/CAA count and the age . CAA= coronary artery aneurysm, IQR= Interquartile range. 447

449 **Figures**:

450

- 451 Figure 1 Flow chart CAA in AP/ 1. CC; CAA= Coronary artery aneurysm, CC= Cardiac
- 452 catheterization, AP= Acute Phase

455

Figure 3 Boxplots of CAA diameter per segment of the a) RCA: Median/IQR: Seg 1 10.07/6.90, 456

Seg 2 9.10/7.60, Seg3 7.51/6.90, Seg 4 4.21/1.40, b) LCA/LAD: Median/IQR: Seg 5 7.31/5.97 457

458 Seg 6 7.18/6.40, Seg 7 11.49/3.94, Seg 8 8.55/3.06, Seg 9 9.61/4.99, Seg 10 3.46/0.00; CAA=

459 Coronary Artery Aneurysm, RCA= Right coronary artery, LCA= Left coronary artery, LAD= Left

460 anterior descending coronary artery; IQR= Interquartile range; Seg= Segment