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Abstract

Non-protein-coding genetic variants are a major driver of the genetic risk for human disease;

however, identifying which non-coding variants contribute to which diseases, and their mechanisms,

remains challenging. In-silico variant prioritization methods quantify a variant’s severity in the

context of having a phenotypic effect; but for most methods the specific phenotype and disease

context of the prediction are poorly defined. For example, many commonly used methods provide

a single organism-wide score for each variant, while other methods summarize a variant’s impact

specifically in certain tissues and/or cell-types. Here we propose a complementary disease-specific

variant prioritization scheme, which is motivated by the observation that the variants contributing

to different diseases often operate through different biological mechanisms.

We combine tissue/cell-type specific scores into disease-specific scores with a logistic regression

approach and apply it to 25,000 non-coding variants spanning 111 diseases. We show that disease-

specific aggregation of tissue/cell-type specific scores (GenoSkyline, Fit- Cons2, DNA accessibility)

signifiantly improves the association of common non-coding genetic variants with disease (average

precision: 0.151, baseline=0.09), compared with organism-wide scores (GenoCanyon, LINSIGHT,

GWAVA, eigen, CADD; average precision: 0.129, base- line=0.09). Calculating disease similari-

ties based on data-driven aggregation weights highlights meaningful disease groups (e.g., immune

system related diseases and mental/behavioral disorders), and it provides information about tis-

sues and cell-types that drive these similarities (e.g., lymphoblastoid T-cells for immune-system

diseases). We also show that so-learned similarities are complementary to genetic similarities as

quantified by genetic correlation. Overall, our aggregation approach demonstrates the strengths of

disease-specific variant prioritization, leads to improvement in non-coding variant prioritization,

and it enables interpretable models that link variants to disease via specific tissues and/or cell-

types.

1 Introduction1

Characterizing non-coding genetic variants in the human genome is essential for making progress2

toward better understanding the genetic components of disease, because ∼90% of disease-associated3

variants discovered by genome-wide association studies (GWAS) are located in non-protein-coding4
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regions [1]. Further on, whole-genome sequencing (WGS) discovers disease-associated variants genome-5

wide [2, 3] and is increasingly becoming an assay of choice. Therefore, approaches for characterizing6

and prioritizing non-coding variants can be expected to play an increasingly important role, especially7

when assessing discovered variants in the context of functional follow-up experimental studies.8

Efforts to computationally characterize and better understand non-coding variants take advantage9

of sequence, functional genomics, comparative genomics, and epigenomics data [4, 5, 6], and more.10

These data are combined and used to train and develop supervised and/or unsupervised models that11

attempt to quantify a variant’s impact [7]. We find it conceptually useful to distinguish between12

variant scores that model overall impact (that is on the level of the whole organism, orgnaism-level13

scores) and scores that quantify impact in a specific context, like a tissue or a cell-type (i.e., tissue-level14

scores). Examples for organism-level scores are CADD [8], Eigen [9], or LINSIGHT [10], while scores15

from methods like GenoSkyline [11], Fitcons2 [12], or FUN-LDA [13] are tissue-specific.16

Often interest in a set of variants is from the perspective of studying a specific disease. In that case,17

organism-level scores are likely to be overly general. That is, a variant’s impact might be considered18

high because it disrupts the functional role of a sequence element. However, that functional role may19

be unrelated to the disease of interest. In one study, for instance, organism-level scores like CADD20

and DANN were unable to discover an enrichment signal for brain-related traits, while context-specific21

variant scores focusing on relevant tissues were successful [14]. This demonstrates that tissue-specific22

scores can address the issue of disease specificity to some extent. However, aspects of disease-relevant23

tissues typically remain unknown, and often more than one tissue is implicated with a specific trait24

(termed ”multifactorial” and ”polyfactorial” traits) [15]. This suggests the use of disease-specific25

variant scores that characterize variants in the context of a specific disease phenotype of interest.26

Computational methods for disease-specific variant prioritization do exist. Some approaches are27

geared towards one disease (e.g, congenital heart disease [16], amyotrophic lateral sclerosis [17]) or28

towards a specific class of diseases (e.g., autoimmune diseases [18]). This focus prevents them from29

being readily adapted to other disease types. Others, like DIVAN [19], PINES [20], and ARVIN [21],30

cover a broader range of disease types. Of these, ARVIN requires a priori knowledge of disease-relevant31

tissues, whereas DIVAN and PINES do not. PINES uses an enrichment-based method to predict and32

up-weight disease-relevant tissues/cell-types, whereas DIVAN uses a more complex machine learning33

algorithm. The PINES approach has been evaluated on a relatively small set of traits (∼10 different34

contexts), while DIVAN’s more compex model renders understanding the relationship between different35

tissues and diseases difficult.36

In this work, we derive disease-specific variant scores by combining published tissue-specific scores.37

We use a carefully regularized logistic regression approach to derive data-driven disease-specific com-38

bination weights, which allow us to better associate variants with disease. In addition, they enable us39

to quantify a similarity between different disease phenotypes. Using the NHGRI-EBI GWAS catalog40

[1] we compiled a benchmark dataset containing about 63k phenotype-associated non-protein-coding41

single nucleotide variants across 111 disease phenotypes (together with matched random controls). We42

then demonstrate that using disease-specific combination weights outperforms conventional organism-43

level approaches, that our interpretable model has competitive performance, and that it enables a44

disease similarity measure that captures information complementary to established measures like ge-45

netic correlation.46
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2 Results47

2.1 Non-coding GWAS variants associated with disease phenotypes, and48

matched controls49

In order to study variant prioritization methods, we created a dataset of “positive” (i.e., disease associ-50

ated) non-coding variants, matched with a random set of “negative” or “control” variants. This setup51

allowed us to quantitatively assess prioritization methods based on their performance in discriminating52

positive from control variants.53

2.1.1 Disease-associated non-coding SNVs54

We used a subset of single nucleotide variants (SNVs) reported in the EBI/NIH GWAS catalog [1] to55

compile an inventory of disease-associated non-coding variants. Specifically, we focused in reported56

variants that (a) do not overlap protein-coding sequence (see Methods) and (b) that are associ-57

ated with a disease phenotype as noted in the Experimental Factor Ontology (EFO) trait description,58

which is provided within the catalog. We define disease phenotypes as descendants of the EFO term59

“disease” (EFO:0000408). Focusing on disease terms with at least 100 annotated SNVs resulted in60

26,080 associations involving 20,656 SNVs and 67 disease phenotypes. The EFO provides parent-61

child relations between disease terms (parent = more general, child = more specific), and propagating62

SNVs from child-terms to parent-terms increased the number of disease phenotypes with at least 10063

SNVs, resulting in 77,028 association between 25,516 SNVs and 111 diseases. We find that most64

of the SNVs we recover are located in intronic (60.5%) and intergenic (25.8%) sequence (Fig. 1A),65

and that a majority of SNVs are directly annotated to a single disease phenotype (Fig. 1B). After66

propagating annotated SNVs from child to parent terms, SNV-to-disease annotations become predom-67

inantly many:many (Fig. 1B). Suppl. Data SD1 lists disease terms and corresponding numbers of68

disease-associated SNVs.69

2.1.2 Control SNVs70

For each disease-associated SNV we selected ∼10 matched control-SNVs using a re-implementation of71

the SNPsnap approach [22], while avoiding duplicate control-SNV across the overall dataset (seeMeth-72

ods). This yielded 255,137 control SNVs (for some disease associated SNVs we could not retrieve the73

full ten control SNVs). With these results we have access to data for 111 disease terms, contain-74

ing disease-associated SNVs together with matched controls. Suppl. Data SD2 and SD3 contain75

information about all disease and control SNVs used in this study, respectively.76

2.2 Disease-specific non-coding variant prioritization with organism-level77

variant scores is only moderately successful78

We assessed how well current commonly-used organism-level variant scores are able to prioritize disease-79

associated vs. control-SNVs for the 111 disease terms we studied. Fig. 2 summarizes results, where80

boxplots of two performance measures (area under the ROC curve and average precision (= area under81

the precision recall curve)) are shown for CADD [8], eigen [9], GenoCanyon [11], GWAVA [23], and82

LINSIGHT [10] scores. We find that organism-level scores, while improving upon random guessing, are83

only moderately successful in correctly prioritizing disease-associated non-coding variants. Comparing84

variant scores with each other we find that relative performance differences appear overall robust with85
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Figure 1: Disease-associated non-coding SNVs. (A) Genomic context of non-coding SNVs used
in this study. (B) Percentage of the SNVs used that are annotated to 1, 2-3, 4-5 or more than 5 disease
phenotypes, before and after propagating SNV-phenotype associations according to EFO parent-child
annotations. Genomic context annotation is adapted from the CONTEXT column from the GWAS
catalog, where we combine splice donor, splice region and splice acceptor variants into splice variants
and I combine TF binding variants and regulatory regions variants into regulatory region variants.

respect to the metric employed (area under the ROC curve vs. average precision). It is qualitatively86

visible that CADD performs less favorably than other methods, but also that there are differences87

between these. We therefore compared performance between different scores in more detail.88

We studied the performance of different scores at two levels of resolution: In aggregate across all89

disease terms, and for each disease term separately. For both approaches we used Wilcoxon signed-90

ranks tests to decide whether one score significantly outperforms another score (= significant p-value)91

or whether performance is tied (= non-significant p-value); see Methods section. Results are sum-92

marized in Tab. 1. We find that GenoCanyon has better performance compared with other variant93

scores, followed by LINSIGHT, GWAVA and eigen, while CADD is consistently outperformed by other94

methods. Performance differences between LINSIGHT, GWAVA and eigen are not significant when ag-95

gregating across disease terms (last three columns in Tab.1); however, when counting individual terms96

LINSIGHT has most wins and fewest losses, while eigen has most losses and fewest wins, leading to the97

ordering displayed in Tab.1. Suppl. Data SD4 and SD5 contain results for all comparisons. Overall98

these quantitative results are in-line with the visual impression from Fig. 2. Next, we investigated99

if the performance of organism-level variant scores could be improved by using tissue-specific scoring100

approaches.101

2.3 Disease-specific scores improve non-coding variant prioritization102

2.3.1 Disease-specific aggregation weights for tissue-specific variant scores103

We studied three tissue-specific scores for variant prioritization to explore if their usage can improve104

the performance of organism-level scores. Specifically, we used Genoskyline [11] and Fitcons2 [12] as105

scores designed to prioritize variants, and we also evaluated DNase I hypersensitivity (DHS) profiles106

from the ENCODE project [6]. All of these scores are available for 127 contexts [5] spanning a diverse107

set of cell and tissue types, including heart, brain, immune cells, and more.108

For each tissue-specific score we assess two approaches to prioritize variants. First, as a baseline109
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Figure 2: Organism-level variant scores are moderately successful in prioritizing non-
coding disease-associated variants. Different organism-level variant prioritization scores are shown
on the x-axis, the y-axis displays performance in terms of average precision (area under the precision
recall curve, left panel) and area under the receiver-operator curve (right panel). Each point represents
a specific disease term from the experimental factor ontology. Horizontal lines spanning data sets show
expectations under random guessing.

approach we aggregate scores across tissues in a disease-agnostic way. That is, for a specific variant we110

average scores at the variant position across all tissues (termed tissue-mean), essentially producing a111

organism-level type score, independent of the disease term under consideration. Second, we aggregate112

scores across tissues in a disease-specific way. Briefly, we train a regularized logistic regression model113

for each disease term that learns disease-specific tissue aggregation weights. In a nested cross-validation114

setup learned weights are then applied to held-out variants, allowing for a fair performance assessment115

of this approach (termed tissue-weighted), see Methods. Fig. 3 summarizes our findings.116

In Fig. 3A we show tissue-mean performance (measured by average precision) for the three scores117

we study on the left, and tissue-weighted performance on the right. For all three scores tissue-weighted118

significantly outperforms tissue-mean (Wilcoxon signed-ranks test, p-values < 0.0001). Fig. 3B shows119

tissue-mean vs. tissue-weighted comparisons for each score, and we see that in almost all disease terms120

tissue-weighted outperforms tissue-mean. See Suppl. Data SD6 and SD7 for tissue-mean vs. tissue-121

weighted performances for each disease term, and for aggregated performances across all disease terms.122

The improvement remains evident if we limit disease-associated SNVs to one variant per LD block, and123

also when we insure that the SNVs in the training and test datasets are not on the same chromosome124

(See Suppl. Fig. S17 - S20 and the Supplemental material for more details).125

While the performance-gain for tissue-weighted is broadly consistent across diseases, for some it126

is more pronounced than for others. To illustrate this observation, we selected four disease terms127

with a high performance gain, four terms with a medium gain, and four terms where we observed128

the least gain (Best improvement, ranking 1-4; middle improvement, ranking 20-23; least improve-129
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Score/Method
By disease term Aggregated
Wins Losses Ties Wins Losses Ties

GenoCanyon 307 106 31 4 0 0
LINSIGHT 281 146 17 1 1 2
GWAVA 221 196 27 1 1 2
eigen 219 201 24 1 1 2
CADD 24 403 17 0 4 0

Table 1: Relative performance of organism-level variant scores. Wins, Losses, Ties refers to
significantly better (or worse, or tied) performance across all possible pairings (see Methods). The
first three columns summarize separate comparisons for each disease term (for each row there are four
other methods and 111 terms, i.e. 444 comparisons), while the last three columns represent results of
comparisons between scores aggregated across terms. Average precision was used as the performance
metric, and Wilcoxon singed-ranks tests to determine wins and losses (p-values less than 0.05 are
reported as ties).

ment, ranking 108-111). Fig. 4 shows our findings, where variability in tissue-weighted performance130

induced by varying train-test-fold splits during cross-validation is also displayed. We see that for131

Celiac Disease (EFO:0001060), Systemic Scleroderma (EFO:0000717), Chronic Lymphocytic Leukemia132

(EFO:0000095) and Sclerosing Cholangitis (EFO:0004268) performance is consistently improved for133

all three tissue-weighted scores, while for Retinopathy (EFO:0003839), Endometriosis (EFO:0001065),134

Diabetic Nephopathy (EFO:0000401) and HIV-1 Infection(EFO:0000180) we find no improvement.135

We also note that disease terms with pronounced improvement appear to have better baseline (i.e.,136

tissue-mean) performance than disease terms where we find little or no benefit of the tissue-weighted137

approach. Improvement for diseases shown in Fig. 4 is largest for DHS, but, consistent with Fig. 3,138

we see improvement for Fitcons2 and Genoskyline as well.139

2.3.2 DNase I hypersensitivity (DHS) scoring outperforms other tissue specific scores140

To quantify relative performance of the three different tissue-specific scores, we proceed similarly141

to organism-level scores. Focusing on pairwise comparisons we find that DHS scores outperform142

Genoskyline and Fitcons2 for most disease terms, and on average (see Tab. 2). This observation143

is consistent with Fig. 3 and 4, which often show higher average precision values for DHS than144

for the other two scores. Notably, baseline (i.e., tissue-mean) performance of DHS does not appear145

significantly better than that of Genoskyline (Fig. 3). Suppl. Data SD8 and SD9 contain details for146

comparisons between DHS, Fitcons2 and Genoskyline for all disease terms. Next, we explored whether147

disease-specific tissue weights outperform organism-level scores.148

2.3.3 DNase I hypersensitivity (DHS) tissue-weighted scoring outperforms organism-149

level variant scores150

To compare the DHS tissue-weighted score with organism-level scores, we directly contrasted their151

performance. Similar to before, Tab. 3 summarizes DHS “wins” (= significantly better performance152

of DHS tissue-weighted, p-value ≤ 0.05), losses, and ties, compared with five organism-level variant153

scores, individually (i.e., per disease term) and aggregated across disease terms. In addition, Tab. ST4154

summarizes pair-wise comparisons between tissue-weighted DHS and each organism-level score. We155

find that DHS tissue-weighted outperforms all organism-level scores in the aggregated analyses, and156

that it outperforms all other scores on the majority of disease terms (it only performs significantly157
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Figure 3: Disease-specific tissue weights improve variant prioritization. Performance of three
tissue-specific variant scores (DHS, Fitcons2, Genoskyline) is used to prioritize non-coding disease-
associated variants for disease terms using two approaches: tissue-mean (i.e., disease-agnostic, baseline)
on the left side and and tissue-weighted (i.e., disease specific) on the right side. P-values were calculated
using a Wilcoxon signed-ranks test (A). Scatter plot of tissue-mean vs. tissue-weighted performance
(average precision) for each tissue-specific score; dashed line denotes the diagnonal (B).

worse than any other score in 44 out of 550 comparisons).158

GenoCanyon is the most competitive organism-level score, where DHS is significantly better for 92159

terms out of 111 (∼83%). Interestingly, LINSIGHT performs better against DHS than GenoCanyon,160

which is the best overall performing organism-level score (see Tab. ST4). Suppl. Data SD10 contains161

detailed results for each comparison. We also find that DHS outperforms organism-level scores when162

aggregating over disease terms (also see Suppl. Data SD11).163

To illustrate the gain in performance, we selected four example disease terms where disease-164

specific variant prioritization yielded high improvements, medium improvements, comparable per-165

formance, and worse performance, respectively. Selection was based on ranking differences between166

DHS and GenoCanyon: best improvement, ranks 1-4; medium improvements, ranks 25-28; compa-167

rable performance, ranks 64-67; GenoCanyon better, ranks 108-111. Results are summarized in168

Fig. 5, where we find substantial improvements using tissue-weightes scoring for Systemic Scelero-169

derma (EFO:0000717), Celiac Disease (EFO:0001060), Sclerosing Chalangitis (EFO:0004268) and Mul-170

tiple Sclerosis (EFO:0003885), for which we have already noticed substantial improvement of DHS171

tissue-weighted over DHS tissue-mean. Disease terms where GenoCenyon is performing better include172

Venous Thromboembolism (EFO:0004286), Diverticular Disease (EFO:0009959), Non-small Cell Lung173

Carcinoma (EFO:0003060), and Lung Adenocarcinoma (EFO:0000571).174

To make DHS tissue-weighted scores available, we generated pre-computed scores for 111 diseases175

at every base across the genome (for chromosomes 1-22, available at https://doi.org/10.7910/DVN/176

AUAJ7K). Scores were calculated at 25 bp resolution, the same as DHS scores.177
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Score/Method
By disease term Aggregated
Wins Losses Ties Wins Losses Ties

DHS 180 22 20 2 0 0
Genoskyline 96 94 32 1 1 0
Fitcons2 19 179 24 0 2 0

Table 2: DHS outperforms other tissue-specific scores. Wins, Losses, Ties refer to significantly
better (or worse, or tied) performance across all possible score pairings (see Methods). The first
three columns summarize separate comparisons for each disease term (for each row there are two
other methods and 111 terms, i.e., 222 comparisons), while the last three columns represent results
of comparisons aggregated over disease terms. Average precision was used as the performance metric,
and the Wilcoxon singed-ranks test to determine wins and losses (p-values less than 0.05 are reported
as ties).

Score/Method
By disease term Aggregated
Wins Losses Ties Wins Losses Ties

DHS 474 44 37 5 0 0
GenoCanyon 314 198 43 4 1 0
LINSIGHT 298 230 27 1 2 2
GWAVA 233 289 33 1 2 2
eigen 223 299 33 1 2 2
CADD 28 510 17 0 5 0

Table 3: DHS outperforms organism-level variant scores. Wins, Losses, Ties refer to signifi-
cantly better (or worse, or tied) performance across all possible score pairings (see Methods). The
first three columns summarize separate comparisons for each disease term (for each row there are two
other methods and 111 terms, i.e., 555 comparisons), while the last three columns represent results
of comparisons aggregated over terms. Average precision was used as the performance metric, and
the Wilcoxon singed-ranks test to determine wins and losses (p-values less than 0.05 were reported as
ties).
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Figure 4: Improvement through disease-specific tissue weights is consistent across scores
but varies with disease term. Shown is the performance of tissue-weighted variant scores (colored
points) vs. tissue-mean (black asterisks) as a baseline, for three tissue scores (rows) and four diseases,
stratified by improvement observed: best improvement for the fist column, moderate improvement for
the middle column, and least improvement for the right column. X-axes denote disease terms, the
y-axis average precision. Different points for tissue-weighted scores represent different data-splits in
the nested cross validation procedure.

2.4 DNase I hypersensitivity (DHS) scoring performs well compared with178

DIVAN179

Here we compare the performance of tissue-weighted DHS scoring with DIVAN [19], a disease-specific180

variant score for 45 diseases. DIVAN is based on a more complicated feature-selection and ensemble-181

learning framework, and it uses a variety of other functional genomics features, in addition to DNase I182

hypersensitivity. To compare our method with DIVAN, we mapped EFO disease terms to MeSH terms183

(as used by DIVAN) and use MeSH terms for this section (See Suppl. Data SD12). Because DIVAN184

uses as supervised learning approach, and because the published model was trained using GWAS SNVs,185

it was necessary to create specific train and test datasets to ensure a meaningful comparison between186

tissue-weighted DHS and DIVAN.187

Therefore, to assess performance of both DIVAN and DHS, we created a test set of disease-188

associated variants (and their matched controls) that were published later than 2016 (DIVAN’s pub-189

lication date). That is, these variants are unlikely to have been a part of DIVAN’s training data. We190

also created a training set for DHS tissue-weightd containing only SNVs published prior to 2016. This191

resulted in training data that (a) is distinct from the test set and (b) draws on similar information that192

was available for DIVAN’s training. Further on, we only selected disease terms for this training/test193
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Figure 5: DHS disease-specific tissue weights improve variant prioritization compared
with organism-level scores. For four strata (best improvement, middle improvement, comparable
performance, and worse performance) we selected four disease terms and compared performance results.
GenoCanyon (best organism-level score) performance is denoted in black, DHS tissue-weighted in red.
Different performances of DHS tissue-weighted represent variation different data splits during nested
cross validation (see Methods).

data combination where at least 20 term-associated SNVs were present in the training data, and where194

at least 50 SNVs were present in the test data. This approach yielded 29 disease terms for this analysis.195

We then re-trained tissue-weighted DHS on this training data and compared with DIVAN on the test196

data. In addition, we added the organism-level GenoCanyon score as a reference.197

To assess performance, we performed all pairwise comparisons for each disease term, and evaluated198

performance based on average precision. Tab. 4 summarizes observations, where we find that DHS per-199

forms significantly better than GenoCanyon and DIVAN in a majority of comparisons; however, there200

is a substantial number of comparisons (22 out of 58) where either GenoCanyon or DIVAN outperform201

DHS. Fig. 6 further illustrates these comparisons. In panel A we show performance across disease202

terms, grouped by the best-performing method. We see that tissue-weighted DHS outperforms DIVAN203

and GenoCanyon substantially on Multiple Sclerosis (MeSH:D009103), Psoriasis (MeSH:D011565) and204

Inflammatory Bowel Disease (MeSH:D015212); DIVAN outperforms GenoCanyon and DHS on Arthri-205

tis, rheumatoid (MeSH:D001172) and Heart failure (MeSH:D006333); GenoCanyon outperforms DHS206

and DIVAN on Stroke (MeSH:D020521) and Alzheimer disease (MeSH:D000544). In panels B-D207

we directly summarize comparison results; we observe that the DHS tissue-weighted score often has208

an advantage in terms where prioritization efforts are overall more successful (upper right quadrants).209

Finding overall good performance for our approach, we next more closely examined the disease-specific210

tissue aggregation weights we derive with our approach.211

2.5 Disease-specific tissue weights reflect biomedical relevance212

In addition to prioritizing SNPs, we can interpret the disease-specific tissue weights that our model213

learns in the context of disease mechanisms. Specifically, large tissue weights implicate tissues with a214

prominent role in associating SNVs with a disease in our model; therefore, one may hypothesize that215

such tissues or cell-types have a function in the etiology of that disease. To investigate this hypothesis,216

we analyzed tissue weights of the top-performing models we derived, where each model represents a217
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Score Wins Losses Ties Winning percent

DHS 34 22 2 61
GenoCanyon 26 31 1 46
DIVAN 25 32 1 44

Table 4: DHS tissue-weighted disease-specific scoring outperforms DIVAN . Across 29 dis-
ease terms, this table summarizes all pairwise comparison for DHS tissue-weighted, GenoCanyon and
DIVAN using a specifically created test dataset. Wins, losses, and ties refer to significantly better (or
worse, or tied) performance. Average precision was used as the performance metric, and the Wilcoxon
singed-ranks test to determine wins and losses (p-values less than 0.05 were ties). Winning percent =
#Wins/(#Wins+#Losses)

different disease.218

Results are summarized in Tab. 5; they include the two top-performing models, Systemic sclero-219

derma (rank 1) and Sclerosing cholangitis (rank 2). In order to report a diverse range of diseases,220

we next excluded any diseases that are descendants of immune system disease (EFO:0000540) or lym-221

phoma (EFO:0000574). From the remaining diseases, we identify the next three highest-ranked models:222

Colorectal adenoma (rank 15), Atrial fibrillation (rank 20), and Cutaneous melanoma (rank 21). For223

each diseases, we list the five tissues with the largest tissue-weights, and their tissue group.224

The tissues we associate with disease, overall, appear reasonable and generally are in-line with225

existing knowledge about disease mechanisms. Systemic scleradoma is an autoimmune disorder that226

can affect skin and internal organs [24]. We find that GM12878 lymphoblastoid cells (a type of B cell)227

are among highest-weighted tissues, as were other types of B cells (primary B cell and B cell lymphoma,228

respectively). This in-line with previous studies that have shown that B cells play a role in system229

scleroderma [25, 26]. Sclerosing cholangitis is an inflammatory condition that leads to scarring and230

narrowing of the bile ducts [27]. We highlight various inflammation-related types of blood cells, such231

as T cells and monocytes, which were previously suggested to play a role in the disease [28]. Colorectal232

adenoma is a benign tumor that develops in the lining of the colon or rectum. Our model identified233

rectal mucosa and stomoch mucosa as the most-highly weighted tissues, and the function of rectal234

mucosa in colorectal cancer has been previously studied [29]. While the direct relationship between235

other gastrointestinal tissues and the development of colorectal adenoma has not been established,236

the association between gastrointestinal microbiome and colorectal adenomas has been discovered [30].237

Regarding atrial fibrillation, our approach highlights fetal heart and lung tissues. In addition, we238

identified skeletal muscle cells. In the case of cutaneous melanoma, a type of skin cancer, our approach239

emphasizes foreskin melanocyte cells and a specific type of T cell. Apart from these, we highlight240

cervical carcinoma cell lines and endothelial primary cells.241

Overall, we conclude that the tissue weights we derive carry biomedically meaningful information242

and are able to highlight tissue contexts that may play a role in disease etiology. To further explore243

this finding, we used a resource of the epimap consortium [15], where disease-tissue associations are244

reported that derived differently from the one we obtained in two key ways: First, epimap uses their245

enhancer definitions based on a much larger set of genome annotations. Second, epimap’s enrichment246

test contrasts disease-associated SNP enrichment in a specific tissue’s enhancer set compared to all247

enhancers, whereas our method effectively compares open chromatin harboring disease-associated SNPs248

vs control SNPs tissue-by-tissue. Nevertheless, results are summarized in Suppl. Data ST7, and we249

find that out of the 25 tissues we associate with disease terms 14 have an estimated false discovery250

rate of less than 4% in the epimap analysis as well. Notably, a ground truth for these association is251
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Figure 6: DHS tissue-weighted scoring outperforms DIVAN . Performance of DIVAN, Geno-
Canyon, and DHS tissue-weighted across a test set, with disease terms grouped by the best-performing
method. Vertical striped indicates the minimum and maximum performance of 30 bootstrap samples
(A). Performance scatter plots of GenoCanyon vs. DIVAN performance (B); GenoCanyon vs. DHS-
weighted (C); DIVAN vs. DHS-weighted performance (D). Average precision was used for these plots;
dashed lines denote equal performance. Percentages denote the fraction of points above and below the
diagonal, respectively.

generally unknown; but we interpret the overlap in associations as encouraging, while complementary252

associations are expected, given the differences in methodology. Based on this overall finding of253

meaningful disease-tissue associations, we next further explored the use of tissue-weights in disease254

charactrization.255

2.6 Disease-term similarity based on DHS tissue-weighted modeling reveals256

meaningful groups257

Disease-specific tissue weights for aggregating DHS scores, which are learned by our approach, can258

highlight tissues and cell-types with a role in the disease (see previous section). Therefore, we derived259

and explored a measure for disease similarity based on these weights.260

2.6.1 Disease similarities based on disease-specific tissue weights for non-coding variant261

prioritization262

In our DHS tissue-weighted approach, for each disease term DNA accessibility across the same set of263

tissue and cell-type contexts is used to predict whether a certain SNV is disease-associated, or not.264

This results in disease-specific tissue aggregation weights (that is, coefficients in our logistic regression265
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Rank ID Tissue name Group

Systemic scleroderma
1 E116 GM12878 Lymphoblastoid Cells blood
2 E032 Primary B cells from peripheral blood blood
3 E041 Primary T helper cells PMA-I stimulated blood
4 E123 K562 Leukemia Cells blood
5 E030 Primary neutrophils from peripheral blood blood

Sclerosing cholangitis
1 E116 GM12878 Lymphoblastoid Cells blood
2 E061 Foreskin Melanocyte Primary Cells skin03 skin
3 E102 Rectal Mucosa Donor 31 gi rectum
4 E041 Primary T helper cells PMA-I stimulated blood
5 E029 Primary monocytes from peripheral blood blood

Colorectal adenoma
1 E102 Rectal Mucosa Donor 31 gi rectum
2 E110 Stomach Mucosa gi stomach
3 E057 Foreskin Keratinocyte Primary Cells skin02 skin
4 E101 Rectal Mucosa Donor 29 gi rectum
5 E028 Breast variant Human Mammary Epithelial Cells (vHMEC) breast

Atrial fibrillation
1 E083 Fetal Heart heart
2 E108 Skeletal Muscle Female muscle
3 E107 Skeletal Muscle Male muscle
4 E088 Fetal Lung lung
5 E120 HSMM Skeletal Muscle Myoblasts Cells muscle

Cutaneous melanoma
1 E061 Foreskin Melanocyte Primary Cells skin03 skin
2 E059 Foreskin Melanocyte Primary Cells skin01 skin
3 E117 HeLa-S3 Cervical Carcinoma Cell Line cervix
4 E041 Primary T helper cells PMA-I stimulated blood
5 E122 HUVEC Umbilical Vein Endothelial Primary Cells vascular

Table 5: Top-ranked tissues for five diseases. For five diseases when show the top-five tissues
with the largest tissue weights in the corresponding model we derive. The first column is the tissue
rank, the second the tissue’s roadmap ID, the third the tissue name, the fourth the tissue group, and
the fifth listst the adjusted p-value in an enrichment analysis performed by epimap [15].

model)
{
β(i) ∈ Rd

}n

i=1
, where i is indexing disease terms, n is the number of disease terms studied,266

and d denotes the number of tissues/cell-types with DHS scores. For our similarity measure between267

two diseases, say i and j, we then use a version of the Pearson correlation between β(i) and β(j)that268

takes uncertainty in the estimated aggregation weights into account (see Methods). That is, if an269

overlapping set of tissues/cell-types drive the prioritization of SNVs for two diseases, similarity is high;270

if different tissues are used, similarity is low.271

Using this approach we calculated disease similarities for the 111 disease terms we study. Result-272

ing similarities are visualized in (Fig. 7), where we show a similarity-based two-dimensional UMAP273

projection of disease terms. We observe that disease terms segregate into separate groups, with a274

coarse grouping between immune related diseases (lower left inlay, black) and others (lower left inlay,275

gray). A higher-resolution group structure was obtained by sub-clustering, where we grouped disease276

terms into seven groups (main panel, Fig. 7). Clusters names are based on EFO disease terms that277

include a large amount of cluster members as child-terms (see Methods and Suppl. Fig. S10-S16);278

Tab. 6 lists disease terms per cluster. In addition to the clear separation of immune-related diseases279

from others, we also find a very homogeneous group consisting of mental and behavioural disorders,280

containing terms like schizophrenia (EFO:0000692) and anxiety disorder (EFO:0006788), and a group281

of skin cancers. The remaining three groups are more heterogeneous, but with two of them con-282

taining several terms related to cardiovascular disease (EFO:0000319) and digestive system disorders283

(EFO:1000218), respectively. By design similar tissues in each group drive SNP-disease associations,284

and we next examined which tissues play a role in each of the clusters.285

In order to find group-specific tissues, we examined for each cluster the top five tissues that (a)286
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Table 6: Disease groups based on DHS tissue-weights. For each disease group disease terms are
shown. The colored squares denote the disease groups in the EFO ontology.
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contribute most to disease association and (b) are cluster specific (see Methods). Results are summa-287

rized in Fig. 8; we note that both disease groups related to the immune system highlight blood tissues288

(such as E043: Primary T helper cells from peripheral blood and E116: GM12878 Lymphoblastoid289

Cells, see Suppl. Data SD23 for all names of standard epigenomes), with the group containing in-290

flammatory bowel disease, Crohn’s disease, and ulcerative colitis also containing rectum tissues (such291

as E101: Rectal Mucosa Donor 29). Brain tissues contribute to disease associations for mental and292

behavioral disorders, skin tissues to skin cancer, and gastro-intestinal / stomach tissue to the cluster293

with digestive system diseases. We also note that a clear association of specific tissues with a dis-294

ease group correlates with better classification performance of our model for SNP-disease association295

(Fig. 8; for example, see the immune and immune/autoimmune clusters). We note, though, that296

not for all clusters the corresponding tissue associations are equally compelling, as illustrated in the297

same figure. While the clusters we derive resemble broader disease groups, for each disease a specific298

combination of tissues is used to derive whether a variant might be associated, and some tissues con-299

tribute to several clusters. For instance, one blood cell type (E116, GM12878 Lymphoblastoid Cells)300

contributes to both immune clusters, but also to diseases in the digestive/cancer, heterogeneous and301

skin cancer clusters. Another blood cell type (E043, Primary T helper cells from peripheral blood)302

displays a similar pattern. Suppl. Fig. S9 shows the same heatmap as Fig. 8, but for all tissues.303

Overall, these results suggest that our modeling approach successfully identifies tissues with a role304

in disease etiology. Finally, we explore how our disease similarities relate to genetic similarities as305

measured by genetic correlation between diseases.306
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Figure 7: Similarity-based two-dimensional projection visualizes 111 diseases. Two dom-
inant disease groups emerge in this visualization (immune system related disease terms (black) and
others (gray), in the inlay). Hierarchical clustering was used to group diseases into seven clusters, with
colors indicating broad disease types (see Tab. 6 for details).
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Figure 8: Heatmap of top-five tissue-weights for 111 diseases. Regularized model coefficients
(i.e., tissue weights) of five disease-cluster-specific tissues (columns) are shown for 111 diseases (rows).
Coefficients are scaled by disease, and rows are grouped into sets of cluster-specific tissues (see Meth-
ods section). Bottom annotation shows tissue names of cluster-specific tissues (names are shown in
the format of ‘Tissue name’ - ’Tissue group’; annotation on the left side shows disease cluster, and
annotating on the right side shows model performance in terms of AUPRC).

2.6.2 Model-based similarities are complementary to genetic correlation.307

Here we compare the disease-disease similarities we derived (sm) with genetic correlations from the308

GWAS Atlas (sg), where genetic correlation measures shared genetic causes between two traits [31].309

For 6,105 possible disease pairs of the 111 diseases terms we study, estimates of genetic correlation for310

595 pairs were available from the GWAS Atlas (see Methods). Overall, for these 595 disease pairs311

we observe only weak (but statistically significant) correlation between model similarities and genetic312

correlations (r = 0.32, p value = 2.4E − 15), where the scatter plot is shown in Fig. 9 panel A.313

We also see that most disease pairs are not annotated with substantial genetic correlations, or314

with high model-based similarities (90% of disease pairs have sm < 0.25, and sg < 0.2). Therefore, we315

explored three different regimes: Disease pairs where both similarity measures are high (sm ≥ 0.25 and316

sg ≥ 0.20), pairs with high genetic correlations and low model similarity (sm < 0.25 and sg ≥ 0.20)317

vice versa (quadrants indicated in Fig. 9A, named quadrants B, C and D). The top eight most318

extreme examples from each regime are summarized in Tab. 7. In the following we discuss some319

examples in more detail. Specifically we explore two immune system diseases for quadrant B; two320

mental or behavioral disorders for quadrant C; and one immune system disease and one mental or321
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behavioral disorder for quadrant D. We note that the pairs we examine have no annotated parent-322

child relationships in the EFO.323

- Ulcerative colitis (UC, EFO:0000729) and Crohn’s disease (CD, EFO:0000384) have both high324

genetic correlation (sg = 0.53) and model similarity (sm = 0.84), see Fig. 9A. This suggests325

that they share genetic causes, and that the same tissues are informative for SNP-disease as-326

sociation. While shared genetic causes for UC and CD have been pointed out (e.g., [32]), our327

model for SNP-disease association allows us to explore relevant tissue contexts. In Fig. 9B we328

show a scatter plot of tissue weights for both diseases, where color indicates the importance of329

each tissue to model similarity (see Methods). We observe that open chromatin in blood (E116,330

GM12878 Lymphoblastoid Cells; E124, Monocytes-CD14+ RO01746 Primary Cells; E041, Pri-331

mary T helper cells PMA-I stimulated) and rectum (E102, Rectal Mucosa Donor 31) is positively332

associated with SNP-disease association in both diseases; this is consistent with a previous study333

where blood cell types are found to be relevant in many autoimmune diseases, including UC and334

CD [33]. In addition, symptoms or complications in rectum is also observed in UC and CD [34].335

Interestingly, open chromatin in GI-intestine (E085, fetal intestine small) is negatively associated336

with SNP-disease association, along with ohter intestine tissues (E084, fetal intestine large and337

E109, small intestine, with the 61th and 86th smallest tissue weight, respectively, amongst 127338

contexts). This indicates fetal intestine or small intestine might be less involved in UC and CD339

etiology, compared to their juvenile and adult counterparts.340

- Autism spectrum disorder (ASD, EFO:0003756) and anorexia nervosa(AN, EFO:0004215)] is an341

example where we observe a low genetic correlation (sg = −0.05) and a moderate high model342

similarity (sm = 0.34); a scatter plot of their tissue weights is shown in Fig. 9C. Note that we did343

not choose one of the highlighted pairs in Tab. 7 for this quadrant, because we already discussed344

a immunesystem realted disease pair. We observe that both disease models give heart and brain345

tissue (E083, fetal heart and E081, fetal brain male) high tissue weights. This is consistent with346

the observation of brain abnormalities in ASD and AN [35, 36]. While the presence of fetal347

heart is less intuitive, we note that children with abnormal heart development are more likely348

to develop ASD, suggesting a connection between the disease and the fetal heart [37]. We also349

note that while genetic correlation between ASD and AN is low, a link between the two diseases350

on the phenotypic level is being suggested [38, 39]; the tissue context we identified could provide351

information about shared molecular aspects of disease etiology as well.352

- For obsessive compulsive disorder (EFO:0004242) and celiac disease (EFO:0001060) we observe353

low model similarities (sm = −0.26) and moderately high genetic correlation(sg = 0.36); Fig. 9354

D shows the scatter plot of tissue weights. Several studies have shown that nervous system disease355

and immune related diseases have shared genetic background [40, 41]. However, in contrast to the356

other two examples, there is little relation between tissue weights in these two diseases. Blood357

cell types are highlighted in celiac disease, while brain and fetal heart tissues are highlighted358

in obsessive compulsive disorder. For celiac disease, the top six tissue contexts are blood cells,359

including different types of T cells (E041, Primary T helper cells PMA-I stimulated; E043,360

Primary T helper cells from peripheral blood and E034, Primary T cells from peripheral blood)361

and lymphoblasts (E116, GM12878 Lymphoblastoid Cells), which is consistent with findings that362

alterations in T cells and lymphoblasts can lead to celiac disease [42, 43].363

Overall, these examples illustrate that the disease similarities we derive are complementary to364

genetic correlation. In addition, tissue contexts highlighted by our tissue-weights allow for biomedical365
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interpreations of observed similarities (i.e., which are the relevant tissue contexts) and can be used to366

generate molecular hypotheses about disease etiology.367

In summary, our results show that disease-specific variant prioritization performs well for non-coding368

GWAS variants, compared with organism-level approaches. We also demonstrate that disease-specific369

tissue-weights are biomedically meaningful and can be used to generate hypotheses about disease370

mechanism. Therefore, we believe this type of variant characterization is a useful tool for researchers371

studying the molecular and genetic causes of disease.372
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Figure 9: Genetic correlation and model similarity. (A) Genetic correlation vs. model similarity
for 595 disease pairs. Each point is a disease pair, where the x-axis denotes the genetic correlation
and y-axis is the disease model similarity. For three quadrants we highlight disease pairs, denoted
by B, C, and D). (B-D) Scatter plot of tissue coefficients in three example disease pairs, where (B)
shows Crohn’s disease vs inflammatory bowel disease; (C) shows anorexia nervosa vs autism spectrum
disorder and (D) shows celiac disease vs obsessive compulsive disorder. Lines denote a weighted linear
regression line underlying our disease similrities. Color codes for the weight for each tissue when
conducting weighted regression analysis.
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Disease 1 Disease 2 sg sm Quadrant

Inflammatory bowel disease Ulcerative colitis 1.00 0.88 B
Diabetes mellitus Type ii diabetes mellitus 0.91 0.91 B
Crohn’s disease Inflammatory bowel disease 0.72 0.91 B
Sclerosing cholangitis Ulcerative colitis 0.63 0.82 B
Crohn’s disease Ulcerative colitis 0.53 0.84 B
Ankylosing spondylitis Sclerosing cholangitis 0.35 0.90 B
Inflammatory bowel disease Sclerosing cholangitis 0.44 0.76 B
Bipolar disorder Schizophrenia 0.71 0.42 B

Rheumatoid arthritis Systemic lupus erythematosus -0.47 0.51 C
Celiac disease Systemic lupus erythematosus -0.16 0.58 C
Sclerosing cholangitis Systemic lupus erythematosus -0.24 0.49 C
Crohn’s disease Sclerosing cholangitis 0.17 0.83 C
Rheumatoid arthritis Sclerosing cholangitis 0.07 0.69 C
Crohn’s disease Rheumatoid arthritis 0.06 0.66 C
Systemic lupus erythematosus Ulcerative colitis -0.16 0.43 C
Crohn’s disease Systemic lupus erythematosus -0.10 0.49 C

Type i diabetes mellitus Type ii diabetes mellitus 0.85 0.10 D
Diabetes mellitus Type i diabetes mellitus 0.91 0.20 D
Celiac disease Obsessive-compulsive disorder 0.36 -0.26 D
Diabetes mellitus Obesity 0.54 0.01 D
Obesity Osteoarthritis 0.49 0.02 D
Attention deficit hyperactivity disorder Obesity 0.44 0.03 D
Attention deficit hyperactivity disorder Osteoarthritis 0.40 0.00 D
Obesity Type i diabetes mellitus 0.40 0.00 D

Table 7: Example disease pairs of genetic correlation and model similarities. This table
shows the genetic correlation and model similarity for some disease pairs as we selected. sg: genetic
correlation; sm: model similarity. For quadrant B, C, D we pick 8 disease pairs, where sg+sm, sg−sm
and sm − sg are the highest, respectively.

3 Discussion373

Most variant scores prioritize non-coding variants either at the level of the whole organism (e.g, CADD374

[8], GenoCanyon [44]), or they provide tissue-specific scores (e.g, GenoSkyline [11], Fitcons2 [12]). Here375

we present a straightforward strategy to combine tissue-specific variant scores in a disease-specific376

manner. We show that for common genetic variants in the GWAS catalog [1] our approach leads to377

better performance than organism-level or tissue-specific scores (see Fig. 5). Pre-computed disease-378

specific prioritization scores are available at https://doi.org/10.7910/DVN/AUAJ7K.379

Comparing different variant prioritization methods we note that we use area under the precision-recall380

curve as an evaluation metric, and that the performance of all methods is modest. We believe that381

is because our analysis (a) focuses explicitly on non-coding variants, (b) stratifies SNVs by disease-382

phenotype, and (c) utilizes unbiased matching of control-SNVs (SNPsnap-matching, see Section 4.1.2).383

Each of these points affects the SNV sets we use for our analysis, and therefore the performance metrics384

we report. For transparency we provide all disease-associated variants we use (with matched negatives)385

in our supplemental data. As a more general point we also note that associations reported in the386

GWAS catalog contain causal as well as non-causal SNPs, which will also contribute to sub-optimal387

performance measures of all the variant scores we assess.388

We included a comparison with the DIVAN method in our evaluation, which also includes compar-389

ing GenoCanyon with DIVAN. Part of this comparison is analogous to results reported in Chen et al.390

[19]; however, the performances we observed do not agree perfectly, as detailed in Suppl. Data SD15.391

Broadly, looking at overlapping/matching disease terms, our results appear more favorable for Geno-392

Canyon. These differences are likely due to different test sets used in the two evaluations (i.e., the393

GWAS catalog (this study) vs. GRASP).394

We also note that there is other research associating variants with disease terms in a similar395

setting, notably PINES [20] and LSMM [45]. We did not compare directly with PINES, because no396
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pre-computed scores are available; also, we note that while performance reported in this publication397

in terms of AUROC is higher than our results, a less stringent un-matched test set of random/control398

variants was used in these analyses. For LSMM we note that we leverage variants associated with399

EFO disease terms across studies, while LSMM uses summary statistics on a per-study basis. Using400

aggregate data from different studies allows our approach to consider parent-child relationships of the401

EFO ontology using variant aggregation (see Section 2.1).402

We demonstrate that our approach can be used to calculate similarities between disease terms, see403

Section 2.6.1. Since this similarity measure is derived from non-coding SNVs associated with disease,404

one could expect it is largely congruent with genetic correlation between disease traits. However, that405

is not the case (see Fig. 9), most likely because we focus on a small subset of disease-associated SNVs406

reported in the GWAS catalog. For example, obsessive-compulsive disorder and celiac disease have407

a high genetic correlation (sg = 0.36) but do not share noncoding SNPs in the GWAS catalog (and408

low model similarity sm = −0.26); on the other hand, autism spectrum disorder and anorexia nervosa409

have a low genetic correlation (sg = −0.05) but share a number of significant SNPs in the GWAS410

catalog (and relative high model similarity sm = 0.34). In addition, interpretation of model similarity411

between disease terms is different from genetic correlation; high model similarity implies that disease-412

associated SNVs reside in DNA-accessible regions in an overlapping set of tissues, but the identity of413

individual SNVs (and whether they overlap) is inconsequential. For example, asthma and rheumatoid414

arthritis have only 15 shared SNPs (out of 732 and 1283 SNPs in rheumatoid arthritis and asthma,415

respectively), but exhibit high model similarity (sm = 0.53). This shows that model similarity between416

two diseases can involve similar tissues even if they do not share a genetic background. Further on, we417

note that estimates of genetic correlation also may depend on the study used. For example, systemic418

lupus erythematosus (SLE) has a negative genetic correlation (sg = −0.47) with rheumatoid arthritis419

(RA) (and other inflammatory diseases) when using the SLE summary statistics from Julia et al. [46]420

(as retrieved from the GWAS Atlas [31]), whereas another study (Lu et al., [47]) found SLE to have a421

positive genetic correlation (sg = 0.41) with RA when using the SLE summary statistics from Bentham422

et al. [48].423

We note that in our analyses we used the EFO ontology to aggregate variants annotated in the424

NIH/EBI GWAS catalog. That is, for each disease term directly-annotated variants were used, and,425

in addition, variants annotated to descendant terms in the ontology were also included. This approach426

allowed us to compile a more exhaustive set of variants per term. However, some amount of caution427

should be exercised when using disease models with more general terms, such as ”cardiovascular428

disease” for example, as they may encompass heterogeneous diseases.429

Our approach is expected to improve as more variants are associated with disease, and as disease-430

associations get more refined. In addition, increasing amounts of epigenomics data, such as epimap431

[15] and ENCODE5 [6], could be incorporated and they have the potential to improve the disease432

associations we learn.433

In summary, we have provided a straightforward method to leverage tissue-specific variant scores434

for disease-specific variant prioritization. We show that this approach performs well compared with435

current methods, and we show that the resulting association models are interpretable and lead to useful436

characterization of disease terms. Overall, our contributions are useful for the following two reasons:437

Conceptually, because they highlight the value of disease-specific variant prioritization. In addition,438

we provide pre-computed association scores for 111 disease terms that researchers can use in practice439

to interpret their variant data.440
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4 Methods441

4.1 Data sources and processing442

4.1.1 Disease-associated variants443

Disease-associated non-coding single nucleotide variants were retrieved from the NHGRI-EBI Catalog444

of human genome-wide association studies database (GWAS catalog, version 2020-12-02, downloaded445

from https://www.ebi.ac.uk/gwas/docs/file-downloads). These data contained 122,396 unique446

non-coding SNPs spanning 2,782 phenotypes, where non-coding was defined as variants not overlap-447

ping protein-coding sequence (GENCODEv36); we also excluded variants annotated as protein coding448

sequence variants (e.g. missense variants, frameshift variants) as a SNP’s ”functional class” in the449

GWAS Catalog. Further, variants in the GWAS Catalog are annotated with phenotypes using the Ex-450

perimental Factor Ontology (EFO, https://www.ebi.ac.uk/efo) [49]. We focused on variants with451

phenotype terms annotated in disease domain of the EFO (i.e., all terms/traits/phenotypes we con-452

sider are descendants of the term “disease” (EFO:0000408, EFO version 3.24.0, accessed 2020-11-17).453

Further on, SNPs in the HLA region, and SNPs with minor allele frequency (MAF) less than 1% in454

the European population as reported by the International Genome Sample Resource were excluded (as455

they cannot be matched to control SNPs with the SNPsnap approach, see below). Out of 31103 SNVs,456

a total of 5225 SNVs were removed. Finally, in our analyses we restricted ourselves to phenotypes457

with at least 100 annotated non-coding SNPs. Suppl. Data SD1 and SD2 contain 111 phenotypes458

and 77,028 phenotype-associated SNPs we used in this study. We also grouped SNPs in LD blocks459

(SNPsnap, r2 ≥ 0.5) and identify SNPs with the minimum p-value per block(“representative SNP”); we460

provide this information, which we use in some of the analyses described below, in Suppl. Data SD2.461

4.1.2 Control variants462

For each disease-associated SNP we generated matched control non-coding variants MAF ≥1%) using463

four different strategies, where the non-coding is again defined discussed above (Section 4.1.1). The464

four strategies are:465

Random For each disease-associated SNP, we selected ten SNPs from common variants in 1000G466

EUR at random (i.e., equal probability for all SNPs) as controls.467

TSS-matching We processed common non-coding SNVs and selected a subset of these variants468

as controls, where the distribution of distances to the nearest protein-coding gene’s transcrip-469

tion start site (TSS) are matched between control set and disease-associated SNPs (similar to470

GWAVA, [23]). Specifically, we sorted all common non-coding SNPs by the distance to the near-471

est TSS and divided them into 50 bins, where each bin contains the same number of SNVs. Then,472

for each disease-associated SNP, we randomly selected ten control SNPs from the bin containing473

the disease-associated SNP’s distance to the nearest gene.474

SNPsnap-matching Using SNPsnap [22], we matched control SNPs to disease-associated variants in475

terms of minor allele frequency, gene density (distance cutoff ld0.8), distance to the nearest gene476

TSS, and number of SNPs in LD. Our parameters for maximum allowable deviation were: 5%,477

50%, 20% and 50%, respectively. We randomly selected ten control SNPs per disease-associated478

SNP form SNPsnap’s results, and we ensured there are no duplicated control SNPs for different479

disease-associated SNPs. If there were less than 10 control SNPs returned by SNPsnap, we kept480
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all of the control SNPs. If no control SNPs were matched, we removed the disease-associated481

SNVs (a total of 311 SNVs) from our analyses.482

SNPsnap-TSS-matching Essentially the same as in SNPsnap-matching, but controlling only for483

the distance to the nearest genes (maximum allowable deviation: 20%); for three other attributes484

“maximum allowable deviation” is set to 10,000%. We note that in both SNPsnap-matching and485

SNPsnap-TSS-matching, distance is measured by distance to the nearest gene, whereas for TSS-486

matching only protein-coding genes are considered.487

In all four matching strategies we excluded variants annotated in the GWAS catalog as control SNPs.488

Suppl. Data SD3 contains the four sets of control variants.489

4.1.3 Additional data sources, variant scores490

We used pre-computed SNP annotations from the following sources:491

- CADD v.1.3: http://krishna.gs.washington.edu/download/CADD/v1.3/1000G_phase3.tsv.492

gz493

- EigenPC v.1.1: https://xioniti01.u.hpc.mssm.edu/v1.1494

- Fitcons2: http://compgen.cshl.edu/fitCons2/hg19495

- GenoCanyon: http://genocanyon.med.yale.edu/GenoCanyon_Downloads.html496

- GenoSkylinePlus: http://genocanyon.med.yale.edu/GenoSkylineFiles/GenoSkylinePlus/497

GenoSkylinePlus_bed.tar.gz498

- GWAVA v.1.0: ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/VEP_plugin/499

gwava_scores.bed.gz500

- LINSIGHT: http://compgen.cshl.edu/%7Eyihuang/tracks/LINSIGHT.bw501

- DIVAN: https://sites.google.com/site/emorydivan502

- DHS accessibility: We downloaded Avocado-imputed [50] DNase1 hypersensitive sites (DHS)503

signal for 127 ENCODE biological contexts (tissues / cell types) from https://noble.gs.504

washington.edu/proj/avocado/data/avocado_full/DNase/.505

4.2 Tissue-weighted variant prioritization based on DNase1 hypersensitiv-506

ity507

4.2.1 A penalized logistic regression model for context-weighted score averaging508

For predicting SNP’s associations with a disease term, we consider SNPs as observations, and each509

SNP is described as a vector x ∈ Rd of variant scores in d tissues/contexts; we arrange vectors {xi}ni=1510

for n observations in a matrix X ∈ Rn×d, together with a vector y of n binary entries, indicating for511

each SNP association with a specific disease term (no=0/yes=1). In addition, we denote the average512

score (across contexts) for a SNP i by x̄i, which is also a basline score because it aggregates across513

contexts.514

We use a logistic regression model of the form515

log
pi

1− pi
= α0 + αx̄i + β′xi s.t. α ≥ 0 (1)
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where α0 ∈ R, α ∈ R+ and β ∈ Rd are regression coefficients, and pi is the probability that SNP i is516

associated with a disease that is studied. We fit a regularized version of the negative log likelihood517

argmin
α0,α,β

− 1

n

n∑
i=1

[
log(1− pi) + yi log

pi
1− pi

]
+ λ||β||2 (2)

where the dependence on α,β of the first term is through Equation (1). For large regularization518

parameters λ this will yield small β → 0 and recover the baseline (x̄) of unweighted averaging of519

context scores (scaled by a non-negative factor α). We implemented this approach using the R package520

glmnet (version 2.0-18, [51]) and determined the regularization parameter via 5-fold cross validation521

(cv.glmnet function) through maximizing the area under the (cross-validated) ROC curve. Class522

weights were employed to balance skewed class sizes.523

4.2.2 Disease similarities from context-weighted score averaging524

Context-weighted score averaging, as described above, results in disease-specific coefficient vectors525

({β(i)}, with i indexing disease terms), together with bootstrap estimates for the standard deviation526

of each coefficient (that can be arranged in corresponding vectors {γ(i)}). Specifically, we use 5-fold527

cross-validation repeated 10 times, yielding 50 coefficient vectors for each disease. We use their mean528

for our estimate of β(i), and their standard deviation as an estimate of γ(i).529

For a pair of diseases (di, dj) we then define a disease similarity through similarity of associated

coefficient vectors β(i) and β(j), taking into account our estimates of coefficient variability. Specifically,

we fit a weighted linear regression model (i.e., regressing β(i) on β(j)), with regression weights taking

into account coefficient variability as follows:

w
(i,j)
k = 1

/√
siks

j
k and s◦k = αγ

(◦)
k + (1− α)m for ◦ ∈ {i, j},

where we chose m to be the 25% quantile of all (esitmated) standard deviations observed, and α = 3/4.530

Therefore, sij and sjk are shrunken versions of the standard deviations for the regression coefficients531

of disease i and disease j in tissue/context k, respectively. Finally, for disease pairs with a positive532

coefficient from the weighted linear regression we take the coefficient of determination (R2) as a simi-533

larity measure; for disease pairs with a negative coefficient, we take −R2. We note that for constant534

regression weights {w(i,j)
k } this is equal to the Pearson correlation between the coefficient vectors we535

obtain from context-weighted score averaging (i.e., cor(β(i),β(j))).536

4.3 Variant prioritization performance537

4.3.1 Tissue-weighted cross-validation performance538

To measure the cross-validation performance of Tissue-weighted, we use repeated cross-validation [52]539

to reduce the variance (due to the random partitioning of data into 5 folds). Here, we repeated 5-540

fold cross-validation 30 times, and record the performance of each repeat. We later use the mean541

performance of the 30 repeats as the performance of that method and we also show the variance in542

figures such as Fig. 4.543

4.3.2 Comparing organism level scores544

For each disease we have disease-associated and control SNVs, and corresponding pre-computed545

organism-level scores. With this setup we calculate performance metrics of interest (area under the546

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 18, 2023. ; https://doi.org/10.1101/2023.10.17.23297164doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297164
http://creativecommons.org/licenses/by-nc-nd/4.0/


receiver operator characteristic curve (AUROC) and average precision (AUPR)), and obtain disease-547

specific performance metrics for each scoring approach. To compare performance between organism-548

level scores on the same disease we use performance measures computed on 30 bootstrap samples549

(each bootstrap sample randomly contains 90% of disease and control variants) and then employ the550

Wilcoxon signed-ranks test to test to assess differences in performance. This yields p-values as reported551

in Suppl. Data SD4.552

With respect to aggregating comparisons across diseases, we note that disease terms can (and do)553

share SNVs, so performance metrics in different terms are not necessarily independent. Also, disease554

terms can vary substantially in the number of annotated SNPs. We again use Wilcoxon singed-ranks555

test [53] on performance metrics (computed using all disease-associated- and control-SNVs for each556

disease term) to compare two organism-level variant scores aggregate across diseases. This approach557

yields p-values, as reported in Suppl. Data SD5.558

4.3.3 Comparing tissue-weighted scores559

Tissue-weighted baseline scores (see above) are calculated in the same way as organism-level scores.560

For tissue-weighted scores with data-driven tissue-specific weighting (see above), we use cross-validated561

performance measure for each bootstrap sample and the same 30 bootstrap samples as when we com-562

pared between organism-level scores. And then we use the same Wilcoxon signed-ranks tests to mea-563

sure the difference. For comparing scores aggregated across diseases we again proceed analogous to564

organism-level scores and use a Wilcoxon singed-ranks test on cross-validated disease-specific perfor-565

mance measures. Results are summarized in Suppl. Data SD8 and SD9.566

4.3.4 Comparing organism-level and tissue-weighted scores567

For comparisons between organism-level and tissue-combined scores we again use a bootstrap approach:568

for a specific disease term we use the Wilcoxon signed-ranks tests as discussed above to compare per-569

formance measures from organism-level scores with tissue-weighted scores. We note that this approach570

does not take into account: (a) Variability in the organism-level scores originating form variability of571

the data they are derived from, and (b) The possibility that organism-level scores may have already572

used SNPs in their score derivation process, and we use them again for evaluation in their score573

derivation process. However, we don’t expect these issue to substantially confound or results, and we574

note that incurred bias in our comparisons would expected to be in favor of organism-level scores.575

Results are summarized in Suppl. Data SD6, SD7, SD10 and SD11.576

4.3.5 DIVAN performance assessment and comparison.577

To assess and compare our performance with DIVAN [19], we generated a test set of SNPs from the578

GWAS catalog that were i) added after DIVAN had been published (i.e., after 05/28/2016) and ii) not579

present in the database used to train DIVAN (Association Result Browser https://www.ncbi.nlm.580

nih.gov/projects/gapplus/sgap_plus.htm) and iii) not within 1kb distance around SNPs used to581

train DIVAN and iv) were annotated to a disease phenotype addressed by DIVAN.582

Control SNPs were generated using SNPsnap matching, as described above. To be able to satisfy583

criterion iv), we mapped our disease terms (EFO terms) to disease terms used by DIVAN (MeSH terms)584

using the EMBL-EBI Ontology Xref Service (OxO, https://www.ebi.ac.uk/spot/oxo/, retrieved585

on April 19, 2020) and were able to resolve 41 out of 45 terms (Suppl. Data SD12). Of these, we586

keep terms with 20 or more disease associated SNPs in the test set and 50 or more SNPs in a training587
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set that we also construct (see below), yielding 29 overall disease phenotypes we use in our analysis.588

In order to fairly compare DIVAN with our logistic regression approach we constructed a training589

set using disease-associated SNPs from the GWAS catalog and the Phenotype-Genotype Integrator590

(PheGenI, https://www.ncbi.nlm.nih.gov/gap/phegeni) [54], excluding SNPs in the test dataset591

describe above, or SNPs within 1kb around test SNPs. Suppl. Data SD13 summarizes test and592

training data used for this analysis. Results are summarized in Suppl. Data SD14.593

4.3.6 Performance assessment using chromosome hold-out594

To assess the performance of our DHS tissue-weighted score we also used a chromosome hold-out595

strategy, with test SNPs on different chromosomes from training data. Specifically, for each disease,596

we choose a set of chromosomes that contains approximately 20% SNVs with a 1/10 positive to negative597

ratio (the same as the cross-validation setting) as a test set. Selection of test chromosomes is performed598

for each disease term separately, as disease-associated SNPs differ. To automate the procedure, we599

deployed (binary) linear programming to pick out chromosomes in test set for each disease.600

Specifically, for each disease term we solve the optimization problem601

argmax {xi}22
i=1

∑22

i=1
cixi

subject to
∑22

i=1
w+

i xi ≤ 0.2 and xi ∈ {0, 1},

where {xi} are binary indicator variables whether a chromosome is included in the test/hold-out set;602

w−
i and w+

i are the fraction of disease-associated (w+
i ) and control SNPs (w−

i ) on chromosome i and603

weights in the objective function are defined as ci = w+
i − |w+

i −w−
i |. This approach selects, for each604

disease term, a set of chromosomes to hold out that contain about 20% of disease-associates SNPs605

and that approximately reflects the overall imbalance between disease-associated and control SNPs.606

Suppl. Fig. S17 and S18 contain performance evaluations on chromosome hold-out sets.607

4.3.7 Performance assessment using one SNP per LD block608

To assess the effect of SNP correlation on our results we also performed analyses using only a single609

representative SNP per LD block (defined by r2 ≥ 0.5, see Section 4.1.1). Results are shown in610

Suppl. Fig. S19 and S20.611

4.4 Comparison with genetic correlation612

We retrieved genetic correlation values from the GWAS atlas [31]. To be able to use these data we613

mapped EFO disease terms (used in the NIH-NCBI GWAS Catalog and in our study) to terms used614

in the GWAS atlas study. To do so, we extracted synonyms of each EFO term (as listed on EFO615

ontology) and compared each synonym to the ”trait” and ”uniqtrait” column in the GWAS atlas data.616

All matches (with one tolerated letter substitution) will be used.617

In this approache a single EFO term can map to multiple GWAS atlas traits and studies. To

estimate the genetic correlation between two EFO terms (say di and dj), we use a weighted combination

of genetic correlation values:

rg(di, dj) =
∑
l,m

wlmrg(s(di)l, s(dj)m)

where rg(·, ·) is the genetic correlation of two diseases, {s(di)}ri=1 and {s(dj)}sj=1 are the GWAS atlas618
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studies that are mapped to EFO term di and dj , respectively; wlm is a weight for each combination of619

the GWAS atlas studies accounting for the sample sizes of different studies used to estimate genetic620

correlation values. We choose621

wlm = w̃(s(di)l) · w̃(s(dj)m)

where622

w̃(s(di)l) = size(s(di)l)/
∑
k

size(s(di)k)

where ”size” denotes the sample size of a study. This schene puts higher weights on studies with large623

sample sizes and smaller weights to studies with smaller sample sizes.624

4.5 Notes about epimap comparison, cluster annotation and display625

4.5.1 Epimap trait-tissue association for Table 5626

We obtained the latest snp-centric GWAS enrichments table from the EpiMap Repository at http:627

//compbio.mit.edu/epimap/. We retrieve tissues with adjusted p-values for each disease. We map the628

tissue names used in our study (Standard Roadmap Epigenomes, as labed by EID) to tissue names used629

in epimap (biosamples, as labeld as BSS biosample id) by adapting the scripts from https://github.630

com/cboix/EPIMAP_ANALYSIS/blob/master/metadata_scripts/get_roadmap_mapping.R. If there631

are more than one biosamples tissues mapped to roadmap tissues, we reported the p value of the tissue632

with the most significant results.633

4.5.2 Cluster names in Table 6634

To name each cluster/group of diseases/EFO terms we choose the EFO term that contains most of635

the cluster/group members. In Suppl. Data SD21 we summarize the terms with high term frequency636

in each cluster, where term frequency is the fraction of descendant terms present. For example, the637

EFO term ”immune system disease” (EFO:0000540) has a term frequency of 0.588 in the ”immune-1638

cluster”; this means that 58.8% of EFO terms in that cluster are descendants of EFO:0000540. We639

exclude the terms that are overly broad such as the term ”disease” or ”experimental factor ontology”.640

For each cluster, we rank the cluster member EFO terms using term frequency and select as name a641

meaningful term with the high term frequency. For one cluster where no term had high frequency we642

chose the name ”heterogeneous”.643

We also show a diagrams of EFO disease term relationships in each cluster in Suppl. Fig. S10-S16.644

Occasionally we include ancestor EFO terms not present in the cluster in a diagram, which are marked645

by asterisks.646

4.5.3 Dimension reduction and coefficient heatmap647

UMAP plot The two-dimensional UMAP plot of 111 EFO disease terms in Fig. 7 is based on648

disease similarities based on context-weighted score averaging (see section 4.2.2). The umap649

function of the uwot R package was used with parameters n neighbors = 15, ret model = TRUE,650

PCA center = FALSE.651

Coefficient heatmap The heatmap in Fig. 8 displays coefficient vectors of models for disease asso-

ciation (see section 4.2.1), normalized for each disease. Specifically, for each disease and tissue
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coefficient xi

x̃i =

{ (
xi − xmin

)
/x95 xi ≤ x95

1 xi > x95

where xmin is the minimum coefficient for a disease, and x95 is the 95% quantile.652

Cluster-associated tissues For each cluster, we show the top-five tissues that are most associated653

with the cluster (Fig. 8). To identify these tissues we conduct a two-sample Wilcoxon test (one-654

sided) on every tissue, where we compare normalized tissue coefficients for this cluster to the the655

other with the highest coefficients on average. The five tissues with the smallest p-value are then656

selected as top-five tissues.657

Tissue-associated clusters For the heatmap with all tissues in Suppl. Fig. S9, we assigned a cluster658

to each tissue. For each tissue, we calculated the median (across disease terms of a cluster) of659

the normalized coefficients for all clusters; the cluster with the highest median was assigned.660

Data and code availability661

Public data repositories were used as detailed in the Methods section, and data underlying tables and662

figures is available as supplemental information online. 25bp-resolution tissue-weighted DHS scores663

are available for download at https://doi.org/10.7910/DVN/AUAJ7K, and computer code used to664

generate analyses presented is available at link-to-github.665
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[14] Kévin Vervier and Jacob J. Michaelson. “TiSAn: estimating tissue-specific effects of coding and711

non-coding variants”. In: Bioinformatics 34.18 (2018), pp. 3061–3068. issn: 1367-4803. doi: 10.712

1093/bioinformatics/bty301. url: https://doi.org/10.1093/bioinformatics/bty301.713

[15] Carles A. Boix et al. “Regulatory genomic circuitry of human disease loci by integrative epige-714

nomics”. In: Nature 590.7845 (2021), pp. 300–307. issn: 1476-4687. doi: 10.1038/s41586-020-715

03145-z. url: https://doi.org/10.1038/s41586-020-03145-z.716

[16] Felix Richter et al. “Genomic analyses implicate noncoding de novo variants in congenital heart717

disease”. In: Nature Genetics 52.8 (2020), pp. 769–777. issn: 1546-1718. doi: 10.1038/s41588-718

020-0652-z. url: https://doi.org/10.1038/s41588-020-0652-z.719

[17] Ali Yousefian-Jazi et al. “Functional fine-mapping of noncoding risk variants in amyotrophic lat-720

eral sclerosis utilizing convolutional neural network”. In: Scientific Reports 10.1 (2020), p. 12872.721

issn: 2045-2322. doi: 10.1038/s41598- 020- 69790- 6. url: https://doi.org/10.1038/722

s41598-020-69790-6.723

[18] Ali Yousefian-Jazi et al. “Functional annotation of noncoding causal variants in autoimmune724

diseases”. In: Genomics 112.2 (2020), pp. 1208–1213. issn: 0888-7543. doi: https://doi.org/725

10.1016/j.ygeno.2019.07.006. url: https://www.sciencedirect.com/science/article/726

pii/S0888754319301272.727

[19] L. Chen, P. Jin, and Z. S. Qin. “DIVAN: accurate identification of non-coding disease-specific728

risk variants using multi-omics profiles”. In: Genome Biol 17.1 (2016), p. 252. issn: 1474-7596729

(Print) 1474-7596. doi: 10.1186/s13059-016-1112-z. url: https://www.ncbi.nlm.nih.gov/730

pmc/articles/PMC5139035/.731

[20] Corneliu A. Bodea et al. “PINES: phenotype-informed tissue weighting improves prediction of732

pathogenic noncoding variants”. In: Genome Biology 19.1 (2018), p. 173. issn: 1474-760X. doi:733

10.1186/s13059-018-1546-6. url: https://doi.org/10.1186/s13059-018-1546-6.734

[21] Long Gao et al. “Identifying noncoding risk variants using disease-relevant gene regulatory net-735

works”. In: Nature Communications 9.1 (2018), p. 702. issn: 2041-1723. doi: 10.1038/s41467-736

018-03133-y. url: https://doi.org/10.1038/s41467-018-03133-y.737

[22] Tune H. Pers, Pascal Timshel, and Joel N. Hirschhorn. “SNPsnap: a Web-based tool for identifi-738

cation and annotation of matched SNPs”. In: Bioinformatics 31.3 (2014), pp. 418–420. issn:739

1367-4803. doi: 10 . 1093 / bioinformatics / btu655. url: https : / / doi . org / 10 . 1093 /740

bioinformatics/btu655.741

[23] G. R. Ritchie et al. “Functional annotation of noncoding sequence variants”. In: Nat Methods742

11.3 (2014), pp. 294–6. issn: 1548-7091. doi: 10.1038/nmeth.2832.743

[24] MedlinePlus [Internet]. Bethesda (MD): National Library of Medicine (US). Systemic Sclero-744

derma. url: https://medlineplus.gov/genetics/condition/systemic-scleroderma/.745

[25] Marina D Kraaij and Jacob M van Laar. “The role of B cells in systemic sclerosis”. In: Biologics:746

Targets and Therapy 2.3 (2008), pp. 389–395. issn: 1177-5491.747

[26] Benjamin Thoreau, Benjamin Chaigne, and Luc Mouthon. “Role of B-cell in the pathogenesis of748

systemic sclerosis”. In: Frontiers in Immunology 13 (2022), p. 933468. issn: 1664-3224.749

29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 18, 2023. ; https://doi.org/10.1101/2023.10.17.23297164doi: medRxiv preprint 

https://doi.org/10.1016/j.ajhg.2018.03.026
https://doi.org/10.1016/j.ajhg.2018.03.026
https://doi.org/10.1016/j.ajhg.2018.03.026
https://pubmed.ncbi.nlm.nih.gov/29727691/
https://doi.org/10.1093/bioinformatics/bty301
https://doi.org/10.1093/bioinformatics/bty301
https://doi.org/10.1093/bioinformatics/bty301
https://doi.org/10.1093/bioinformatics/bty301
https://doi.org/10.1038/s41586-020-03145-z
https://doi.org/10.1038/s41586-020-03145-z
https://doi.org/10.1038/s41586-020-03145-z
https://doi.org/10.1038/s41586-020-03145-z
https://doi.org/10.1038/s41588-020-0652-z
https://doi.org/10.1038/s41588-020-0652-z
https://doi.org/10.1038/s41588-020-0652-z
https://doi.org/10.1038/s41588-020-0652-z
https://doi.org/10.1038/s41598-020-69790-6
https://doi.org/10.1038/s41598-020-69790-6
https://doi.org/10.1038/s41598-020-69790-6
https://doi.org/10.1038/s41598-020-69790-6
https://doi.org/https://doi.org/10.1016/j.ygeno.2019.07.006
https://doi.org/https://doi.org/10.1016/j.ygeno.2019.07.006
https://doi.org/https://doi.org/10.1016/j.ygeno.2019.07.006
https://www.sciencedirect.com/science/article/pii/S0888754319301272
https://www.sciencedirect.com/science/article/pii/S0888754319301272
https://www.sciencedirect.com/science/article/pii/S0888754319301272
https://doi.org/10.1186/s13059-016-1112-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5139035/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5139035/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5139035/
https://doi.org/10.1186/s13059-018-1546-6
https://doi.org/10.1186/s13059-018-1546-6
https://doi.org/10.1038/s41467-018-03133-y
https://doi.org/10.1038/s41467-018-03133-y
https://doi.org/10.1038/s41467-018-03133-y
https://doi.org/10.1038/s41467-018-03133-y
https://doi.org/10.1093/bioinformatics/btu655
https://doi.org/10.1093/bioinformatics/btu655
https://doi.org/10.1093/bioinformatics/btu655
https://doi.org/10.1093/bioinformatics/btu655
https://doi.org/10.1038/nmeth.2832
https://medlineplus.gov/genetics/condition/systemic-scleroderma/
https://doi.org/10.1101/2023.10.17.23297164
http://creativecommons.org/licenses/by-nc-nd/4.0/


[27] MedlinePlus [Internet]. Bethesda (MD): National Library of Medicine (US). Primary sclerosing750

cholangitis. url: https://medlineplus.gov/genetics/condition/primary-sclerosing-751

cholangitis/.752

[28] Lilly Kristin Kunzmann et al. “Monocytes as potential mediators of pathogen-induced T-helper753

17 differentiation in patients with primary sclerosing cholangitis (PSC)”. In: Hepatology 72.4754

(2020), pp. 1310–1326. issn: 0270-9139.755

[29] Temitope O Keku et al. “Rectal mucosal proliferation, dietary factors, and the risk of colorectal756

adenomas”. In: Cancer epidemiology, biomarkers & prevention: a publication of the American757

Association for Cancer Research, cosponsored by the American Society of Preventive Oncology758

7.11 (1998), pp. 993–999. issn: 1055-9965.759

[30] Santosh Dulal and Temitope O Keku. “Gut microbiome and colorectal adenomas”. In: Cancer760

journal (Sudbury, Mass.) 20.3 (2014), p. 225.761

[31] Kyoko Watanabe et al. “A global overview of pleiotropy and genetic architecture in complex762

traits”. In: Nature Genetics 51.9 (2019), pp. 1339–1348. issn: 1546-1718. doi: 10.1038/s41588-763

019-0481-0. url: https://doi.org/10.1038/s41588-019-0481-0.764

[32] Yuanhao Yang et al. “Investigating the shared genetic architecture between multiple sclerosis and765

inflammatory bowel diseases”. In: Nature Communications 12.1 (2021), p. 5641. issn: 2041-1723.766

doi: 10.1038/s41467-021-25768-0. url: https://doi.org/10.1038/s41467-021-25768-0.767

[33] K. K. Farh et al. “Genetic and epigenetic fine mapping of causal autoimmune disease variants”.768

In: Nature 518.7539 (2015), pp. 337–43. issn: 0028-0836 (Print) 0028-0836. doi: 10 . 1038 /769

nature13835.770

[34] C. McDowell, U. Farooq, and M. Haseeb. “Inflammatory Bowel Disease”. In: StatPearls. Treasure771

Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC., 2022.772

[35] C. Lord et al. “Autism spectrum disorder”. In: Lancet 392.10146 (2018), pp. 508–520. issn:773

0140-6736 (Print) 0140-6736. doi: 10.1016/s0140-6736(18)31129-2.774
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