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Abstract  

Deep learning (DL)-based prediction of biological age in the developing human 

from a brain magnetic resonance image (MRI) (“brain age”) may have important 

diagnostic and therapeutic applications as a non-invasive biomarker of brain health, 

aging, and neurocognition. While previous deep learning tools for predicting brain age 

have shown promising capabilities using single-institution, cross-sectional datasets, our 

work aims to advance the field by leveraging multi-site, longitudinal data with externally 

validated and independently implementable code to facilitate clinical translation and 

utility. This builds on prior foundational efforts in brain age modeling to enable broader 

generalization and individual’s longitudinal brain development. Here, we leveraged 

32,851 T1-weighted MRI scans from healthy children and adolescents aged 3 to 30 

from 16 multisite datasets to develop and evaluate several DL brain age frameworks, 

including a novel regression diffusion DL network (AgeDiffuse). In a multisite external 

validation (5 datasets), we found that AgeDiffuse outperformed conventional DL 

frameworks, with a mean absolute error (MAE) of 2.78 years (IQR:[1.2-3.9]). In a 

second, separate external validation (3 datasets), AgeDiffuse yielded an MAE of 1.97 

years (IQR: [0.8-2.8]). We found that AgeDiffuse brain age predictions reflected age-

related brain structure volume changes better than biological age (R2=0.48 vs 

R2=0.37). Finally, we found that longitudinal predicted brain age tracked closely with 

chronological age at the individual level. To enable independent validation and 

application, we made AgeDiffuse publicly available and usable for the research 

community. 
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Highlights  

• Diffusion regression models trained with a large dataset (AgeDiffuse) enable 

accurate pediatric brain age prediction.  

• AgeDiffuse demonstrates relatively stable performance on multiple external 

validation sets across people aged 3 – 30.   

• Our pipeline is made publicly accessible, encouraging collaboration and progress 

in pediatric brain research. 

 

Abbreviations 

DL – Deep learning 

MRI - Magnetic resonance imaging 

MAE  - Mean absolute error 

IQR - Interquartile range 

95% CI – 95% confidence interval 

SoTa – state-of-the-art 

DiffMIC – dual-guidance diffusion model for medical image classification 

AgeDiffuse – Novel regression dual-guidance diffusion model for brain age prediction 

VV - cerebrospinal fluid 

WMV - white matter volume 

GMV - gray matter volume 

sGMV - total subcortical grey matter volume 

CNN – convolutional neural network 

 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2023. ; https://doi.org/10.1101/2023.10.17.23297166doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297166
http://creativecommons.org/licenses/by-nc/4.0/


 4

1. Introduction 

The prediction of biological age from healthy brain magnetic resonance imaging 

(MRI) scans (i.e. “brain age”) has the potential for wide-ranging medical and scientific 

applications 1,2. Establishing reliable brain age prediction in large healthy-control 

populations would enable studying how various diseases, interventions, and 

socioeconomic factors influence brain development. When examined within cohorts 

affected by particular risk factors, the difference between predicted brain age and actual 

chronological age (i.e. “brain age gap”) may yield insights into how various external and 

internal factors affect brain development 3,4. Increased brain age gap has been 

associated with several brain disorders, such as schizophrenia, multiple sclerosis, mild 

cognitive impairment, and dementia 5. Furthermore, accurately tracking the brain age 

gap may be useful in evaluating therapies designed to prevent neurocognitive disorder. 

Most research to this point has centered on adult and elderly conditions, where 

accelerated brain aging is inherently seen as a negative factor 6. The implications of the 

brain age gap in developing children and young adults remain unclear, mainly owing to 

a lack of robust models that can accurately predict brain age out-of-sample 7. The 

existing brain age prediction models have limited generalizability because they fail to 

make accurate predictions on new datasets that differ from the data used for model 

training 8. 

Researchers have explored multiple approaches to brain age prediction, leading 

to a diverse set of methods with varying results 9. Direct comparison of these methods is 

challenging due to cross-study population differences, various imaging preprocessing 

techniques, and different evaluation strategies. Deep learning (DL) has emerged as a 

popular strategy for brain age prediction, given its remarkable success in trans-domain 

image analysis problems and its avoidance of time-consuming traditional feature 

extraction and preprocessing steps 9. Within pediatric or developing brain age 

prediction, there have been relatively few investigations 10–13, likely due to limited data 

availability in this age range. Most existing studies demonstrate their models on single-

institution datasets and have lacked multi-institutional external validations 10–13, which is 

crucial for assessing true model generalization across diverse real-world settings and 

clinical utility. Factors including differences in scanners and protocols across sites, 
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patient demographics, and other manifestations of dataset shift and drift are known to 

impact performance significantly 14,15. Furthermore, reviewing the pre-existing literature, 

we found no pediatric brain age models with implementable codes 10–13, which is critical 

to moving the field forward and investigating these models' clinical utility 16. Finally, 

brain age models developed from cross-sectional data may not be suitable for individual 

brain age tracking, and further study is needed to determine how brain age models 

perform across longitudinal time points, and their relationship to structural brain 

changes 17,18. 

In this study, we aim to address these gaps and develop a usable open-source 

model for reliable brain age prediction for childhood through young adulthood. Given the 

recent rise of generative DL methods and their promising results within the medical 

imaging domain 19, we developed a diffusion dual-guidance probabilistic regression 

model for pediatric brain age prediction (AgeDiffuse). We compared it to the state-of-

the-art convolutional neural network (CNN) approaches, making this the first work, to 

our knowledge, to adapt diffusion models for image-based regression tasks. We 

demonstrate that diffusion-based models generalize well across two tiers of external 

validation, encompassing multi-institutional datasets from diverse geographic regions. 

We also investigate structural brain changes and their correlations with longitudinal 

brain age changes to yield interpretable insights into the model's inner workings. 

Altogether, we present a robust model rigorously validated and made publicly available 

to the community, enabling the investigation of pediatric brain age in various clinical 

scenarios. 
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2. Results 

2.1. Diffusion Regression for Brain Age 

 

Figure 1 A. Aggregated dataset overview (total N=32,851). A1: Bar plot with number of MRI T1w per 
age group in Train (N=4,549)/Test Set 1(N=583)/Test Set 2(N=27,719); the y-axis is log scaled. A2-
A4: Violin plots for dataset age distributions in Train(A2)/Test Set 1(A3)/Test Set 2(A4). The violins 
represent kernel density estimates of the age distribution in each dataset. Wider sections of the 
violins indicate a higher probability density at that error level .  
B. AgeDiffuse method overview: MRI preprocessing, 2D slice selection, AgeDiffuse model 
prediction, and model ensembling .  
C. Model performance comparisons on Test Set 1 (N=583; 5 datasets). C1: Bar plot for model-wise 
mean comparison in Test Set 1, with 95% confidence intervals overlay. The diffusion 5-slice 
ensemble (AgeDiffuse-5) performed with the highest accuracy among all models with mean error 2.8 
years[IQR=1.3-3.9] compared to ModelGenesis mean error 3.2 years [IQR=1.0-4.5] and 
RadImageNet mean error 4.1 years [IQR=1.5-5.8]. C2: Violin plots for model-wise error distribution 
comparison in Test Set 1. MRI = Magnetic resonance imaging, AgeDiffuse = Novel regression dual-
guidance diffusion model for brain age prediction. 

We aggregated a dataset with 32,851 MRI T1-weighted (T1w) scans (Train Set 

N=4,549, Test Set 1 N=583, Test Set 2 N=27,719) from subjects aged 3-30 years from 

6
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16 publicly available, multisite datasets of healthy, developing children through 

adulthood (Fig. 1A; Methods “Dataset” section). We then developed an MRI 

preprocessing and registration pipeline (Fig. 1B, see Methods “ 

Image Preprocessing and Registration” section). We evaluated the performance of 

two state-of-the-art DL approaches for medical imaging: 1) a medical-domain, 

pretrained 2D convolutional neural network (RagImageNet20) and 2) a self-supervised, 

pretrained 3D UNet (ModelGenesis21) (see Supplementary Material A1. Model 

hyperparameter tuning). We then developed a 2D diffusion-based regression model, 

called AgeDiffuse model, that uses dual-granularity guidance and condition-specific 

maximum mean discrepancy (MMD) regularization. AgeDiffuse was adapted from a 

dual-guidance diffusion model for medical image classification 19 (see Methods 

“Regression Dual-Guidance Diffusion Model”). Dual-guidance models use use both 

global and local priors for conditional guidance at each step, and have the advantage of 

modeling representations with both holistic and fine-grained understanding of medical 

images. 

Table 1 Comparison of mean absolute error (MAE) between different models on Test Set 1. 2D 
equidistant quantile slices ensembling (AgeDiffuse-5) provides a robust prediction while being less 
susceptible to noise and outperforms other methods. IQR=interquartile range.  
 

Method 2d/3d MAE, years [IQR] 

RadImageNet 2D – median slice 4.07 [1.5-5.8] 

ModelGenesis 3D 3.19 [1.0-4.5] 

AgeDiffuse-1 2D – median slice 3.15 [1.27-4.41] 

AgeDiffuse-5 2D Model ensemble:  25th, 
37.5th, median, 62.5th, 75th slices 

2.78 [1.24-3.92] 

 

On initial multi-institutional external validation (Test Set 1, N=583, 5 datasets), the 

diffusion network using the median axial slice as input (AgeDiffuse-1) achieved the 

highest accuracy compared to other methods for predicting chronological age (Table 1, 

MAE = 3.15 years, IQR=[1.27-4.41]Table 1). To investigate if sampling from multiple 

axial slices would improve model performance, we trained 2D diffusion models on axial 

MRIs sampled from the 25, 27.5, 50 (median), 62.5, and 75 percentile slices in the 

craniocaudal distribution and then tested model ensembling across slices (see Methods 
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“Model Ensembling”). The 5-slice diffusion network ensemble (AgeDiffuse-5) achieved 

the highest accuracy with MAE=2.78 years (IQR=[1.24-3.92]) outperforming 3D 

approach ModelGenesis MAE=3.19 years (IQR=[1.0-4.5]) and 2D RadImageNet 

MAE=4.07 years ([IQR=1.5-5.8]). To further test the model generalizability, we 

conducted a blinded secondary validation on three external datasets (Test Set 2; 

N=27,719). We compared simple model averaging with varying sizes and outlier 

exclusion to evaluate different ensembling techniques and found that the five-slice 

AgeDiffuse-5 model yielded the best brain age prediction with MAE=1.97 years 

(IQR=[0.76-2.75]) (Figure 2). For all models, accuracy decreased for later ages, 

particularly over 25 years old, though AgeDiffuse had less performance degradation 

than other models (See Supplementary Figure S6 and Supplementary A4. Outlier 

Analysis).  

Figure 2 Violin plots for AgeDiffuse brain age prediction in developing children: dual-tiered external 
validation with text median overlays. Violin plots for slice-wise diffusion-based model comparison on 
(C1) Test Set 1(N=583, 5 datasets) and (C2) Test Set 2 (N=27,719, 3 datasets). The violins 

8
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represent kernel density estimates of the error distribution with a text overlay of mean values. Wider 
sections of the violins indicate a higher probability density at that error level. The diffusion 5-slice 
ensemble (AgeDiffuse-5) consistently performed with the highest accuracy among all models on 
both test sets (C1.1-C2.1). C3. Violin plots for prediction error distribution for each chronological age,
divided by Test Set 1/Test Set 2. AgeDiffuse-5 demonstrated strong performance across the age 
range, with mild performance degradation for subjects older than 25 years (See Supplementary 
Figure S6 and Supplementary A4. Outlier Analysis). 

Recent studies have proposed bias correction for deep learning regression models 

given the tendency for models to underestimate older age and overestimate younger 

age 22, albeit this correction strategy is controversial 23. We investigated brain age bias 

correction and found that it did not improve prediction accuracy (See Supplementary 

material A3. Age-Bias Correction). 

 

2.2. Brain age and brain structure volumes 

Figure 3 A. Deep Learning Brain Age and Structural Tissue Volumes. Brain structural tissue volumes 
for white matter (WMV), grey matter (GMV), total subcortical grey matter volume (sGMV), and 
ventricles (VV) are plotted for each cross-sectional control scan as a function of (A) chronological 
age and (B) predicted brain age using AgeDiffuse-5.  
 

Interpretability of deep learning algorithms is clouded by the black-box nature of 

hidden layers24, and brain age models to-date have not investigated the underlying 

biological and anatomical bases of predictions. To improve the understanding of 

underlying factors contributing to brain age prediction, we analyzed associations with 

brain substructure volumes derived from Bethlehem et al 25 within overlapping patients 

9
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from both studies for (N=25,096, age mean 12.2, Figure 3). We found that, graphically, 

chronologic age and predicted brain age had similar associations with brain 

substructure changes over development. We then examined how brain age gap, 

defined as per Eq (1), is associated with brain substructure volumes.  

–    Eq 1

Specifically, we investigated whether ‘younger brain’ and ‘older brain’ outliers, 

defined as predicted brain age >1 standard deviation above or below the mean 

prediction for a given chronological age and sex, were associated with brain 

substructure volumes. We found that younger brain outliers had increased gray matter 

volume (GMV) and decreased white matter volume (WMV) and ventricle volume (VV), 

and older brain outliers had decreased subcortical gray matter volume (sGMV) and 

GMV, and increased VV (Mann-Whitney U test <0.003 for each, Figure 4A). Effect sizes 

were largest for VV and GMV for ‘older brain’ (Cohen’s d�>�0.2, Figure 4B).  

Figure 4 A. Box plots for brain age gap and association with brain substructure volumes. Brain age 
gap was defined as predicted brain age minus chronological age. “Younger” brain age gap was 
defined as predicted brain age >1 standard deviation below the mean; “Older” brain age gap was 

10
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defined as predicted brain age >1 standard deviation above the mean. The “average” group was 
defined as those subjects whose brain age gap lies within one standard deviation. Pairwise tests for 
significance were based on the Mann-Whitney U-test, and P values were adjusted for multiple 
comparisons using the Bonferroni correction. Significant differences (with corrected P�<�0.003) are 
highlighted with an asterisk. B. Heatmap of Cohen’s d effect sizes comparing brain age outliers 
versus within normal range, stratified by gender and key volumetric measures from MRI.  VV = 
cerebrospinal fluid, WMV = white matter volume, GMV = gray matter volume, sGMV = total 
subcortical grey matter volume. 

 

To determine how brain substructure volume was comparatively associated with 

chronological versus brain age, we compared two multivariable linear regression 

models with brain substructure volumes and sex as independent variables and 

chronological age or predicted brain age as dependent variables. We found that brain 

substructure volume was more associated with brain age than chronological age (R-

squared: 0.37 vs R-squared: 0.47; See Supplementary material A2. Linear model 

diagnostics). 

 

2.3. Longitudinal brain age evaluation 

A barrier to the clinical utility of brain age models is that, due to data availability, 

models are developed on cross-sectional data, yet the clinical impact would be 

strengthened by the ability to track individual brain age over time (and how exposures 

modify individual-level brain age). There is concern that brain age prediction derived 

from cross-sectional data does not generalize to individual-level brain age change 17. To 

investigate this, we applied AgeDiffuse-5 to longitudinal data available within the ABCD 

dataset, where each subject contains 3 MRI time points at roughly 2-year intervals. On 

longitudinal analysis, we found that predicted brain age tracked directionally with 

chronologic age, with a slight underestimation of chronological age that was within the 

margin of algorithm expected prediction error (Figure 5A). 

We further examined the relationship between changes in brain age and brain 

substructure volumes over time in 1,392 subjects with available data. We found that the 

rate of change in brain age between subsequent MRI timepoints was associated with 

the rate of changes in brain substructure volumes over the same time interval (Figure 

5B). Accelerated brain aging (i.e. change >1 standard deviation above the mean) was 

associated with an increased rate of growth in VV and a decreased rate of growth in 
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sGMV, GMV, and WMV. Decelerated brain aging (i.e. change <1 standard deviation 

above the mean) was associated with a decreased rate of growth in sGMV and VV 

(adjusted P<0.006, Figure 5B, see Methods “Longitudinal Brain Age “ section). 

Figure 5 A. Individual Brain Age Longitudinal Change (n=1492). A1: Individual lines show brain age 
longitudinal change for 1492 subjects (ABCD dataset 26) who had 3 visits within 2 years in between 
with boxplot overlay. A2: Individual brain age changes in-between visits: baseline, +2 years 
timestamp was computed as the brain age difference for each subject between the second and 
baseline visit; +4 years timestamp was computed as the brain age difference for each subject 
between the third and baseline visit. B. Association Between Longitudinal Changes in Brain Age and 
Brain Volume (n=1392). The study examined the relationship between changes in brain age and 
changes in brain volume over time in 1,392 participants. Significant volumetric variables are marked 
with an asterisk (P values were adjusted for multiple comparisons, P�<�0.006, See Methodology 
“Longitudinal Brain Age Analysis”)  C. The participant (Female, 23 years: 28andme dataset 27) 
underwent daily testing for two studies of 30 consecutive days with one year in between (60 scans in 
total). The mean predicted brain age is 19.1 years, with a standard deviation of 0.58.  VV = 

12
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cerebrospinal fluid, WMV = white matter volume, GMV = gray matter volume, sGMV = total 
subcortical grey matter volume. 

 
Finally, to demonstrate the stability of brain age predictions at the intra-patient level, 

we applied AgeDiffuse-5 for a single female participant tested over 60 days with daily 

MRI across two studies one year apart (28andme dataset 27). The mean predicted brain 

age was 19.1 years with a standard deviation of 0.58 across (Error! Reference source 

not found.C). The low standard deviation indicates consistent predictions across the 60 

test days, with no observable trends in predicted age or error over time.  
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3. Discussion 

Imaging-based brain age prediction in developing humans may have far-reaching 

clinical applications, though clinical translation has been limited by small datasets, 

unclear generalizability, and lack of reproducible models. In this study, we aggregated 

that largest to-date dataset of MRI scans for children through adulthood to develop and 

rigorously validate a diffusion-based regression neural network (AgeDiffuse) for brain 

age prediction. We found that AgeDiffuse, ensembled over multiple MRI slices among 

scans from a multi-institutional repository, demonstrated highly accurate and 

generalizable brain age prediction, outperforming current state-of-the-art models. 

AgeDiffuse was subject to two-tier validation across multiple datasets, and 

implementable code has been released open source as a resource for the scientific and 

clinical communities. Our results show that ensembling across axially sampled MRI 

slices can improve performance and that a technique where slice-based outlier 

predictions are excluded before averaging improves generalizability. Such a technique 

could enable accurate brain age prediction in patients with focal brain pathologies (e.g. 

tumors, vascular malformations, stroke), as the model would exclude slices with 

aberrant prediction. Additionally, we found that application of AgeDiffuse to longitudinal 

data was reliable and that the brain age prediction was driven, in part, by interpretable 

brain substructure volume changes that are associated with development. We believe 

this model is positioned for investigation in various pediatric conditions to track and 

predict brain development and neurocognitive outcomes in various diseases (e.g. brain 

tumors, endocrine dysfunction) and/or interventions (e.g. radiation therapy, hormonal 

therapies) that may affect normal development and neurocognitive outcomes. 

Brain age tracking may reveal clinically relevant states, such as changes in the 

neurocognition 5, that could guide interventions and triage patients for escalated care. 

Previous studies have linked the brain age gap to various biomedical factors and 

lifestyle variables in healthy cohorts 28–30. Large-scale datasets have recently enabled 

the development of normative growth charts for key structural MRI metrics across ages, 

providing an essential reference for quantifying individual variation 25. These brain 

charts identify neurodevelopmental milestones, show reliability across scans, and can 
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benchmark deviations in disorders. In this study, for the first time, we demonstrate that 

DL brain age prediction is associated with substructure volume changes that signify 

age-related atrophy at the individual-level. Our findings suggest that DL brain age and 

substructure volumetrics are likely complementary measures, though additional 

research should examine how much incremental information is added by DL brain age 

compared to structural volumetrics when predicting neurocognitive endpoints.  

In the context of children and developing humans in the early part of the lifespan, 

several DL methods have emerged for age inference directly from 3D images, 

eliminating the need for prior feature extraction 9. Mendes et al 10 achieved an average 

10-fold average Mean absolute error(MAE) of 1.57 years using 3D VGG16, utilizing 

data from two public datasets (ABIDE-II, N=580, and ADHD-200, N=922) covering an 

age range of 6 to 20 years. He et al 12 compared the performance of 2D-

ResNet18+LSTM and 3D neural networks, reporting an MAE of 1.14 years versus 2.64 

years on an external cohort with subjects aged 0 to 6 years (private dataset, N=428). 

Hong et al. 13 MAE of 67.6 days on an internal held-out test set of 44 subjects aged 0 to 

5 years, utilizing a 3D CNN approach. Additionally, Hu et al. 11 proposed a 3D CNN 

model, demonstrating an average MAE of 1.01 years in a 5-fold cross-validation on 880 

subjects (ABIDE I and II, ADHD200), spanning ages 6 to 18 years. However, only one 

of these methods has publicly available code with no model weights publicly available 
13, and none have compared model generalization across multiple studies that were not 

included in the model training process. The focus on narrow age ranges and lack of 

rigorous evaluation on heterogeneous public datasets raises questions about model 

generalizability and reproducibility. While we were not able to directly benchmark 

AgeDiffuse to the models due to a lack of implementable code, we utilized three 

comparison approaches with similar, established 2D and 3D CNN architectures and 

optimized them with transfer and self-supervised learning. We found that diffusion-

based model performance – even without ensembling – had improved performance. We 

hypothesize that the brain age correction procedure does not generalize well on unseen 

datasets and does not capture the non-linear, complex relationship between brain age 

and chronological age, unlike deep learning. 
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Our study highlights the challenges of brain age model generalization and has 

several important limitations. We noted that brain age prediction tends to become less 

precise in older age ranges, likely due to developmental and environmental 

heterogeneity 31–33. Specifically, we observed a performance drop in one of the smaller 

external validation datasets (WU1200), with an age range of 22 – 29 years. Notably, this 

population also had differences in substructure volumetrics, indicating that the 

performance drop may be due more to true population differences than problems with 

the model (Supplementary Material A4). These findings have been noted previously 31–

33, and have implications for the utility of brain age in older populations. They also 

suggest that individual-level longitudinal trajectories of brain age may be more 

informative than snapshots compared to a general population. We were able to 

establish feasibility of longitudinal analysis within the ABCD cohort, although this was 

limited to age ranges 8 – 16, and further work is ongoing to evaluate longitudinal 

changes over longer intervals. Secondly, the aggregated MRI dataset might have a bias 

towards North American and European populations. This is a common pitfall of 

healthcare inequity that must be addressed by increasing the number of studies in other 

demographics. Moving forward, curating test sets that capture wide pediatric age 

ranges and those with real-world clinical data will better assess model performance for 

diverse real-world utilization, and we would recommend pilot testing in 

underrepresented patient groups prior to implementation 34. Additionally, utilizing 

multiple imaging modalities (for example, T1w and T2) could help to refine model 

prediction further.   
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4. Conclusions 

In this work, we developed and rigorously validated an accurate brain age 

prediction model, AgeDiffuse, for children through adulthood using diffusion regression 

on multiple datasets. We demonstrated that this approach could be feasibly applied to 

longitudinal data to track individual brain age changes over time. Further analyses 

suggested that deep learning brain age and substructure volumetrics carry 

complementary information. With this study, we release, to our knowledge, the first fully 

implementable deep learning brain age algorithm to the scientific community.  

Independent validation of our model in the context of various conditions with longitudinal 

cohorts and clinical endpoints is needed to maximize the impact of deep learning-based 

brain age prediction for children through adulthood.  
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5. Materials and methods 

Dataset 

We curated T1w MRIs without contrast enhancement from 16 datasets and stratified 

them by age so that each age had 100 scans per year maximum in the training set, to 

avoid data imbalance during the training (ABCD35, ABIDE 36, AOMIC37, Baby 

Connectome38, Calgary39, ICBM40, IXI41, NIMH42, PING43, Pixar44, SALD45, 

NYU2(CoRR) 46, Healthy Adults47; Long57948, WU120049; see Supplementary Material 

A5). To create robust train and test sets, we divided the data into training, validation, 

and test sets using a rough 70/15/15 split. When splitting the data, we matched the age 

distribution coverage between the training and test sets as closely as possible. This 

ensured that both sets had similar representation across the full range of ages. At the 

same time, we preserved the integrity of each original dataset by keeping all subjects 

from a given source together in either the training or test set. This avoided 

contaminating the test data with subjects from datasets used in training. The training 

data consisted of 8 datasets totaling 4,549 subjects (Figure 2, Panel A2). We held out 5 

separate datasets with 583 total subjects as our first test set (Figure 2, Panel A3). We 

also created a larger second test set using 3 primary datasets with 27,719 subjects 

(Figure 2, Panel A4). 

 

Image Preprocessing and Registration 

Scans were co-registered to MRI age-dependent T1-weighted asymmetric brain 

atlases, generated from the NIH-funded MRI Study of Normal Brain Development 

(hereafter, NIHPD, for NIH pediatric database 50) with rigid registration using 

SlicerElastix51 (Elastix generic rigid preset). All MRIs were skull-stripped using HD-BET 
52. MRI images were rescaled to 1-mm isotropic voxel size to preserve anatomical size 

differences using the itk-elastix Python package 53. N4 bias field correction was 

performed using the simple-itk Python library. We then normalized MRI images, 

performed median filtering, removed background pixels using Otsu filtering, and 

standardized the intensity scale. After preprocessing, we identified axial slices with at 

least 1% non-zero voxels to ensure consistent anatomical coverage across subjects. 

We extracted five equidistant percentile slices from these valid slices along the inferior-
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superior axis - the 25th, 37.5th, 50th, 62.5th, and 75th percentiles. The 50th percentile 

median slice focused on central structures, while lower and higher percentile slices 

sampled inferior and superior regions. This multi-slice approach provided an 

anatomically distributed sampling of the pediatric brain for 2D deep learning analyses.  

 

Regression Dual-Guidance Diffusion Model 

The overall pipeline is shown in Error! Reference source not found.B. We 

modified the dual-guidance diffusion model architecture for medical image 

classification(DiffMIC) proposed by Yijun Yang et al19 into a regression task by changing 

the loss function to mean squared error and adding a final fully connected layer. 

Additionally, we added an early stopping rule with patience=50 for both models. We 

trained all models separately on an A6000 Nvidia GPU; further technical details and 

code can be found on the GitHub repository that would be made public upon 

acceptance.  

 

Model Ensembling 

We conducted experiments comparing simple model averaging with varying 

ensemble sizes and outlier exclusion to evaluate different ensembling techniques for 

improving predictive uncertainty. Ensembles of sizes 3 and 5 were constructed by 

training identical model architectures for different slice quantiles. We investigated an 

“outlier exclusion” ensembling technique to mitigate the effect of outlier scans on age 

prediction. We hypothesized that these outliers were likely due to image artifacts, poor 

quality scans, MRI registration or other out-of-distribution characteristics. For the outlier 

exclusion ensemble, 5 models were trained, and each model produced a brain age 

prediction for a given input. The standard deviation of the predictions from the 5 models 

was calculated. Any individual model prediction that was an outlier meaning it deviated 

markedly from the ensemble average, was excluded. The remaining model predictions 

were averaged to produce the final consensus prediction. All ensembles were evaluated 

by two-tiered external validation (Figure 2). 
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Brain Substructure Volumetrics 

 We used the centile definition described in Bethlehem et al 25; for details on the 

normative growth charts, please refer to the original publication. We obtained a total of 

25.097 overlapping scans from datasets ABCD35, IXI41, Pixar44, SALD45, WU120049; see 

Supplementary Material A5).  Four key volumetric centile measurements (WMV, GMV, 

sGMV, VV)  were compared pairwise between “older”/”younger” and “average” age 

groups for each gender. Brain age gap was defined as predicted brain age minus 

chronological age. “Younger” brain age gap was defined as predicted brain age >1 

standard deviation below the mean; “Older” brain age gap was defined as predicted 

brain age >1 standard deviation above the mean. The “average” group was defined as 

those subjects whose brain age gap lies within one standard deviation. Pairwise Mann-

Whitney U tests were used to compare the older group to the average age group for 

each volumetric and gender. Bonferroni correction was applied to adjust for multiple 

comparisons (adjusted alpha = 0.05/16 = 0.003125). Cohen's d effect sizes were 

calculated to quantify the standardized mean difference between groups for each 

volumetric and gender.  

 

Longitudinal Brain Age Analysis 

 To calculate the association between longitudinal changes in brain age and brain 

volume over time in 1,392 participants, we calculated the rate of volumetric measures 

change (WMV, GMV, sGMV, VV) for each time point and each subject and calculated 

their brain age using AgeDiffuse-5. The acceleration values were then categorized as 

“Accelerated”, “Decelerated”, or “Stable” based on standard deviation thresholds. For 

each volumetric, pairwise two-sided Mann-Whitney U tests compared the “Stable” group 

to “Accelerated”/ “Decelerated”. Bonferroni correction was applied to adjust for multiple 

comparisons across the 4 volumetrics (P�<�0.006) 

 

 

 

 

Performance Evaluation and Statistical Analysis 
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The primary endpoint was the mean average absolute error of predicted age 

compared to chronological age (ground truth). Violin and box plots with median errors 

were used for visual comparison. Associations between substructures and brain age or 

chronological age were evaluated with multivariable logistic regression. Model 

goodness of fit was evaluated by comparing R2 values (See Supplementary Material 

A2). Pairwise tests for significance were based on the two-sided Mann-Whitney U-test, 

and P values were adjusted for multiple comparisons using the Bonferroni correction.  
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Data availability. The complete dataset (Supplementary Material A5) aggregated 

for this study contains primary datasets that differ widely in terms of their “openness,” 

i.e., their availability for secondary use without restrictions or special efforts by the 

primary study team. Preliminary studies ranged from fully open and downloadable 

datasets in the public domain to more restricted datasets that could only be used for 

specific purposes, under separate agreements, or after special efforts had been made 

to provide data in shareable form. 

Code availability. The model training and testing code will be made available in the 

study git repository upon acceptance. 

Ethical Approval and Informed Consent. The datasets were anonymized and not 

collected by the investigators, in which case the work is classified as non-human 

research. 
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Supplementary Material 

A1. Model hyperparameter tuning 
 
RagImageNet Finetuning  

The RadImageNet database is an open-access medical imaging database. It was

designed to improve transfer learning performance on downstream medical imaging

applications20. We used RadImageNet pretrained ResNet50 backbone and added 3 fully

connected layers (sizes: 1024, 128, 1) in combination with dropout layers (0.5) and fine-

tuned unfreezing all layers using Adam optimizer learning rate 1e-3 that reduces on

plateau and MAE loss, with an early stopping rule (patience=10) and batch size 32. 

 

ModelGenesis Finetuning 

 We pre-trained ModelGenesis 3D U-net backbone in a self-supervised way on

the brain MRI scans as described in 21. We further used the encoder with one fully

connected layer (size:512) for finetuning using SGD optimizer with learning rate 1e-5

that reduces on plateau for 20 epochs and MSE loss. We used batch size 1 and

downscaled MRI T1w to [64,64,64] patch size with resolution [2,2,2]. 

 

Figure S6 Box plots for prediction error distribution of different models for each chronological age on 
Test Set 1(n=583) AgeDiffuse-5 demonstrated strong performance across the age range, with mild 
performance degradation for subjects older than 25 years. 
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A2. Linear model diagnostics 

We analyzed linear model fit using the statsmodels python package to identify 

potential problems that can occur from fitting linear regression model to non-linear 

relation. We compared two linear regressions with VV, WMV, sGMV, GMV and sex 

variables as predictors and chronological age versus predicted brain age as dependent 

variables and found that the brain age variable had a higher R-squared value (R2:0.37, 

F-stat:2936, AIC:1.1e+5, Figure S7 vs R2:0.48, F-stat:4587, AIC: 1.1e+5, Figure S8), 

indicating a stronger correlation between structural changes and predicted brain age as 

compared to chronological age.  

 

 

Figure S7 Chronological Age Linear Model Diagnostics(R2:0.37, F-stat:2936, AIC:1.1e+5). Top left: 
Residual vs Fitted values. In the graph, a red (roughly) horizontal line would be an indicator that the 
residual has a linear pattern. Top right: Standardized Residual vs Theoretical Quantile to check if 
residuals are normally distributed visually. Bottom left: Sqrt(Standardized Residual) vs Fitted values
to check homoscedasticity of the residuals, with non-horizontal scatter suggesting the variance of 
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errors is not constant. Bottom right: Residual vs Leverage Points falling outside the Cook’s 
distance curves are considered observations that can sway the fit. 

 

 
Figure S8 Predicted Brain Age Linear Model Diagnostics(R2:0.48, F-stat:4587, AIC: 1.1e+5). Top 
left: Residual vs Fitted values. In the graph, a red (roughly) horizontal line would be an indicator that 
the residual has a linear pattern. Top right: Standardized Residual vs Theoretical Quantile to check 
if residuals are normally distributed visually. Bottom left: Sqrt(Standardized Residual) vs Fitted 
values to check homoscedasticity of the residuals, with non-horizontal scatter suggesting the 
variance of errors is not constant. Bottom right: Residual vs Leverage Points falling outside the 
Cook’s distance curves are considered observations that can sway the fit.  

 

 

  

26

at 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2023. ; https://doi.org/10.1101/2023.10.17.23297166doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297166
http://creativecommons.org/licenses/by-nc/4.0/


 27

A3. Age-Bias Correction  
  We used the linear bias correction method described by Smith et al. 54 for bias 

correction for the gap. Such a bias correction is valuable for most brain-age prediction 

studies, as there is normally an underfitting of the prediction due to problems such as 

regression dilution and non-Gaussian age distribution. Defining  to be chronological 

age and  the predicted age, we fitted a linear regression = +  to the left-out 

validation set (with labels). The corrected predicted age is estimated by =( − )/  This 

method requires (at the point of estimating a and b from x and y) that the chronological 

ages are known. For the two external test sets, we assumed that  and  are 

generalizable. We used the coefficients (a=1.1, b=-2.2) fitted on Test Set 1 to estimate 

the corrected brain-age gap (Figure S9). We found that brain age correction does not 

improve MAE on Test Set 2 ( no correction MAE = 1.9 years; with correction MAE = 2.6 

years). We hypothesize that the brain age correction procedure does not generalize well

on unseen datasets and does not capture the non-linear, complex relationship between 

brain age and chronological age, unlike deep learning, and therefore we used “raw” 

brain age predictions for all the analysis in this paper. 

 
Figure S9 Brain age-correction scatterplots with fitted regression line. Panel A1: Test Set 1( N=583), 
Panel A2: Test Set 2 (N=27.719). We fitted linear regression using Test Set1, a=1.1, b=-2.2.  
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A4. Outlier Analysis 
 
To investigate performance drop in the WU1200 dataset, we compared key volumetric 

measures in mm3(VV, WMV, sGMV, GMV) between WU1200 (N=620) and an adult test 

set (age 22+, N=226; datasets: IXI41, Pixar44, SALD45).  We used pairwise Mann-

Whitney-U test and calculated the adjusted alpha to account for multiple comparisons 

using Bonferroni correction (adjusted P=0.0125). We also calculate Cohen's d effect 

size to quantify the standardized mean difference. We found that VV (Cohen's d=0.98), 

sGMV (Cohen's d=0.25) were significantly higher and WMV (Cohen's d=-0.49) was 

significantly lower in WU1200. This could indicate developmental differences, 

highlighting that the observed performance drop may be due more to true population 

differences than problems with the model.   
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A5. Primary Datasets 
Table S2 Dataset demographics  

Dataset Split Age years, 
median 

[min,max] 

Sex, F % Number 
MRIs 

ABIDE Train 11 [7,35] 35% 369 

AOMIC Train 22 [19,26] 52% 928 

Calgary Train 4 [3,6] 43% 249 

ICBM    Train 25 [18,35] 46% 808 

NIMH   Train 11 [4,22] 53% 917 

PING   Train 11 [3,21] 49% 738 

Healthy adults(HAN)  Train 26 [18,35] 65% 318 

Petfrog Train 21 [12,33] 52% 268 

Pixar   Test1 6 [4,34] 61% 126 

Baby Connectome  Test1 4 [3,7] 49% 70 

IXI  Test1 25 [20,30] 56% 101 

SALD  Test1 24 [19,29] 63% 151 

NYU2(CoRR)  Test1 15 [7,28] 57% 135 

ABCD Test2 & 

Long Test 

10[8,15] 47% 26814 

Long579 Test2 7[5,9] 61% 285 

WU1200 Test2 26[22,29] 46% 620 

28andme Long Test 23 [23-23] 100% 60 

 
 
ABCD 

Data used in the preparation of this article were obtained from the Adolescent Brain 

Cognitive Development SM (ABCD) Study (https://abcdstudy.org), held in the NIMH 

Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 

10,000 children age 9-10 and follow them over 10 years into early adulthood. The 
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ABCD Study® is supported by the National Institutes of Health and additional federal 

partners under award numbers U01DA041048, U01DA050989, U01DA051016, 

U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, 

U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, 

U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, 

U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147. A full 

list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of 

participating sites and a complete listing of the study investigators can be found at 

https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed 

and implemented the study and/or provided data but did not necessarily participate in 

the analysis or writing of this report. This manuscript reflects the authors' views and may 

not reflect the opinions or views of the NIH or ABCD consortium investigators. 

The ABCD data repository grows and changes over time. The ABCD data used in this 

report came from the fast-track data release. The raw data are available at 

https://nda.nih.gov/edit_collection.html?id=2573. Instructions on how to create an NDA 

study are available at https://nda.nih.gov/training/modules/study.html). 

Additional support for this work was made possible from supplements to U24DA041123 

and U24DA041147, the National Science Foundation (NSF 2028680), and Children and 

Screens: Institute of Digital Media and Child Development Inc. 35  

 

ABIDE 

ABIDE II involves 19 sites, ten charter institutions and seven new members, overall 

donating 1114 datasets from 521 individuals with ASD and 593 controls (age range: 5-
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64 years). These data were openly released to the scientific community on June 2016. 

In accordance with HIPAA guidelines and 1000 Functional Connectomes Project / INDI 

protocols, all datasets are anonymous, with no protected health information included. 

Consistent with its popularity in the imaging community and prior usage in FCP/INDI 

efforts, the NIFTI format was selected to store the ABIDE II MRI datasets 

(http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html). With the exception of a 

single collection (IP1, 1.5 Tesla), all MRI data were acquired using 3 Tesla scanners36. 

 

Aomic 

The Amsterdam Open MRI Collection (AOMIC, 

https://openneuro.org/datasets/ds003097/versions/1.2.1) is a collection of three 

datasets with multimodal (3T) MRI data, including structural (T1-weighted), diffusion-

weighted, and (resting-state and task-based) functional BOLD MRI data, as well as 

detailed demographics and psychometric variables from a large set of healthy 

participants (N = 928, N = 226, and N = 216). Data from all three datasets were 

acquired on the same Philips 3T scanner (Philips, Best, the Netherlands) but underwent 

several upgrades in between the three studies 37. 

 

Baby Connectome 

The Baby Connectome Project (BCP: https://nda.nih.gov/edit_collection.html?id=2848) 

is a four-year study of children from birth through five years of age, intended to provide 

a better understanding of how the brain develops from infancy through early childhood 

and the factors that contribute to healthy brain development. This project is a research 
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initiative of the Neuroscience Blueprint – a cooperative effort among the 15 NIH 

Institutes, Centers, and Offices that support neuroscience research. The BCP is 

supported by Wyeth Nutrition through a donation to the FNIH. Images are acquired on 

3T Siemens Prisma MRI scanners using a Siemens 32-channel head coil at the Center 

for Magnetic Resonance Research (CMRR) at the University of Minnesota and the 

Biomedical Research Imaging Center (BRIC) at the University of North Carolina at 

Chapel Hill 38. 

 

Calgary 

The Preschool MRI study in The Developmental Neuroimaging Lab at the University of 

Calgary uses different magnetic resonance imaging (MRI) techniques to study brain 

structure and function in early childhood (https://osf.io/axz5r/files/osfstorage). All 

imaging for this dataset was conducted using the same General Electric 3T MR750w 

system and 32-channel head coil (GE, Waukesha, WI) at the Alberta Children’s Hospital 

in Calgary, Canada. Children were scanned either while awake and watching a movie, 

or while sleeping without sedation. The University of Cal- gary Conjoint Health 

Research Ethics Board (CHREB) approved this study (REB13-0020). T1-weighted 

images were acquired using an FSPGR BRAVO sequence with TR = 8.23 ms, TE = 

3.76 ms, TI = 540 ms, flip angle=12 degrees, voxel size = 0.9x0.9x0.9 mm3, 210 slices, 

matrix size=512x512, field of view=23.0 cm. ASL images were acquired with the vendor 

supplied pseudo continuous 3D ASL sequence with TR = 4.56 s, TE = 10.7 ms, in-plane 

reso- lution of 3.5x3.5 mm2, post label delay of 1.5 s, and thirty 4.0 mm thick slices. The 

sequence scan time was 4.4 minutes 39 
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ICBM 

Data used in the preparation of this work were obtained from the International 

Consortium for Brain Mapping (ICBM) database (www.loni.usc.edu/ICBM). The ICBM 

project (Principal Investigator John Mazziotta, M.D., University of California, Los 

Angeles) is supported by the National Institute of Biomedical Imaging and 

BioEngineering. ICBM is the result of efforts of co-investigators from UCLA, Montreal 

Neurologic Institute, University of Texas at San Antonio, and the Institute of Medicine, 

Juelich/Heinrich Heine University - Germany. Data collection and sharing for this project 

was provided by the International Consortium for Brain Mapping (ICBM; Principal 

Investigator: John Mazziotta, MD, PhD). ICBM funding was provided by the National 

Institute of Biomedical Imaging and BioEngineering. ICBM data are disseminated by the 

Laboratory of Neuro Imaging at the University of Southern California 40. 

 

IXI 

The data has been collected at three different hospitals in London:Hammersmith 

Hospital using a Philips 3T system (details of scanner parameters: http://brain-

development.org/scanner-philips-medical-systems-intera-3t/), Guy’s Hospital using a 

Philips 1.5T system (details of scanner parameters: http://brain-

development.org/scanner-philips-medical-systems-gyroscan-intera-1-5t/), Institute of 

Psychiatry using a GE 1.5T system (details of the scan parameters not available at the 

moment). The Thames Valley MREC granted ethical approval. The T1 and T2 images 
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were acquired prior to diffusion-weighted imaging using 3D MRPRAGE and dual-echo 

weighted imaging 41. 

 

NIMH 

The data used in this work was collected from the 5.1 release 

(https://nda.nih.gov/edit_collection.html?id=1151) . MRI scans were acquired using 

either General Electric or Siemens 1.5 Tesla scanners involving six sites or Pediatric 

Study Centers (PSC) in the United States. The Institutional Review Board at the 

University of Wisconsin-Madison also approved the analysis of the data of this human 

subject. Sequence type: 3D FLASH/SPGR; GE sequence: pulse sequence=SPGR, 

mode=3D; TR: 22 ms; TE: 10-11 ms; excitation pulse angle: 30 degrees; orientation: 

sagittal; FoV: 250mmISx250mmAP; matrix: 256 x 256 ( x 124 - 180 slices); slices: 160-

180 slices of 1-1.5 mm thickness (cover entire head). Note that on GE systems with a 

124-slice limitation, slice thickness should be adjusted to cover the entire head with 124 

slices: signal averages: 1; scan time: 11.6 – 16.8 min 42. 

 

 

PING 

The PING Data Resource(https://nda.nih.gov/edit_collection.html?id=2607) is the 

product of a multi-site project involving developmental researchers across the United 

States, including UC San Diego, the University of Hawaii UC Los Angeles Children’s 

Hospital of Los Angeles of the University of Southern California UC Davis Kennedy 

Krieger Institute of Johns Hopkins University Sackler Institute of Cornell University 
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University of Massachusetts Massachusetts General Hospital at Harvard University and 

Yale University. The Data Resource includes neurodevelopmental histories, information 

about developing mental and emotional functions, multimodal brain imaging data, and 

genotypes for well over 1000 children and adolescents between the ages of 3 and 20. 

The PING imaging protocol takes advantage of key technologies developed for the 

consortium and builds on earlier methods development performed as part of the 

Biomedical Informatics Research Network (BIRN 55 and the Alzheimer's 

Disease Neuroimaging Initiative (ADNI 56). Specifically, a standard PING scan session 

included: 1) a 3D T1-weighted inversion prepared RF-spoiled gradient echo scan using 

prospective motion correction (PROMO), for cortical and subcortical segmentation; 2) a 

3D T2-weighted variable flip angle fast spin echo scan, also using PROMO, for 

detection and quantification of white matter lesions and segmentation of VV; 3) a 

high angular resolution diffusion imaging (HARDI) scan, with integrated B0 distortion 

correction (DISCO), for segmentation of white matter tracts and measurement of 

diffusion parameters; and 4) a resting state blood oxygenation level-dependent (BOLD) 

fMRI scan, with integrated distortion correction. Pulse sequence parameters used 

across (3 T) scanner manufacturers (GE, Siemens, and Phillips) and models were 

optimized for equivalence in contrast properties and consistency in image-derived 

quantitative measures 43. 

 

Pixar 

One hundred twenty-two 3.5–12-year-old children (M(s.d.)�=�6.7(2.3); 64 females) 

participated in the study (https://openfmri.org/dataset/ds000228/). Child and adult 
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participants were recruited from the local community. All adult participants gave written 

consent; parent/guardian consent and child assent was received for all child 

participants. Recruitment and experiment protocols were approved by the Committee on 

the Use of Humans as Experimental Subjects (COUHES) at the Massachusetts Institute 

of Technology. Whole-brain structural and functional MRI data were acquired on a 3-

Tesla Siemens Tim Trio scanner located at the Athinoula A. Martinos Imaging Center at 

MIT. Children under age 5 years used one of two custom 32-channel phased-array 

head coils made for younger (n�=�3, M(s.d.)�=�3.91(.42) years) or older 

(n�=�28, M(s.d.)�=�4.07(.42) years) children; all other participants used the standard 

Siemens 32-channel head coil. T1-weighted structural images were collected in 176 

interleaved sagittal slices with 1�mm isotropic voxels (GRAPPA parallel imaging, 

acceleration factor of 3; adult coil: FOV: 256�mm; kid coils: FOV: 192�mm). Functional 

data were collected with a gradient-echo EPI sequence sensitive to Blood Oxygen Level 

Dependent (BOLD) contrast in 32 interleaved near-axial slices aligned with the 

anterior/posterior commissure and covering the whole brain (EPI factor: 64; TR: 2�s, 

TE: 30�ms, flip angle: 90°). This data was obtained from the OpenfMRI database, 

accession number is ds000228. Dataset version 1.0.2 44 

 

SALD 

The data was generated in the Southwest University Adult Lifespan Dataset (SALD), 

which comprises a large cross-sectional sample (n = 494; age range = 19-80) 

undergoing a multi-modal (sMRI, rs-fMRI, and behavioral). All data were collected at the 

Southwest University Center for Brain Imaging using a 3.0-T Siemens Trio MRI scanner 
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(Siemens Medical, Erlangen, Ger- many). A magnetization-prepared rapid gradient 

echo (MPRAGE) sequence was used to acquire high-resolution T1-weighted anatomical 

images (repetition time=1,900ms, echo time=2.52ms, inversion time=900ms, flip 

angle=90 degrees, resolution matrix=256×256, slices=176, thickness =1.0mm, and 

voxel size=111mm3) 45. 

 

NYU2(CoRR) 

The Consortium for Reliability and Reproducibility (CoRR, 

http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html ) has aggregated 1,629 

typical individuals’ resting state fMRI (rfMRI) data (5,093 rfMRI scans) from 18 

international sites and is openly sharing them via the International Data-sharing 

Neuroimaging Initiative (INDI). In this study, we used a subset from CoRR study ”NYU 

2” created by New York University (Di Martino, Kelly)57. 

 

Healthy adults 

The dataset was collected and shared under the NIMH Healthy Research Volunteer 

(RV) Study (Recruitment and Characterization of Healthy Research Volunteer for NIMH 

Intramural Studies NCT033046, 

https://openneuro.org/datasets/ds004215/versions/1.0.1 ). Data collection is ongoing, 

while data from 1,090 participants (155 with MRI) is shared. The MR protocol used was 

initially based on the ADNI-3 basic protocol, but was later modified to include portions of 

the ABCD protocol. Because there may be small changes in parameters from the 
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standard ABCD/ADNI3 sequences, detailed sequence descriptions are shared in the 

BIDS source data directory. 47. 

 

28andMe 

In this set of dense-sampling, deep phenotyping studies, we determined whether day-

to-day variation in sex hormone concentrations impacts large-scale brain network 

connectivity. In Study 1 (sessions 1-30, 2018), the female participant was naturally 

cycling; in Study 2 (sessions 31-60, 2019), the participant was placed on an oral 

hormonal contraceptive regimen. The participant underwent a daily magnetic resonance 

imaging scan on a Siemens 3T Prisma scanner equipped with a 64-channel phased-

array head coil. First, high-resolution anatomical scans were acquired using a T1-

weighted magnetization prepared rapid gradient echo (MPRAGE) sequence (TR = 2500 

ms, TE = 2.31 ms, TI = 934 ms, flip angle = 7º, 0.8 mm thickness) followed by a 

gradient echo fieldmap (TR = 758 ms; TE1 = 4.92 ms; TE2 = 7.38 ms; flip angle = 60º). 

Next, the participant completed a 10-minute resting-state fMRI scan using a T2*- 

weighted multi-band echo-planar imaging (EPI) sequence sensitive to the blood 

oxygenation level-dependent (BOLD) contrast (72 oblique slices, TR = 720 ms, TE = 37 

ms, voxel size = 2 mm3, flip angle = 56º, multiband factor = 8). High-resolution 

anatomical scans were acquired using a T1-weighted magnetization prepared rapid 

gradient echo (MPRAGE) sequence (TR = 2500 ms, TE = 2.31 ms, TI = 934 ms, flip 

angle = 7º, 0.8 mm thickness) followed by a gradient echo fieldmap (TR = 758 ms; TE1 

= 4.92 ms; TE2 = 7.38 ms; flip angle = 60º). A T2- weighted turbo spin echo (TSE) scan 

was also acquired with an oblique coronal orientation positioned orthogonally to the 
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main axis of the hippocampus (TR/TE= 8100/50 ms, flip angle = 122°, 0.4 × 0.4 mm2 in 

plane resolution, 2 mm slice thickness, 31 interleaved slices with no gap, total 

acquisition time = 4:21 min) 27. 

 

Long579 

 The public neuroimaging and behavioral dataset entitled “A longitudinal neuroimaging 

dataset on language processing in children ages 5, 7, and 9 years old” available on the 

OpenNeuro project (https://openneuro.org) and organized in compliance with the Brain 

Imaging Data Structure (BIDS). It includes 322 participants, recruited from the Austin, 

Texas. All neuroimaging data were collected using a Siemens Skyra 3�T MRI scanner 

located at The University of Texas at Austin Imaging Research Center. All images were 

acquired using a 64-channel head coil. Participants were positioned supine in the MRI 

scanner and foam pads were placed around the head to minimize movement. T1-

weighted Magnetization Prepared - RApid Gradient Echo (MPRAGE) images were 

collected using GRAPPA, a parallel imaging technique based on k-space, and the 

following parameters: GRAPPA accel.factor PE�=�2, TR�=�1900 ms, 

TE�=�2.43�ms, field of view�=�256�mm, matrix size�=�256�×�256, 

bandwidth�=�180�Hz/Px, slice thickness�=�1�mm, number of slices�=�192, voxel 

size�=�1�mm isotropic, flip angle�=�9°.  58 

 

WU1200 

This HCP data release includes high-resolution 3T MR scans from young healthy adult 

twins and non-twin siblings (ages 22-35) using four imaging modalities: structural 
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images (T1w and T2w), resting-state fMRI (rfMRI), task-fMRI (tfMRI), and high angular 

resolution diffusion imaging (dMRI). Behavioral and other individual subject measure 

data (both NIH Toolbox and non-Toolbox measures) is available on all subjects. MEG 

data and 7T MR data is available for a subset of subjects (twin pairs). The Open Access 

Dataset includes imaging data and most behavioral data. All details in the imaging 

protocols can be found at study webpage (https://humanconnectome.org/study/hcp-

young-adult/document/1200-subjects-data-release/)  
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