
Artificial Intelligence in Cardiac Surgery: A Systematic Review

Ralf Martz Sulague, MD1, Francis Joshua Beloy, MD, MBA2, Jillian Reeze Medina, MD3,
Edward Daniel Mortalla, MD, MSN4, Thea Danielle Cartojano, MD4, Sharina Macapagal,
MD5, Jacques Kpodonu, MD6*

1Graduate School of Arts and Sciences, Georgetown University, Washington, D.C.,
United States of America
2Ateneo School of Medicine and Public Health, Pasig City, Philippines
3Manila Central University College of Medicine, Caloocan City, Philippines
4Cebu Institute of Medicine, Cebu City, Philippines
5Mayo Clinic, Rochester, Minnesota, United States of America
6Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of
America

Acknowledgement: None

Conflicts of Interest: None

Funding: None

*Corresponding Author: Jacques Kpodonu, MD
Address: Division of Cardiac Surgery, Beth Israel Deaconess Medical Center, Boston,
Massachusetts, United States of America 02215
Contact Number:
Email: jkpodonu@bidmc.harvard.edu

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.23297244doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.10.18.23297244
http://creativecommons.org/licenses/by/4.0/


ABSTRACT
BACKGROUND
Artificial intelligence has emerged as a tool to potentially increase efficiency and efficacy
of healthcare and improve clinical outcomes. The growing body of knowledge of artificial
intelligence applications in cardiac surgery necessitates evaluation of past studies to
gain insights to the future direction of artificial intelligence applications in cardiac
surgery. This study aims to provide a systematic review of the applications of artificial
intelligence in cardiac surgery.

METHODS
A systematic literature search on artificial intelligence applications in cardiac surgery
from 2000 to 2022 was conducted in the following databases: PubMed, Embase,
Europe PMC, Epistemonikos, CINAHL, Cochrane Central, Google Scholar, Web of
Science, Scopus, Cambridge Core, clinicaltrials.gov, and science. Studies on the
implementation of artificial intelligence applications in cardiac surgery and the provision
of decision support by the application through simulating clinical decision-making
processes of healthcare providers were included. Studies not in English, published only
as abstracts, review papers, meta-analyses, clinical trials that were still in progress, and
published study protocols were excluded. This study was registered on Prospero
(CRD42022377530).

RESULTS
A total of 42 studies were found that reported on artificial intelligence applications in
cardiac surgery, all of which are cohort studies. Nine (21.43%) of the studies measured
different parameters regarding cardiac surgeries in general. Meanwhile, 6 (14.29%)
studies focused on Heart Transplantation (HT), 4 (9.52%) on Transcatheter Aortic Valve
Replacement (TAVR), 3 (7.14%) anchored on Aortic Stenosis, and another 3 (7.14%) on
Perioperative Complications. Three topics had 2 (4.76%) studies dedicated to them,
namely Coronary Artery Bypass Graft (CABG), Postoperative Atrial Fibrillation (POAF),
and Acute Kidney Injury (AKI). The remaining eleven studies have their own unique
disease topics, procedures or surgeries in focus (n=11, 1 (2.38%), namely
Postoperative Major Bleeding, Early Coronary Revascularization, Heart Valve Surgery,
Isolated Mitral Valve Replacement (IMVR), Surgical Aortic Valve Replacement (SAVR),
Open-Chest Surgery, Infective endocarditis, Post-Operative Deterioration, Red Blood
Cell Transfusion, AKI - related Hippocampal Damage, and Open-Heart Surgery.
Regarding evaluation outcomes, 26 studies examined the performance, 32 studies
examined clinician outcomes, and 2 studies examined patient outcomes. Of the 42
studies, only 13 were conducted in Lower- and Middle-Income Countries.
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CONCLUSION
​Artificial intelligence was used to predict mortality, postoperative length of stay, and
complications following cardiac surgeries. It can also improve clinicians’ medical
decisions by providing better preoperative risk assessment, stratification, and
prognostication. While the application of artificial intelligence in cardiac surgery has
greatly progressed in the last two decades, more highly powered studies need to be
done to assess challenges and to ensure accuracy and safety for use in clinical
practice.

Keywords: artificial intelligence; machine learning; deep learning; cardiac surgery;
technology
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INTRODUCTION

AI and Cardiac surgery

With the advancement of modern technology, artificial intelligence (AI) has

emerged as a tool to potentially increase the efficiency and efficacy of healthcare and

improve outcomes. It encompasses both machine learning (ML) and deep learning (DL).

In ML, certain computer algorithms are used to produce predictions or conclusions by

recognizing patterns generated through the application of a mathematical algorithm

model from sample data. One important example of the significance of machine learning

in surgery would be predicting the probabilities of post-operative complications

according to patient specific risk factors and characteristics. It would use the data to

classify patients into risk strata, depending on their morbidity severity. It is able to do so

with great accuracy, exceeding previous methods based on clinical standards to levels

previously thought to be unachievable with conventional statistics. On the other hand,

DL uses a multi-layered structure of algorithms called artificial neural networks to do

tasks that machine learning cannot, making it more useful than machine learning (ML)

(39,40).

There have already been a number of studies exploring real-life applications of AI

in cardiac surgery including algorithms that function to aid in clinical decision making,

especially in terms of cardiac function evaluation and risk stratification prior to operation.

Other applications focus on aiding diagnostics and prognostication of certain

complications of patients after cardiac surgery(3).

The growing body of knowledge of AI applications in cardiac surgery

necessitates evaluation of past studies to gain insights to the future direction of artificial
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intelligence application in cardiac surgery. This study aims to provide a systematic

review on the applications of AI in cardiac surgery.

METHODS

Search Strategies

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines were utilized in searching articles assessing and evaluating

various applications of AI in cardiac surgery from 2000 to 2022. Using boolean search

terms “Artificial Intelligence” OR “Machine Learning” AND “Cardiac Surgery”, a thorough

review of studies was conducted using the following databases: PubMed, Embase,

Europe PMC, Epistemonikos, CINAHL, Cochrane Central, Google Scholar, Web of

Science, Scopus, Cambridge Core, clinicaltrials.gov, and science.gov. Duplicate articles

from different databases were then excluded after a preliminary search. Other additional

studies were identified by looking through the references of the articles that were

already included. This systematic review was registered on Prospero

(CRD42022377530).

Eligibility Criteria

Articles were incorporated into the review if it included the following conditions: 1)

Implementation of an AI application with patient or health care providers in a real-life

clinical setting, and 2) Provision of decision support by the AI application through

emulating clinical decision-making processes of health care providers (eg, medical
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image interpretation and clinical risk assessment). All cohorts and randomized control

trials that satisfied the inclusion criteria were included. The studies that were included

had to be in English. Studies that had only been published as abstracts, review papers,

meta-analyses, clinical trials that were still in progress, and published study protocols

were not included. Other exclusion criteria are detailed in Figure 1.

Data Extraction

After collating all the studies, information from the articles were extracted. These

were primarily the characteristics of the studies, the features of the AI applications, and

the key outcomes evaluated. The data was then organized in a table and trends or

themes were analyzed.

RESULTS

Overview

Our initial search of the databases returned a total of 1124 journal articles (420

from PubMed, 190 from Google Scholar, 153 from Web of Science, 148 CINAHL, 130

from EMBASE, 69 from Europe PMC, 6 from Epistemonikos, 3 from science.gov, 2 from

clinicaltrials.gov, 2 from Cambridge Core, and 1 from Cochrane Central). Duplicates

were then identified and 336 studies were excluded. The titles, abstracts, and

manuscripts were screened and filtered which excluded 755 studies. 9 relevant studies

were identified via snowballing. Thus, 42 journal articles met the inclusion criteria and

are included in this review (Figure 1).
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Study Characteristics

The authors, year of publication, study design, number of involved patients, and

database registry and involved hospitals are summarized in Table 1.

In regard to the study design, all 42 studies were Cohort Studies. A cohort study

utilizes a comparison method for a particular outcome in 2 or more groups, with each

cohort having similar characteristics but would differ in certain aspects. Of the 42

studies, Two (4.8%) studies have less than 50 patients analyzed. Ten (22.8%) studies

have a population of 50-100 patients, while 18 (42.8%) studies have a wider range of

1000-5000 individuals included. Meanwhile, 11 (26.1%) studies had a larger scaled

population of 5000-20,000 patients, and only a single (2.3%) study had more than

240,000 worth of data analyzed.

According to the New World Bank country classifications by income level:

2022-2023, for the current 2023 fiscal year, low-income economies are defined as those

with a GNI per capita, calculated using the World Bank Atlas method, of $1,085 or less

in 2021; lower middle-income economies are those with a GNI per capita between

$1,086 and $4,255; upper middle-income economies are those with a GNI per capita

between $4,256 and $13,205; high-income economies are those with a GNI per capita

of $13,205 or more. Of the 42 studies, only 1 study was conducted in a Lower-Middle

Income Economies, namely Iran. For the countries classified Upper-Middle Income

Economies, ten studies were conducted in China, while Colombia and Brazil had

conducted 1 study each. While the rest were conducted in countries with High-Income
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Economies, with 22 conducted in the United States, two in Austria, and one each in

Saudi Arabia, Germany, Italy, France, and New Zealand.

Table 1. Characteristics of the included studies.

Author & Year Study Design
Sample

Characteristics
Hospital
(Country)

Evaluation
Outcomes

Agasthi et al,
2020

Cohort Design 1055 patients

three major
academic

medical centers
located in

Rochester, MN,
Phoenix, AZ,

and
Jacksonville,

FL.USA
Patient

Outcomes

Agasthi et al,
2020 Cohort Design 15,236 patients

ISHLT Registry,,
USA

Patient
Outcomes

Allyn et al, 2017

Cohort Design 6,520 patients

1200-bed
university

hospital, France
Performance of
AI Applications

Alshakhs et al,
2020

Cohort Design 721 patients

Saud Al-Babtain
Cardiac Center,

Dammam,
Saudi Arabia,

Patient
Outcomes

Aranda-Michel
et al, 2021 Cohort Design

3,872
individuals. USA

Patient
Outcomes

Ayers et al,
2021 Cohort Design 3872 patients.

University of
Pittsburgh
institutional

database, USA
Clinician

Outcomes

Bodenhofer et
al, 2021 Cohort Design 2229 patients

Kepler
University

Clinic, Linz,
Austria

Clinician
Outcomes
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Chang et al,
2020 Cohort Design 2240 patients

ASSIST
Registry, Brazil

Patient
Outcomes

Evertz et al,
2022 Cohort Design 142 patients Germany

Performance of
AI applications

Fan et al, 2022

Cohort Design 5443 patients

First Medical
Centre of

Chinese PLA
General

Hospital, China
Performance of
AI applications

Fernandes et al,
2020 Cohort Design 5015 patients USA

Clinician
Outcomes

Gao et al, 2022
Cohort Design 1045 patients

Fuwai Hospital,
Beijing, China

Clinician
Outcomes

Hasimbegovic
et al, 2021

Cohort Design 88 patients

Hietzing Heart
Centre (Vienna,

Austria).
Clinician

Outcomes

He et al, 2022

Cohort Design 100 patients

Cardiovascular,
West China
Hospital of
Sichuan

University,
China

Patient
Outcomes

Hernandez-Suar
ez et al, 2022

Cohort Design 10,883 patients

National
Inpatient

Sample (NIS)
database, USA

Patient
Outcomes

Hosseininezhad
et al, 2021 Cohort Design 1200 patients

Rajaie
Cardiovascular

Medical and
Research

Center, Iran
Clinician

Outcomes

Hu et al, 2020 Cohort Design 1980 patients

REgistry of Fast
Myocardial
Perfusion

Imaging with
NExt generation

SPECT
Clinician

Outcomes
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(REFINE
SPECT), USA

Jiang et al, 2021 Cohort Design 1488 patients

eight large
tertiary

hospitals, China
Clinician

Outcomes

Kampaktsis et
al, 2021

Cohort Design 18625 patients

United Network
for Organ

Sharing (UNOS)
database, NY,

USA
Performance of
AI applications

Kampaktsis et
al, 2022

Cohort Design 1033 patients

United Network
for Organ
Sharing

(UNOS)
database, NY,

USA
Clinician

Outcomes

Karri et al, 2021

Cohort Design 6349 patients

MIMIC-III
database, New

Zealand
Clinician

Outcomes

Kilic et al, 2020
Cohort Design 11,190 patients

single academic
institution, USA

Performance of
AI applications

Kilic et al, 2021

Cohort Design
243,142
patients

The Society of
Thoracic

Surgeons (STS)
National Data-

base, USA
Clinician

Outcomes

Kim et al, 2022

Cohort Design 12,997 patients

Michigan
Medicine data
systems, USA

Performance of
AI applications

Lee et al, 2013

Cohort Design 1426 patients.

Society of
Thoracic

Surgeons (STS)
database, USA

Performance of
AI applications

Li et al, 2020 Cohort Design 5533 patients

Tertiary hospital
in Shanghai,

China
Patient

Outcomes
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Li et al, 2022 Cohort Design 107 patients

Guangdong
Provincial
People’s

Hospital, China
Patient

Outcomes

Lo et al, 2021
Cohort Design 12 patients Italy

Performance of
AI applications

Luo et al, 2021 Cohort Design 476 patients

First Affiliated
Hospital of Sun

Yat-sen
University

(FAH-SYSU)
and Nanfang

Hospital (NFH)
of Southern

Medical
University,

China
Clinician

Outcomes

MAthis et al,
2022

Cohort Design 1555 patients

Anesthesiology
Informatics and

Systems
Improvement

Exchange, Ann
Arbor, Michigan,

USA
Patient

Outcomes

Miller et al, 2019
Cohort Design 3180 patients

UNOS Registry
database, USA

Patient
Outcomes

Molina et al,
2022

Cohort Design 2786 patients

Clinica
Universitaria
Colombia in

Bogota,
Colombia

Performance of
AI applications,

Park et al, 2022 Cohort Design 8,947 patients

Yale
University
affiliated

hospital, USA
Patient

Outcomes

Raghu et al,
2022

Cohort Design 18344 patients

Massachusetts
General
Hospital

Clinician
Outcomes
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(MGH),USA

Shou et al, 2022

Cohort Design 1584 patients

United Network
for Organ

Sharing (UNOS)
database, NY,

USA
Clinician

Outcomes

Thalappillil et al,
2020 Cohort Design 47 patients USA

Performance of
AI applications

Tuong et al,
2021 Cohort Design 557 patients USA

Patient
Outcomes

Wang et al,
2022 Cohort Design

2410
Cardiothoracic
(CT) surgery

patients

University of
Utah Health’s

Enterprise Data
Warehouse

(EDW).Utah,
USA

Clinician
Outcomes

Wue et al, 2022 Cohort Design 320 patients

First Affiliated
Hospital of

Nanjing Medi-
cal University,

China
Performance of
AI applications

Zea-Vera et al,
2021

Cohort Design 2086 patients

Baylor College
of Medicine STS

Adult Cardiac
Surgery

Database, USA
Performance of
AI applications

Zhong et al,
2020

Cohort Design 6844 patients

the Society of
Thoracic
Surgeons
National

Database.,
China

Performance of
AI Applications

Zhou et al, 2021
Cohort Design 381 patients China

Performance of
AI applications

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.23297244doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.18.23297244
http://creativecommons.org/licenses/by/4.0/


Quality Assessment

In order to evaluate the internal validity of the 42 included studies, the Joanna

Briggs Institute (JBI) critical appraisal tool was utilized. Since all studies are cohorts,

each article was evaluated using the appropriate checklist by two assessors. The total

score for the cohorts ranged from 7 to 10 out of 11. Specifically, four studies reported

that the source of their data did not come from the same population(4–7). Seven studies

were unable to identify the confounding factors (5,8–13). Only three studies did not

clearly state if exposures were measured in a valid and reliable way (4–6). Finally, all

studies used proper statistical analysis, and measured their outcomes in a valid and

reliable way.

AI Application Characteristics

Among the 42 studies, the most popular ML technique was Random Forests(RF)

(n=21), followed by Logistic Regression (LR) (n=13), Support Vector Machine (n=12),

Artificial Neural Network (ANN) (n=10), and Extreme Gradient Boosting (XGBoost)

(n=7). These were followed by the others such as the Naïve Bayes Model (NB) (n=5),

AdaBoost (n=5), Extreme Gradient Boosting (XGB) (n=5), Decision Tree (n=4), Gradient

Boosting Machine(GBM) (n=3), K-nearest neighbours classifier (KNN) (n=3), Multilayer

Perceptron (MLP) (n=3), Bagged Classification and Regression Tree (CART) (n=2), and

Cox Regression Models (n=2). And the rest of the ML techniques were mentioned only

in one study such as the Bag Decision Trees (BDT), Bayesian networks (BNs), Boosted

Classification Trees, CatBoost ML Model, Conditional Inference Random Forest (CIRF),

Deep Learning Model (CXR-CTSurgery), Dual-tree complex wavelet packet transform
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(DTCWPT), Extra Trees (ET), Gaussian Process (GP) regression ML algorithm,

GenAlgs, Imbalanced Random Forest Classifier, Multivariate logistic regression (MLR),

Random Forest Survival Models,Singular Value Decomposition (SVD), Stochastic

Gradient Boosting (SGB), Stochastic Gradient Boosting (SGBT), Sun Yat-sen University

Prediction Model for Infective Endocarditis, an AI software provided by Neosoft and

another AI software that uses 3D echocardiography to model the aortic annulus.

Overall, only one study utilized Deep Learning while the rest utilized Machine Learning.

The results also show that almost all AI applications provided decision support in

Risk Analysis (n=40) mainly predicting mortality outcomes, post-operative

complications, or post-operative outcomes. Only two studies looked into disease

screening and triage. None of the studies delved into disease diagnosis or treatment.

On another note, of the 42 studies, 9 (21.43%) of the studies measured different

parameters regarding cardiac surgeries in general. Meanwhile, 6 (14.29%) studies

focused on Heart Transplantation (HT), 4 (9.52%) on Transcatheter Aortic Valve

Replacement (TAVR), 3 (7.14%) anchored on Aortic Stenosis, and another 3 (7.14%) on

Perioperative Complications. Three topics had 2 (4.76%) studies dedicated to them,

namely Coronary Artery Bypass Graft (CABG), Postoperative Atrial Fibrillation (POAF),

and Acute Kidney Injury (AKI). The remaining eleven studies has their own unique

disease topics, procedures or surgeries in focus (n=11), 1 (2.38%), namely

Postoperative Major Bleeding, Early Coronary Revascularization, Heart Valve Surgery,

Isolated Mitral Valve Replacement (IMVR), Surgical Aortic Valve Replacement (SAVR),
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Open-Chest Surgery, Infective endocarditis, Post-Operative Deterioration, Red Blood

Cell Transfusion, AKI - related Hippocampal Damage, and Open-Heart Surgery.

Evaluation Outcomes

As shown in Table 1, the included studies were classified into their respective

type of evaluation outcomes: performance of AI applications, clinician outcomes, and

patient outcomes.

A. Performance of AI Applications

Twenty-six studies evaluated the performance of AI applications in real-life

clinical settings. Commonly used performance metrics included accuracy, area under

the curve (AUC) / area under the receiver operating characteristic curve (AUROC),

specificity, sensitivity, True Positive Rate (TPR), False Negative Rate (FNR),

positive-predictive value (PPV), and negative-predictive value (NPV), F1 score and

Brier Score.

B. Clinician Outcomes

AI applications also affect clinician outcomes, specifically, clinician

decision making, clinician workflow and efficiency, and clinician evaluations and

acceptance of AI applications. In this review, thirty-two studies reported clinician

outcomes of AI in cardiac surgery (4,5,7,8,10,11,13–38).

Clinicians could potentially be guided by AI applications in making better

medical decisions. Eighteen studies reported that AI applications can support clinician

decision making (4,7,10,13,16,17,19,21,23,24,26,28,30–33,35,38). Machine learning
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models improve clinician’s medical decisions by providing better preoperative risk

assessment, stratification and prognostication (10,17,21,24,30–32,35,38). AI

applications could also guide clinicians on how aggressive prophylactic measures are

given such as increased patient monitoring or giving additional therapies (4,13,33).

Twelve studies discussed clinician efficiency (5,10,11,16,18,20,22–24,29,36,37).

Machine learning was used to predict survival after heart transplantation allowing better

patient selection and reducing organ wastage (18,37). AI applications could also prompt

clinicians to provide timely protective strategies which will improve patient’s prognosis

(29,36,39). AI applications save time significantly by optimizing risk stratification and

clinical management. Alshakhs et al. (16) took advantage of machine learning to predict

patients who are likely to have a longer postoperative length of stay (PLoS) to provide

early psychosocial preparation to the patient and to their family. There were no studies

that explored outcomes on clinician workflow.

Seven studies reported clinician evaluations and acceptance of AI applications

(5,15,17,19,20,22–24,26). All of the studies stated overall positive perceptions on AI

applications. Machine learning showed equal risk prediction compared to manual

approaches (20,24). Two studies revealed superiority of AI applications than existing

scoring tools (15,17,19,22,26). Finally, recommendations were provided on utilizing both

machine learning and manual approach in combination to provide significant leaps in

diagnostic and predictive capabilities of clinicians in the future (5,23).
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C. Patient Outcomes

Only two studies reported patient outcomes. Fernandez et al. (21) incorporated

intraoperative risk factors in predicting mortality following cardiac surgery and revealed

results on patient mortality which revealed the following findings: (1) all deaths,

regardless of cause, occurring during the hospitalization in which the operation was

performed, even if after 30 days (including patients transferred to other acute care

facilities); and (2) all deaths, regardless of cause, occurring after discharge from the

hospital, but before the end of the thirtieth postoperative day.

Zea-Vera et al. (6) developed and validated a dynamic machine learning model

to predict CABG outcomes at clinically relevant pre-and postoperative time points. Their

ML predicted 30-day readmission and high cost, 2 outcomes for which no standardized

regression model exists. With reduction in mortality, resource utilization is becoming an

increasingly important outcome.

DISCUSSION

Principal Findings

Over the past decade, the rise of AI has grown dramatically in transforming the

way people learn and complete tasks especially in the field of medicine and surgery.

The rapid technological advances in AI particularly in ML algorithms have impacted

surgical care by assisting the surgeons to make better clinical decisions in the

preoperative and intraoperative phases of surgical procedures. These AI applications

aim to enhance patient safety by optimizing patient outcomes and surgical
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decision-making. In this review, we discuss the significant advancements and promising

applications of AI in cardiac surgery. The growing interest in its application to surgical

practice produced the following findings.

To provide accurate analysis, we only included English–written articles

discussing the actual implementation of AI in real-life clinical settings. The majority of

the included papers were published between 2020 and 2022 in order to give the most

recent information on the use of AI in cardiac surgery. Most of the reviewed studies

utilizes a cohort study design with a database registry composed of 1000-5000

participants per study.

It is worth noting that half of the included studies were from the United States,

which suggests that developed countries are in the forefront of AI application in health

care. Recently, the AI algorithms were being used in analyzing factors contributing to

COVID-19 mortality and detection of pathological findings (40,41). In cardiac surgery,

ML algorithms were used to predict mortality, survival, postoperative length of stay, and

outcomes in following cardiac surgeries such as valve replacement, coronary artery

bypass graft surgery, and heart transplantation (10,12,16,18,38,42). Half of the studies

utilized RF as ML technique to predict mortality and outcomes after cardiac surgery.

Aside from the United States, China has been making substantial use of AI in

healthcare. In the review, ten studies were conducted in China, largely in specified

hospitals. Due to their capacity to generate customized risk profiles, ML models have

the potential to show better predictive power for risk stratification compared to clinical

scores like EuroSCORE (24))
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Limitations

The quality of research in AI implementation in cardiac surgery needs to be

improved. Our review lacks randomized clinical trials (RCTs) and only included cohort

studies. In addition, most of the studies acquired clinical data through database registry.

Consequently, additional prospective RCTs are necessary to improve the

generalizability of results.

The application of AI is dependent on robust data, availability of computational

ML techniques appropriate for the complex data, and validation of its clinical application.

Because the availability of resources is crucial in its implementation to real-life settings,

the vast majority of the included studies were done in developed countries.

Lack of funds

Insufficient funding poses a significant obstacle to the integration of AI in clinical

practice, particularly in the field of cardiac surgery. The successful development and

deployment of AI systems necessitate substantial financial resources. These include

investments in infrastructure, data acquisition and management, algorithm

development, and training. Unfortunately, numerous healthcare institutions encounter

difficulties in allocating the required funds to support AI initiatives, given competing

priorities and limited budgets(43). Insufficient financial support hampers the seamless

integration of AI technologies into cardiovascular surgery practices, impeding progress

and undermining the realization of their potential benefits(44).
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Data heterogeneity and its challenges

The lack of uniformity in data collection, storage formats, and protocols across

different healthcare systems poses a considerable challenge to the widespread

adoption of AI in clinical practice. Data standardization is crucial for AI algorithms to

effectively analyze and interpret medical information. However, healthcare institutions

often employ diverse electronic health record (EHR) systems that vary in their data

structures and terminologies. This lack of standardization impedes interoperability and

hampers the integration of AI solutions seamlessly. Efforts are needed to establish

standardized data formats and protocols, allowing AI systems to operate efficiently

across different healthcare settings(45).

Familiarity and Trust

Familiarity and trust in AI technologies also represent potential barriers to their

application in clinical practice. Healthcare professionals may exhibit reluctance or

skepticism toward AI, fearing that these technologies may replace their expertise or

compromise patient safety. Building trust and familiarity among healthcare providers is

crucial for the successful integration of AI in cardiovascular surgery. Transparency in AI

algorithms, robust validation studies, and demonstrating tangible benefits can help

alleviate concerns and foster acceptance among clinicians(46).
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CONCLUSION

While the application of artificial intelligence in cardiac surgery has greatly

progressed in the last two decades, more highly powered studies need to be done to

assess challenges and to ensure accuracy and safety for use in clinical practice. AI may

be leveraged for screening and diagnosis to facilitate timely treatment of cardiovascular

diseases.
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) flow diagram.
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Supplement. AI Application Characteristics

Author & Year AI applications AI techniques
Clinical
Tasks

Disease
domains and
conditions

Agasthi et al,
2020 The Gradient

Boosting
Machine

learning (GBM)
prediction model

to create a gradient
boosting machine

learning (GBM) model
predicting 1-year

mortality in patients
with AS following TAVR

RA Aortic Stenosis

Agasthi et al,
2020 Gradient

Boosting
Machine

learning (GBM)

to apply machine
learning to determine
predictors of one year
mortality in patients
undergoing TAVR.

RA

Transcatheter
Aortic Valve

Replacement
(TAVR)

Allyn et al, 2017 Random
Forests
Gradient
Boosting
Machine

Support Vector
Machine

Naïve Bayes
Model

compare a machine
learning-based model
with EuroSCORE II to
predict mortality after

elective cardiac
surgery, using ROC
and decision curve

analysis.

RA Cardiac Surgery

Alshakhs et al,
2020

Naïve Bayes
Decision Tree

Logistic
Regression
K Nearest
Neighbor

Random Forest.

develop and evaluate a
model to predict

postoperative length of
stay (PLoS) for iCABG

patients

RA
Coronary Artery

Bypass Graft
(CABG)

Aranda-Michel
et al, 2021

Logistic
regression

models
imbalanced

random forest
classifier

Cox regression

learning to evaluate the
relationship between

MELD score and
outcomes of cardiac

surgery

RA Cardiac Surgery
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models,
random forest

survival models

Ayers et al,
2021

deep neural
network
logistic

regression,
AdaBoost, and
random forest.

to improve prediction of
survival after orthotopic

heart transplantation
(OHT)

RA
Heart

Transplantation
(HT)

Bodenhofer et
al, 2021

random forest
neural network
support vector

machine

Predict outcome of
heart valve surgery with

high precision
RA Heart Valve

Surgery

Chang et al,
2020

Multilayer
Perceptron

(MLP)
Random Forest

(RF)
Extra Trees (ET)

Stochastic
Gradient

Boosting (SGB)
Ada Boost

Classification
(ABC)

Bag Decision
Trees (BDT)

generate a predictive
model calculator

adapted to the regional
reality focused on
individual mortality
prediction among

patients with congenital
heart disease

undergoing cardiac
surgery.

RA Cardiac Surgery

Evertz et al,
2022

AI software
pro-vided by

Neosoft
(suiteHEART,
Version 5.0.0,

Neosoft,
Pewaukee,
Wisconsin,

USA)

and to study their
accuracy in terms of

volumetric assessment
and prognostic

implications in patients
with severe AS being

scheduled for
transcatheter aortic
valve replacement

(TAVR)

RA

Transcatheter
Aortic Valve

Replacement
(TAVR)

Fan et al, 2022 random forest to predict postoperative RA Cardiac Surgery

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.23297244doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.18.23297244
http://creativecommons.org/licenses/by/4.0/


neural network
support vector

machine
gradient
boosting
machine

mortality in patients
following cardiac

surgery

Fernandes et al,
2020

Logistic
Regression

Random
Forests
Neural

Networks
Support Vector

Machines
Extreme
Gradient

Boosting (XGB)

incorporating
intraoperative risk

factors in predicting
mortality following
cardiac surgery.

RA Cardiac Surgery

Gao et al, 2022 support vector
machines

(SVM)
stochastic
gradient
boosting
(SGBT)
extreme
gradient
boosting

(XGBoost)
random forest

(RF)
conditional
inference

random forest
(CIRF)

boosted
classification
trees, Naïve
Bayes (NB)

bagged

evaluated the
performance of

machine learning (ML)
methods to predict

postoperative major
bleeding.

RA Postoperative
Major Bleeding
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classification
and regression

tree (CART)

Hasimbegovic
et al, 2021

AutoML

to model the complex
decision-making

process of Heart Teams
when treating young
patients with severe
symptomatic aortic
stenosis with either

TAVR or iSAVR and to
identify the relevant

considerations.

RA Aortic Stenosis

He et al, 2022

Support vector
machine (SVM)

to build a statistical
model and machine
learning model to

predict Postoperative
atrial fibrillation (POAF)

in patients with
preoperative sinus

rhythm after cardiac
surgery using portable

long term ECG
monitoring.

RA
Postoperative

Atrial Fibrillation
(POAF)

Hernandez-Suar
ez et al, 2022

Logistic
regression (LR)
Artificial Neural
Network (ANN)
Naive Bayes

(NB)
Random Forest

(RF)
Support Vector
Machine (SVN)

develop and compare
an array of machine
learning methods to
predict in-hospital

mortality after
transcatheter aortic
valve replacement

(TAVR) in the United
States.

RA

Transcatheter
Aortic Valve

Replacement
(TAVR)

Hosseininezhad
et al, 2021

Logistic
Regression
(LR), linear
discriminant

analysis (LDA),

generate a machine
learning (ML)-based

model to predict
in-hospital mortality
after isolated mitral

RA
Isolated Mitral

Valve Replacement
(IMVR)
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support-vector
machine (SVM),

K-nearest
neighbors(KNN)
, and multilayer

perceptron
(MLP).

valve
replacement(IMVR).

Hu et al, 2020

LogitBoost

per-vessel prediction of
early coronary

revascularization (ECR)
within 90 days after fast
single-photon emission
computed tomography
(SPECT) myocardial

perfusion imaging (MPI)
using machine learning

(ML)

RA Early Coronary
Revascularization

Jiang et al, 2021

eXtreme
Gradient
Boosting

(XGBOOST)
CatBoost,

LightGBM, MLP,
SVM,

LR, Random
Forest, Gradiant
Boosting, KNN,
AdaBoost, and
Naive Bayes

identify critical
preoperative and

intraoperative variables
and predict the risk of

several severe
complications

(myocardial infarction,
stroke, renal failure,

and hospital mortality)
after cardiac valvular

surgery.

RA Perioperative
Complications

Kampaktsis et
al, 2021

Adaboost
Logistic

Regression
Decision Tree
Support Vector

Machine
K-nearest
neighbor
models

to develop and validate
machine learning (ML)
models to increase the
predictive accuracy of
mortality after heart
transplantation (HT).

RA
Heart

Transplantation
(HT)

Kampaktsis et CatBoost ML develop and validate an RA Heart
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al, 2022 model ML model for the
prediction of mortality

after heart
transplantation (HT) in
adults with congenital
heart disease (ACHD).

Transplantation
(HT)

Karri et al, 2021 Random Forest
Classifier (RF)
Decision Tree
Classifier (DT)

Logistic
Regression (LR)

K neighbours
classifier (KNN)
Support Vector
Machine (SVM)

Gradient
Boosted

Machine (GBM)

compared the
performance of

machine learning (ML)
to the to the established
gold standard scoring
tool (POAF Score) in

predicting postoperative
atrial fibrillation (POAF)
during intensive care
unit (ICU) admission

after cardiac
surgery.

RA Postoperative Atrial
Fibrillation (POAF)

Kilic et al, 2020 Extreme
gradient
boosting

(XGBoost)

estimating operative
mortality risk in cardiac

surgery
RA Cardiac Surgery

Kilic et al, 2021
extreme
gradient
boosting

(XGBoost)

performance of a
machine learning (ML)
algorithm in predicting
outcomes of surgical

aortic valve
replacement (SAVR).

RA
Surgical Aortic

Valve Replacement
(SAVR)

Kim et al, 2022 Dual-tree
complex

wavelet packet
transform

(DTCWPT)18

that predict the
occurrence of several

life-threatening
complications up to 4

hours prior to the event.

RA Perioperative
Complications

Lee et al, 2013

GenAlgs

To develop a
customized short LOS
(<6 days) prediction
model for geriatric

RA Cardiac Surgery
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patients receiving
cardiac surgery,

Li et al, 2020
Bayesian

networks (BNs)

To predict the individual
risk of CSA-AKI

occurrence.
RA Acute Kidney Injury

Li et al, 2022

Logistic
regression with

L2
regularization

to predict
post-transplant AKI
stage 3 based on
preoperative and

perioperative features.

RA Acute Kidney Injury

Lo et al, 2021 Optimizable
KNN (k-nearest

neighbor
classifier),

Optimizable
SVM (support

vector machine
classifier)

to develop
Vi.Ki.E.-based SML
models to provide

an important
decision-making tool

supporting the medical
team during open-chest

surgery.

RA Open-Chest
Surgery

Luo et al, 2021

Sun Yat-sen
University
Prediction
Model for
Infective

Endocarditis

construct an accurate
and easy-to-use

prediction model to
identify patients at high
risk of early mortality

after surgery for
infective endocarditis.

RA Infective
Endocarditis

MAthis et al,
2022

random forest
model

early detection of
post-operative

deterioration among
patients undergoing

cardiac surgical
procedures.

DST Post-Operative
Deterioration

Miller et al, 2019 Artificial Neural
Network (ANN)
Classification

and Regression
Tree (CART)

Random Forest
(RF)

evaluated the utility of 3
ML algorithms for

predicting mortality
after

pediatric HTx

RA
Heart

Transplantation
(HT)
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Molina et al,
2022

Logistic
regression

models
Naive Bayes,

Multilayer
perceptron

Support vector
machine (SVM)
Random forest

Gradient
boosting

(boosted trees)

to predict cardiac
surgical operative

mortality.
RA Cardiac Surgery

Park et al, 2022

mean
imputation
statistical
imputation

singular value
decomposition

(SVD)
random-forest-b
ased imputation

method (i.e.,
MissForest)

to analyze and predict
outcomes after

open-heart surgery.
RA Open-Heart

Surgery

Raghu et al,
2022 deep learning

model
(CXR-CTSurger

y)

develop a model that
estimate postoperative
mortality risk based on
a preoperative chest

radiograph for cardiac
surgeries

RA Cardiac Surgery

Shou et al, 2022

extreme
gradient
boosting

(XGBoost)

prediction of
post-transplant

mortality in patients
bridged to heart

transplantation with
temporary mechanical

circulatory support
(tMCS)

RA
Heart

Transplantation
(HT)

Thalappillil et al,
2020

AI software that
uses 3D

to evaluate an
automated RA Aortic Stenosis
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echocardiograp
hy to model the
aortic annulus.

echocardiography
software as compared

with computed
tomography in

measurement of the
aortic valve annulus in

patients with aortic
stenosis.

Tuong et al,
2021

Random Forest
(RF) algorithm

and logistic
regression

To predict pacemaker
risk following TAVR. RA

Transcatheter
Aortic Valve

Replacement
(TAVR)

Wang et al,
2022

Gaussian
Process (GP)
regression ML
algorithm

hybrid machine
learning (ML)
framework:

first: random
forest (RF)

algorithm to flter
out unimportant

features
second: a
Gaussian

process (GP)
regression
model to

capture the
complex

relationships
between the

clinical data and
intraoperative

RBC transfusion
amount.

last: compared
the performance

predicting red blood cell
(RBC) transfusion
requirements in

cardiothoracic (CT)
surgery

RA Red Blood Cell
Transfusion
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of GP
classifcation to

other well-
known machine

learning
classifcation
algorithms,

including neural
networks,
XGBoost,

random forest,
and decision

tree.

Wue et al, 2022

Multivariate
logistic

regression
(MLR),

Support vector
machinelearning

(SVM),
Random forest
model (RFM),

Multi-layerperce
ption (MLP)

establishing and
validating a machine

learning-based
quantitative method for

noninvasive
hippocampal

assessment through
preoperative cranial

computed tomography
(CT) instead of

magnetic resonance
imaging for the early

detection of AKI-related
hippocampal damage

and prompt clinical
intervention.

DST
AKI - related
Hippocampal

Damage

Zea-Vera et al,
2021

Extreme
Gradient
Boosting

(XGBoost)

develop and validate a
dynamic machine
learning model to

predict CABG
outcomes at clinically

relevant pre- and
postoperative time

points.

RA
Coronary Artery

Bypass Graft
(CABG)

Zhong et al,
2020

Logistic
Regression (LR)

build up multiple
machine learning RA Perioperative

Complications
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Artificial Neural
Network (ANN)
Random Forest

(RF)
Extreme
Gradient
boosting

(XGBoost)

models to predict
30-days mortality, and 3
complications including

septic shock,
thrombocytopenia, and
liver dysfunction after
open-heart surgery.

Zhou et al, 2021 Logistic
regression (LR),
Support Vector

Machines
(SVM)

Random Forest
(RF)

Extreme
gradient
boosting

(XGBoost),
Adaptive
boosting

(AdaBoost),
Gradient
boosting

machine (GBM)
Artificial neural
network (ANN)

establish a
risk-prediction model

for assessing prognosis
of HTx using

machine-learning
approach.

RA
Heart

Transplantation
(HT)

*RA - Risk Analysis
*DST - Disease Screening or Triage
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