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2 

Abstract 18 

Background 19 

COVID-19 causes substantial pressure on healthcare, with many healthcare systems now 20 
needing to prepare for and mitigate the consequences of surges in demand caused by 21 
multiple overlapping waves of infections. Therefore, public health agencies and health 22 
system managers also now benefit from short-term forecasts for respiratory infections that 23 
allow them to manage services better. However, the availability of easily implemented 24 
effective tools for generating precise forecasts at the individual regional level still needs to be 25 
improved.   26 

Methods 27 

We extended prior work on influenza to forecast regional COVID-19 hospitalisations in 28 
England for the period from 19th March 2020 to 31st December 2022, treating the number of 29 
hospital admissions in each region as an ordinal variable. We further developed the 30 
XGBoost model used previously to forecast influenza to enable it to exploit the ordering 31 
information in ordinal hospital admission levels. We incorporated different types of data as 32 
predictors: epidemiological data including weekly region COVID-19 cases and hospital 33 
admissions, weather conditions and mobility data for multiple categories of locations (e.g., 34 
parks, workplaces, etc). The impact of different discretisation methods and the number of 35 
ordinal levels was also considered.  36 

Results 37 

We find that the inclusion of weather data consistently increases the accuracy of our 38 
forecasts compared with models that rely only on the intrinsic epidemiological data, but only 39 
by a small amount. Mobility data brings about a more substantial increase in our forecasts.  40 
When both weather and mobility data are used in addition to the epidemiological data, the 41 
results are very similar to the model with only epidemiological data and mobility data.  42 

Conclusion  43 

Accurate ordinal forecasts of COVID-19 hospitalisations can be obtained using XGBoost and 44 
mobility data. While uniform ordinal levels show higher apparent accuracy, we recommend 45 
N-tile ordinal levels which contain far richer information. 46 
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Author Summary 47 

At the regional level, we address the pressing need for precise short-term forecasts of 48 

respiratory infections, particularly COVID-19. We focus on the specific context of England 49 

and cover the period from January 1 to December 31, 2022. We introduced an enhanced 50 

XGBoost model that leverages the ordinal nature of hospital admission data, utilising a 51 

combination of predictors, including epidemiological data, weather conditions, and mobility 52 

data across various location categories. Our findings indicate that the inclusion of weather 53 

data marginally improves forecasting accuracy, while mobility data yields more significant 54 

enhancements. This research contributes valuable insights for public health agencies and 55 

healthcare system managers in their ongoing efforts to manage and respond to the 56 

complexities of the COVID-19 pandemic.  57 
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Introduction  58 

The COVID-19 pandemic placed a considerable strain on hospitals at varying times and in 59 

different locations between January 2020 and late 2021. By 31st December 2022, the World 60 

Health Organization (WHO) has reported more than 600 million confirmed cases, including 61 

6.6 million deaths [1]. Given the significant variation in disease incidence across both space 62 

and time, even within the same country, local public health authorities often faced challenges 63 

in obtaining adequate insights to effectively prioritise health services. This deficiency led to 64 

even greater disruption in healthcare delivery than would have been otherwise anticipated. 65 

Having advanced and accurate knowledge of higher disease incidence allowed for the 66 

postponement of elective care, whereas insight into lower disease incidence facilitated a 67 

more expedited refocusing on the backlog of postponed elective procedures.  Heightened 68 

levels of uncertainty were especially pronounced during the emergence of new COVID-19 69 

variants, which were associated with increased transmission rates and, at times, greater 70 

severity.  71 

Specifically, in England and Wales, there were repeated rapid surges in SARS-CoV-2 72 

infections, resulting in high demands for hospitalisations and medical resources for COVID-73 

19 patients. While vaccination efforts have significantly reduced the need for additional 74 

interventions to prevent overwhelming hospitals, even as of December 2022, the persistently 75 

high rates of infections and mortality have placed substantial pressure on the resources of 76 

the National Health Service (NHS). Consequently, the need for frequently updated short-77 

term forecasting at the local level is evident, as it has the potential to markedly enhance the 78 

efficiency with which limited healthcare capacity is employed  [2]. 79 

Non-epidemiological time-varying factors may have collectively influenced the transmission 80 

dynamics of SARS-CoV-2 [3,4].  Numerous studies have detailed the association between 81 

COVID-19 cases and climate or meteorological conditions [5,6]. Multiple investigations 82 

conducted in France have confirmed that the integration of weather factors into models can 83 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

https://paperpile.com/c/YpRqm9/1jCyA
https://paperpile.com/c/YpRqm9/y6VSf
https://paperpile.com/c/YpRqm9/8TdfV+fdDmA
https://paperpile.com/c/YpRqm9/bOXCB+O9Ulx
https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


5 

enhance the model’s capability to reproduce observed patterns, encompassing the 84 

progression of hospital admissions [7,8].  85 

Changes in human social behaviours swiftly impact the trajectory of an epidemic and the 86 

influence of severe disease [9,10]. Comprehensive mobility data can be harnessed to 87 

illustrate shifts in customary commuting behaviours, patterns of social interaction, and inter-88 

regional transits. These changes in metrics have shown correlations with infection rates and 89 

mortality [11].  In this work, we endeavour to expand upon these findings by incorporating 90 

weather conditions and mobility patterns into a model designed to predict COVID-19 91 

admissions at the regional level. 92 

Our previous work involved the development of a machine learning short-term forecasting 93 

technique which demonstrated success through retrospective evaluations in predicting the 94 

incidence of influenza-like illness (ILI) as an ordinal variable [12]. The method exhibited 95 

satisfactory performance in these retrospective assessments. In this study, we expand upon 96 

our previous method by integrating local weather conditions and mobility patterns to forecast 97 

short-term, weekly COVID-19 admissions for seven NHS regions of England. As such, we 98 

conduct a two-step evaluation of this novel method: 1) We examine whether the inclusion of 99 

weather and mobility data enhances the accuracy of 1-to-4-week forecast individually and 100 

collectively drawing from previous admission patterns; 2) We explore whether the machine 101 

learning models can consistently achieve high accuracy across various levels of application.  102 

Methods  103 

Data 104 

Our dataset amalgamates information encompassing epidemiological aspects of COVID-19 105 

(hospital admissions, cases and deaths), human mobility patterns and weather data. All data 106 

were sourced from publicly available outlets.  107 
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Epidemiological data were publicly available on the GOV.UK Coronavirus (COVID-19) in the 108 

dashboard [13]. This source provided daily hospitalisation data for NHS regions in England, 109 

capturing instances of positive COVID-19 tests within 14 days prior to hospitalisation, along 110 

with post-admission positive cases. However, for NHS regions, daily cases and death 111 

statistics were unavailable. Instead, we extracted case and death data for Lower Tier Local 112 

Authorities (LTLAs) and subsequently matched the data of 315 LTLAs in England with their 113 

respective NHS regions. This facilitated the aggregation of NHS region-specific- case and 114 

death data. Daily death data recorded individuals who died within 28 days of being 115 

confirmed COVID-19 cases, with the date reflecting the date of death instead of the date of 116 

reporting. Hospital admission data became available on 19th March 2020 which postdates 117 

the availability of case and death data. To ensure temporal consistency, the analysis 118 

encompassed epidemiological data spanning from 19th March 2020 to 31st December 2022.  119 

Daily hospitalisation, cases and deaths were aggregated by ISO week. Subsequently, the 120 

weekly numbers were adjusted relative to the regional population, scaled per 100000 121 

people, thereby generating per capita hospitalisation, cases and death statistics. The 122 

regional population was deduced from population estimates at the LTLA levels by the Office 123 

for National Statistics (ONS) [14]. Per capita cases and deaths remained as continuous 124 

variables while per capita hospitalisation was converted into an ordinal variable using distinct 125 

methodologies described below. 126 
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Per capita hospitalisation was converted into an ordinal variable with numerical levels 127 

through two techniques: 1) N-tile, and 2) n-uniform interval, where n = 3, 5, and 10. The N-128 

tile method constitutes an unsupervised discretisation method that segments the value range 129 

into a  specified number of bins (i.e., 3, 5 and 10 in this context), aiming to maintain nearly 130 

uniform instances within each bin This effectively translates numeric target values into 131 

ordinal quantities by ensuring equivalent-frequency binning. On the other hand, the n-132 

uniform interval strategy divides the range of values into equidistant bins, each containing 133 

varying observation quantities. For both methodologies, the higher the value of the level, the 134 

higher the number of hospital admissions, with level 1 representing minimal hospitalisation 135 

and level n indicating the highest level of hospitalisation.   136 

We collected human mobility data from Google, which provides aggregated anonymised 137 

information sourced from its online platform [15]. This data provides insights into the 138 

percentage changes in mobility across 7 different location categories, serving as a measure 139 

of movement trends in response to the pandemic-related lockdowns. The reference point for 140 

these trends is the baseline day, defined as the median value from 3rd January to 6th 141 

February 2020. Each location category has its own specific baseline day. Google stopped 142 

reporting new data on 15th October 2022.  143 

While Google provides mobility data at the sub-regional levels for England, denoted by 144 

sub_region_1 and sub_region_2 columns in the raw data, it is not readily compatible with 145 

NHS regions. To address this, we used a combination of sub_region_1 and sub_region_2 146 

columns to map  LTLA using a lookup table available on the GitHub repository 147 

“datasciencecampus / google-mobility-reports-data” [16]. By calculating the mean daily 148 

mobility values at the LTLA level and associating them with different NHS regions, we were 149 

able to derive the daily mobility data for NHS regions. Finally, we obtained weekly mobility 150 

data at the NHS-regional level by averaging the daily mobility by ISO weeks. 151 
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Our analysis also included weekly weather data, specifically air temperature at 2 meters (m) 152 

and total precipitation, obtained from the fifth-generation reanalysis (ERA5) by the European 153 

Centre for Medium-Range Weather Forecasts (ECMWF) [17]. To acquire data at the NHS-154 

regional level, we identified the nearest grid point to the centre of each of the 315 LTLAs and 155 

calculated weekly temperature and total precipitation averages for the respective NHS 156 

regions. Data types and predictors were summarised in Table 1.  157 

Table 1. Detailed descriptions of predictors. 158 

 159 

Data  Predictor Description   

Epidemiologica
l data  

Hospitalisation  
COVID-19 Patients admitted to hospital; Ordinal variable.    

  Cases  New cases by specimen date     

  
Deaths New deaths with COVID-19 on the death certificate by 

date registered   

  Region NHS regions.   

Weather data Temperature Air temperature at 2 meters (°C)   

  Precipitation Total precipitation (mm）   

Mobility data Grocery and 
pharmacy 

Mobility trends for places such as grocery markets, food 
warehouses, farmers markets, speciality food shops, drug 
stores, pharmacies, etc.   

  
Parks Mobility trends for places such as local parks, national 

parks, public beaches, marinas, dog parks, plazas, public 
gardens, etc.   

  
Transit stations Mobility trends for places such as public transport hubs 

such as subway, bus, and train stations, etc.   

  
Retail and 
recreation 

Mobility trends for places such as restaurants, cafes, 
shopping centres, theme parks, museums, libraries, 
movie theatres, etc.   

  Residential Mobility trends for residential places.   

  Workplaces  Mobility trends for places of work.   

 160 

Primary forecast Model 161 

XGBoost is a standard classification algorithm for nominal classes, the ordinal information in 162 

the class attributes may be discarded partly when applied to ordinal prediction problems, 163 

while information can potentially enhance the predictability of the classifier. Therefore, we 164 

used a simple method developed by [18] to enable the underlying learning algorithm, 165 

standard XGBoost, in this work, to take advantage of the ordering information contained in 166 

the hospital admission levels.  167 
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To utilise the ordered class values, the essential thought of this method is to transform a 𝑘-168 

class ordinal problem into a 𝑘-1 binary classification problem. This is achieved by converting 169 

an ordinal attribute, denoted as 𝐴∗, with ordinal values 𝑉1, 𝑉2, 𝑉3, and so on up to 𝑉𝑘, into 𝑘 - 170 

1 binary attributes. Specifically, for each of the first 𝑘-1 values of the original attribute, a 171 

binary attribute is created. Each of these binary attributes represents the test 𝐴∗ > 𝑉𝑖, where 𝑖 172 

refers to the corresponding value of the original attribute. By adopting this method, we can 173 

effectively convert an ordinal regression problem into a binary classification problem, thereby 174 

enabling the application of various binary classification algorithms to the original ordinal 175 

problem. 176 

The training process commences by generating novel datasets from the primary dataset, 177 

where a distinct dataset is generated for each of the 𝑘 - 1 newly formed binary class 178 

attributes. We take 𝑘 = 5 as an example here for illustration, i.e., hospital admissions are 179 

divided into five levels, where the hospitalisation increases as the value of levels increases. 180 

We then can convert it into 4 binary classification problems from the original dataset such 181 

that  182 

the binary target is 𝑖 if levels > 𝑖, so the classifier will predict Pr (Level > 𝑖) where 𝑖 =1, 2, 3 183 

and 4  184 

Subsequently, the XGBoost algorithm is applied to generate a model for each of the newly 185 

created binary datasets separately. In order to predict the class value of an unseen instance, 186 

it is necessary to estimate the probabilities of the 𝑘 original ordinal classes, utilising the (𝑘 - 187 

1) models developed in the previous step. The estimation of probabilities for the first and last 188 

ordinal class values is determined by a single classifier. The probability of the first ordinal 189 

value (Level = 1) is computed as 1 - Pr (Level > 1). In the same manner, the probability of 190 

the last ordinal value (Level = 5) is determined by calculating the probability of Pr (Level > 4). 191 

For class values that fall within the range between 1 and 5, the probability is given by a pair 192 
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of classifiers. For example, the probability of Pr(Level = 2) is given by Pr (Level > 1) - Pr 193 

(Level > 2).  194 

Generally, for any ordinal hospital admission level values 𝑉𝑖 the probability can be estimated 195 

as:  196 

Pr (𝑉1) = 1- Pr (Level > 𝑉1) 197 

Pr (𝑉𝑖) = Pr (Level > 𝑉𝑖−1) -  Pr (Level > 𝑉𝑖 ), 1 < 𝑖 < 𝑘 198 

Pr (𝑉𝑘) = 1- Pr (Level > 𝑉𝑘−1) 199 

During the prediction phase, the (𝑘 - 1) classifiers are involved in calculating the probability 200 

of each of the k ordinal class values for an unknown instance by employing the 201 

aforementioned approach. The class value with the highest probability is assigned to the 202 

instance.  203 

We applied the method described above to the standard XGBoost algorithm to construct a 204 

new model that uses ordering information, referred to as the XGBoost ordered model in the 205 

later section. The XGBoost ordered model is our primary forecast model and its performance 206 

is evaluated in comparison with other baseline models. In addition, the standard XGBoost, 207 

which treats each class attribute as a set of unordered values, was performed and compared 208 

its performance to the ordered XGBoost model. For the purpose of distinction, in subsequent 209 

sections, we refer to the standard XGBoost model as the XGBoost category model. 210 

 211 

Comparison null model 212 

Ordered logistic regression (OLR) was employed as a baseline model to serve as a 213 

benchmark for evaluating the main model we explained above. The OLR model is an 214 

extension of logistic regression, which assumes proportional odds where the effect of the 215 

predictors is constant across all levels of the outcome variable [19]. It provides a simple but 216 
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useful starting point for exploring the relationship between the predictors and the ordinal 217 

outcome. The predictors used in this model were limited to epidemiological predictors only 218 

(prior one- and two-week hospitalisation levels and prior one-week cases and deaths).  219 

In addition to the OLR model, the null model in which the prediction of the target week is the 220 

same as the most recent available observation week, was used as a baseline model as well.  221 

 222 

Combinations of predictors 223 

Hospital admission level is the ordinal outcome for each model. Three types of data were 224 

incorporated as predictors in the models: 1) epidemiological data, including ordinal 225 

hospitalisation levels, COVID-19 cases and deaths; 2) weather data, including temperature 226 

and total precipitation; 3) community mobility trends data in different types of locations. We 227 

only applied epidemiological data to the baseline models to provide baseline accuracy for 228 

model evaluation. For the XGBoost ordered and category models, we adapted four different 229 

combinations of predictors: 1) epidemiological data only; 2) epidemiological and weather 230 

data; 3) epidemiological and mobility data and 4) epidemiological, weather and mobility data. 231 

Detailed descriptions of data and predictors used for each model are summarised in Table 2. 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 
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Table 2. Summary of predictors incorporated by each model.  245 

Model Predictor     

Baseline model 1 
- Null model 

Epidemiological data  

    

Baseline model 2 
- OLR 

Epidemiological data  

    

XGBoost category 
model  

Epidemiological data      

Epidemiological data + Weather conditions      

Epidemiological data + Mobility data     

Epidemiological data + Weather conditon + Mobility 
data     

XGBoost ordered 
model  

Epidemiological data      

Epidemiological data + Weather conditions      

Epidemiological data + Mobility data     

Epidemiological data + Weather conditon + Mobility 
data     

  246 

Forecasting  247 

The COVID-19 hospitalisation data can be characterised as a non-stationary time series, 248 

with a notable autocorrelation. Rather than employing a random data split for training and 249 

test sets, we made a deliberate choice.  We designated the period from 9th March 2020 to 250 

31st December 2021 as the training set, and the timeframe spanning from  1st January to 251 

31st December 2022 as the test set. We also implemented the extending window approach, 252 

as previously detailed in our work [12] to facilitate multiple-step-ahead forecasts. In brief, we 253 

augmented the fitted period (i.e., the training set) with one new observation during each 254 

forecasting update. This methodology in defining training and test sets was consistently 255 

applied across all the models used in this work.  256 

In terms of the hyperparameters for both the standard XGBoost model and XGboost ordered 257 

model, we maintained the same values that have been fine-tuned in our earlier work (Table 258 

S1) [12]. The analysis was conducted in R version 4.1.3. 259 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

https://paperpile.com/c/YpRqm9/yb02J
https://paperpile.com/c/YpRqm9/yb02J
https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


13 

Evaluation metrics 260 

We assessed the models based on two key metrics: macro-averaged mean absolute error 261 

(mMAE) and accuracy. Macro-averaged mean absolute error (mMAE) refers to the average 262 

of the mean absolute error (MAE) calculated for each class. More detailed explanations can 263 

be found in [12]. Accuracy is defined as the proportion of the number of weeks in which 264 

hospitalisation levels were correctly predicted to the total number of weeks within the test 265 

period.  266 

Results  267 

Critical analysis of the COVID-19 pandemic in England reveals several significant trends 268 

related to the timing and magnitude of peaks in healthcare demand. These patterns are 269 

evident when examining both the raw hospitalisation data and an N-tile ordinal 270 

representation (Figure 1). Notably, during the dominance of the Alpha variant, hospitalisation 271 

reached its peak across all the NHS regions in January 2021. However, with the 272 

implementation of the third national lockdown and the rollout of vaccination programs and 273 

public health initiatives, hospitalisation rates gradually declined throughout the spring and 274 

summer months. The emergence of the Delta variants in mid-2021 marked a concerning 275 

shift as hospitalisations once again began to surge during the autumn and early winter of 276 

that year. Subsequently, the arrival of the Omicron variant in late 2021 ushered in yet 277 

another wave of increased hospitalisations, which persisted into the early months of 2022. 278 

Following this, the hospitalisation levels exhibited a fluctuating downtrend trajectory. 279 
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 280 
Figure 1. Epidemic curve of weekly hospitalisation by NHS regions in England from 19 281 

March 2020 to 31 December 2022. The left y-axis represents the weekly count of new 282 

hospital admissions (red line), while the right y-axis depicts the weekly hospitalisation level 283 

determined using the N-tile method (blue line) and the uniform method (yellow line), with a 284 

total of 10 district levels.285 
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 286 

Examining regional COVID-19 hospitalisation data from England provides a valuable 287 

opportunity to demonstrate the distinctions between the N-tile ordinal version of this data. 288 

Notably, the frequency distribution does not effectively differentiate between the ordinal 289 

levels as defined by the uniform method (S1 Figure). For instance, when using three levels, 290 

an overwhelming 90.02% of observations fall into level 1. With 5 levels, 94.81% of data 291 

points cluster within levels 1 and 2; while with 10 levels, a substantial 88% of the 292 

observations falls between 1 and 3. Consequently, the ordinal levels derived from the 293 

uniform approach appear to display a smoother and less fluctuating trend when compared to 294 

the actual numerical trend (Figure 1, S2 Figure). Therefore, we have opted to use the N-tile 295 

levels as our primary outcome and focus on assessing the predictive performance of models 296 

using the ordinal outcome established by the N-tile method. We will revisit the potential 297 

impact of this choice in a subsequent sensitivity analysis. 298 

Our initial evaluation of model performance exclusively considered epidemiological data, 299 

which may be the only option for many populations during future similar periods. 300 

Surprisingly, we consistently achieved more accurate forecasts by the XGboost ordered 301 

model when compared to baseline models for 1- to 4-week ahead predictions even without 302 

incorporating additional potential features such as weather and mobility in the model (S3 303 

Figure).  304 

Subsequently, we introduced weather and mobility data as predictors into both the XGBoost 305 

ordered and category models evaluating model performance by macro-averaged Mean 306 

Absolute Error (mMAE). The mMAE was computed as the average value across seven NHS 307 

regions. Incorporating weather data alongside epidemiological data indeed improved the 308 

performance of our forecasting models when compared to baseline models (Figure 2). 309 

However, when comparing XGBoost models featuring both weather and epidemiological 310 

data with those utilising only epidemiological data, there was no improvement in accuracy 311 

(S4 Figure).  312 
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Figure 2. Accuracy metrics comparison of 4-week ahead forecasts between models 314 

trained with different combinations of predictors. A. Average macro-averaged Mean 315 

Absolute Error (mMAE) over all seven NHS regions. B. Average accuracy over all seven 316 

NHS regions.  317 

*Epidemiological 318 

 319 

In contrast, our findings suggest that the mobility data significantly enhances forecast 320 

accuracy compared to relying solely on epidemiological data alone (Figure 2). Notably, the 321 

XGBoost model that exclusively incorporates epidemiological data consistently performed 322 

notably worse than those integrating mobility data (S5 Figure). This underscores the 323 

importance of mobility data as a crucial factor in COVID-19 hospitalisation forecasting 324 

models.  325 

Finally, we incorporated both mobility and weather data into the models. Figure 3 illustrates 326 

the average mMAE for each of the four combinations of predictors in the XGBoost models 327 

across various prediction horizons (1- to 4-week ahead). Within each prediction horizon, 328 

mMAE increases as the prediction horizon increases, highlighting the increased challenge of 329 

making predictions further ahead in time. Nevertheless, across all prediction horizons, 330 

models that incorporate mobility data consistently demonstrate superior performance. 331 

Particularly noteworthy is the reduction in mMAE for 3- and 4-week ahead prediction when 332 

both weather and mobility are used as predictors.   333 

We also investigated the relative merits of different numbers of ordinal levels and Table 2 334 

summarises the results for the 3-, 5-, and 10-bin levels based on the N-tile bins. It becomes 335 

evident that the XGBoost ordered model consistently outperforms the baseline models in 336 

terms of accuracy for both 3 and 5 bins defined by the N-tile method. However, it is 337 

interesting to note that the XGBoost ordered model does not always exhibit a significantly 338 

superior performance. For the 10-bin scenario, we observe more substantial differences in 339 
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accuracy (Table 3, Figure 3), in particular when comparing it to the XGBoost category model 340 

under the N-tile method. In this context, the divergence in performance between the 341 

XGBoost ordered model and the baseline models becomes more significant. Moreover, the 342 

XGBoost surpasses the XGBoost category model across all four predictor combinations and 343 

prediction horizons. This substantial improvement underscores the increasing relevance of 344 

ordering information as the number of classes increases (Figure 4). 345 

 346 
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Table 3. Predictive performance of models when the N-tile method is used to define the ordinal level of hospital admissions.  347 

n-week 
ahead 

  Bins = 3   Bins = 5   Bins = 10   

  
mMA

E Accuracy (%)   
mMA

E Accuracy (%)   
mMA

E Accuracy (%)   

1-week 
ahead 

Null model 0.294 76.92%   0.290 66.48%   0.604 39.29%   

OLR 0.302 73.47%   0.317 60.88%   0.498 44.56%   

XGBoost 
category 0.298 72.80%   0.305 64.56%   0.605 37.91%   

XGBoost 
ordered 0.293 71.43%   0.279 67.03%   0.494 45.60%   

2-week 
ahead 

Null model 0.536 56.59%   0.540 43.41%   1.088 23.35%   

OLR 0.503 55.78%   0.424 47.28%   0.960 24.49%   

XGBoost 
category 0.315 65.38%   0.376 58.79%   0.811 31.87%   

XGBoost 
ordered 0.300 65.93%   0.340 61.26%   0.668 35.44%   

3-week 
ahead 

Null model 0.717 42.03%   0.793 28.57%   1.593 13.46%   

OLR 0.540 54.08%   0.624 38.78%   1.366 18.37%   

XGBoost 
category 0.349 61.81%   0.473 55.77%   0.971 29.40%   

XGBoost 
ordered 0.346 64.56%   0.388 60.44%   0.832 28.85%   

4-week 
ahead 

Null model 0.888 35.44%   1.011 19.51%   1.974 9.62%   

OLR 0.663 47.62%   0.891 28.23%   1.874 10.88%   

XGBoost 
category 

0.483 
57.97%   

0.470 
50.82%   

1.024 
25.27%   

XGBoost 
ordered 

0.427 
59.62%   

0.475 
50.55%   

1.002 
26.37%   

348 
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Figure 3. Evaluating  XGBoost model performance with various feature sets, using 351 

macro-averaged Mean Absolute Error (mMAE) and accuracy. The overall mMAE was 352 

computed by averaging across the seven NHS regions for each prediction horizon spanning 353 

from 1- to 4-week ahead). A. mMAE of both the XGBoost category model and the XGBoost 354 

ordered model trained with the following sets of features 1) epidemiological data (red line); 2) 355 

epidemiological and weather data (green line); 3) epidemiological and mobility data (yellow 356 

line); and 4) epidemiological, mobility and weather features (blue line). B. Accuracy results 357 

for the XGBoost category model and the XGBoost ordered model, which was trained using 358 

the same feature sets as in Panel A  with 1) epidemiological data (red line); 2) 359 

epidemiological and weather data (green line); 3) epidemiological and mobility data (yellow 360 

line); and 4) epidemiological, mobility and weather features (blue line).  361 

*Epidemiological 362 
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Figure 4. Comparison of model performance by NHS regions for XGBoost models and 364 

baseline models trained with different combinations of predictors when the prediction 365 

horizon is 4 week-ahead for the test period 2022. The levels are defined by the N-tile 366 

method. A. mMAEs of forecasts for hospitalisation levels. B. Accuracy of forecasts for 367 

hospitalisation levels.  368 

*Epidemiological 369 

 370 

To assess the significance of predictors, we used “the Gain”, a metric that quantifies the 371 

relative contribution of each feature to the XGBoost ordered model. The five most influential 372 

predictors are as follows: hospitalisation levels from previous weeks, the number of COVID-373 

19 cases, temperature, mobility changes in retail and recreation places, and the number of 374 

COVID-19-associated deaths (Figure S6). These key predictors underscored the importance 375 

of epidemiological data and how the inclusion of weather and mobility data further enhances 376 

the model's accuracy. Conversely, total precipitation and other mobility trends exhibit lower 377 

importance in the model.  378 

Our findings are corroborated when we compare results across individual regions (Figure 5). 379 

Using the N-tile method to define hospitalisation levels, we predicted these levels 1- to 4-380 

week ahead throughout the entire test period. Notably, the prediction errors (mMAEs) are 381 

consistently lower in models that t feature mobility data and even lower when both mobility 382 

and weather data are included, as compared to using only epidemiological or weather alone 383 

for all regions. As the ordinal class value increases, the discrepancy in prediction errors 384 

becomes more pronounced. For instance, in the East of England, when the class number is 385 

set to 10, the mMAE of the 2-week ahead forecast only uses epidemiological data is about 386 

double that of a 4-week ahead forecast incorporating both weather and mobility data. When 387 

extending the prediction horizon to 4-week ahead, the difference in mMAE increases 388 

threefold.  389 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


24 

 390 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


25 

Figure 5. Comparison of NHS-region-specific performance for the XGBoost ordered model 391 

trained with 1) epidemiological features (beige line); 2) epidemiological and weather features 392 

(pink line); 3) epidemiological and mobility features (brown line); and 4) epidemiological, 393 

weather and mobility features (yellow line). The prediction horizon is from 1 to 4 week-ahead 394 

for the test period 2022. The number of total levels orders the rows from 3 (top) to 10 395 

(bottom) levels, and levels are defined by the N-tile method. Each column represents one 396 

NHS region. A. mMAEs of forecasts for hospitalisation levels. B. Accuracy of forecasts for 397 

hospitalisation levels.  398 

*Epidemiological 399 

 400 

In Figure 6, we conducted a comparative analysis between the predicted values generated 401 

by the XGBoost ordered models and the time series data representing actual hospitalisation 402 

values. Across all NHS regions, all four predictor combinations effectively capture the overall 403 

hospitalisation trends and successfully identify the peak admission levels for 1- and 2-week 404 

forecasts. Particularly noteworthy is the superior accuracy of models incorporating mobility 405 

data and models combining both mobility and weather data. However, when looking at 3- 406 

and 4-week ahead forecasts, the model relying solely on epidemiological data exhibits 407 

noticeable deviations from the actual levels, primarily evident in a lag in predicting peak 408 

admissions. For these longer-term forecasts, the models integrating mobility data, and 409 

especially those incorporating both mobility and weather data, do not entirely capture the 410 

fluctuations observed at the beginning of 2020. Nonetheless, their predictions for up to 4-411 

weeks ahead remain the closest approximation to the actual observed peak, emphasizing 412 

their predictive strength even in the face of more extended forecasting horizons.     413 
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Figure 6. Comparison of actual and predicted hospitalisation levels by NHS regions. 416 

The predicted hospitalisation levels are predicted by the XGBoost ordered model with 10 417 

levels defined by the N-tile method, and the time ranges from week 1 to week 52 in 2022. 418 

Each row represents one NHS region. Columns are prediction horizons ordered from 1- (left) 419 

to 4-week (right) ahead. A. East of England, London, Midlands and North East and 420 

Yorkshire; B. North West, South East and South West. 421 

 422 

Discussion 423 

This study aims to enhance the accuracy of forecasting regional hospitalisation levels in 424 

England, which are treated as ordinal outcomes, by integrating various data sources. We 425 

evaluated the efficacy of different bin partitioning methods in leveraging the inherent ordering 426 

information Notably, the N-tile method outperforms the uniform method in this regard. Our 427 

study covered seven NHS regions and assesses the performance of short-term forecasts in 428 

three distinct scenarios: 1) forecasts solely reliant on epidemiological data, including 429 

previous hospitalisation figures, case counts, and mortality statistics; 2) forecasts that 430 

incorporate mobility data and weather conditions as supplementary predictors, considered 431 

separately from epidemiological data; 3) forecasts that incorporate both mobility data and 432 

weather conditions as additional predictors alongside epidemiological data. 433 

Our findings reveal that the XGboost ordered model, based solely on epidemiological data, 434 

achieves superior accuracy compared to baseline models. This outcome is particularly 435 

beneficial for countries with limited access to diverse data sources beyond epidemiological 436 

data. Furthermore, we provide evidence that the inclusion of aggregated mobility data 437 

significantly enhances prediction accuracy, extending up to a 4-week horizon when 438 

compared to models relying solely on epidemiological data. However, our analysis indicates 439 

that the contribution of weather conditions to prediction accuracy is minimal.   440 
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A key insight from our study is the strong predictive power of mobility data in relation to 441 

COVID-19 transmission compared to weather conditions. Our findings are consistent with 442 

prior research that underscored the pivotal role of mobility as a primary predictor of COVID-443 

19 transmission dynamics [20–23]. Several other studies have also explored the association 444 

between mobility and COVID-19 transmission but have arrived at varying conclusions. For 445 

instance, a study conducted by[24] found mobility to be a significant predictor of COVID-19 446 

cases in specific regions, while observing limited impact in others. Meanwhile, [25] 447 

demonstrated a strong correlation between mobility and COVID-19 transmission across 448 

diverse geographical areas. These disparities in findings may be attributed to differences in 449 

study design, regional or geographical contexts, and specific modelling approaches 450 

employed. Differences in data collection methods and time periods considered in each study 451 

may also contribute to the observed discrepancies. In our analysis, we believe that the 452 

extensive and diverse dataset we used, allowed us to discern mobility as the primary 453 

predictor. Additionally, the incorporation of local factors and spatiotemporal variations in 454 

mobility patterns might have contributed to our more accurate predictions.  455 

Mobility data reflects the contact behaviour changes occurring within a population in 456 

response to COVID-19, while weather factors may interact with these changes and 457 

contribute to the spread of COVID-19, potentially leading to increased hospitalisation. For 458 

example, during mild weather conditions, individuals tend to spend more time outdoors in 459 

parks and engage in socialising activities involving close contact without adhering to safety 460 

measures such as wearing masks and physical distancing.  461 

Nonetheless, our study has its limitations. First, we assumed that aggregated mobility data 462 

captures well the human social mixing patterns in the population. The robustness of our 463 

model forecasts relies heavily on the accessibility and representativeness of this aggregate 464 

mobility data. It is important to note that Google ceased updating their mobility data from 15 465 

October 2022 onwards, which may limit the generalisability of our results in the future due to 466 

the reduced availability of mobility datasets. Moreover, in resource-constrained settings with 467 
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limited smartphone usage, the aggregated mobility data may not fully characterise the 468 

movement patterns of the entire population. 469 

Furthermore, the lack of continuous and long-term availability of mobility or weather data in 470 

certain resource-constrained regions or countries is another constraint. Consequently, the 471 

generalisability of our findings may be impacted, as the reduced availability of mobility and 472 

weather datasets could hinder the accurate assessment and prediction of the transmission 473 

dynamics of COVID-19 in those areas. For these reasons, we also described here the 474 

performance of the XGBoost model of ordinal data using only intrinsic variables in the time 475 

series. 476 

We were unable to obtain sufficiently accurate datasets to consider the incorporation of non-477 

pharmaceutical interventions (NPIs) and vaccination as additional features in our predictive 478 

model at the regional level. Specifically, the absence of suitable weekly vaccination data by 479 

NHS regions hindered our ability to assess the potential influence of vaccination coverage 480 

rates on the accuracy of our predictions. Furthermore, we did not include factors such as the 481 

effectiveness of NPIs and behavioural patterns, such as intentions of wearing face masks 482 

and following social distancing, as predictors in our model. However, it is widely 483 

acknowledged that vaccination and non-pharmaceutical interventions have played pivotal 484 

roles in mitigating the spread of COVID-19 and reducing infection and hospitalisation rates in 485 

various regions[26,27]. The rollout of vaccination campaigns and the implementation of 486 

NPIs, including lockdowns, travel restrictions, and mask mandates, have demonstrated their 487 

efficacy in curbing transmission and alleviating the strain on healthcare systems[28,29]. We 488 

propose that the framework we have outlined here could be effectively employed when such 489 

data become available, allowing for the assessment of the potential value of these variables 490 

in predicting critical hospitalisation patterns. 491 

Considering the significant impact of vaccination and NPIs on disease transmission 492 

dynamics, we acknowledge the critical importance of integrating these factors in future 493 
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modelling efforts. The inclusion of vaccination coverage rates, NPI implementation timelines, 494 

and compliance levels with behavioural interventions would enrich our predictive model and 495 

enhance its accuracy in forecasting COVID-19 trends at the regional levels. These 496 

enhancements could facilitate more precise and timely public health decision-making and 497 

resource allocation during pandemic management. To advance this effort, it is imperative to 498 

have access to available and reliable datasets encompassing vaccination coverage and NPI 499 

implementation across NHS regions. Robust data collection and reporting mechanisms are 500 

essential for researchers and policymakers to gain a comprehensive understanding of the 501 

interplay between vaccination efforts, NPI adoption, and disease transmission 502 

dynamics[30,31]. Collaborative initiatives among healthcare agencies, governmental bodies, 503 

and research institutions are also important for establishing standardised data collection 504 

protocols and enabling the timely sharing of accurate information. 505 

In conclusion, our findings underscore the value of incorporating weather and mobility data 506 

to explore the ordering information of ordinal hospitalisation levels, thereby enhancing the 507 

precision of hospital admission level predictions over a 4-week ahead time horizon. This 508 

extension provides policymakers with additional time to plan and allocate hospital resources 509 

effectively.  510 

 511 
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Supporting information  512 

S1 Table. Hyperparameter values used by the XGBoost models.  513 

(XLSX) 514 

 515 

S2 Table. Predictive performance of models when the ordinal level of hospital 516 

admissions is defined by the uniform method.  517 

(XLSX) 518 

  519 
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 520 

S1 Figure. Distribution of ordinal levels for weekly hospitalisations for NHS regions 521 

discretised by the uniform method. A. The distribution of hospital admission that 522 

discretised into three levels. B. The distribution of hospital admission that discretised into 523 

five levels. C. The distribution of hospital admission that discretised into ten levels.  524 
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S2 Figure. Epidemic curve of weekly hospitalisation by NHS regions in England from 533 

19 March 2020 to 31 December 2022. The left y-axis is the numerical number of weekly 534 

new hospital admissions (red line), while the right y-axis is the ordinal weekly hospitalisation 535 

level defined by the N-tile method (blue line) and the uniform method (yellow line). A. The 536 

number of levels equals three. B. The number of levels equals five.  537 
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S3 Figure. Model performance of predicting N-tile hospitalisation levels with only 540 

epidemiological predictors. A. mMAEs of the null model (grey line), ordered logistic 541 

regression model (red line), the XGBoost category model (yellow line) and the XGBoost 542 

model (pink line). B. Accuracy of the null model (grey line), ordered logistic regression model 543 

(red line), the XGBoost category model (yellow line) and the XGBoost model (pink line). 544 

 545 
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40 

S4 Figure. Performance of the XGBoost models incorporated with epidemiological 548 

and weather data, measured by macro-averaged Mean Absolute Error (mMAE) and 549 

accuracy. The overall mMAE and accuracy were averaged over seven NHS regions for 550 

each prediction horizon (1- to 4-week ahead). A. mMAEs of the XGBoost models trained 551 

with epidemiological and weather features (blue line) and epidemiological features (red line). 552 

B. Accuracy of the XGBoost models trained with epidemiological and weather features (blue 553 

line) and epidemiological features (red line).  554 

*Epidemiological  555 
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S5 Figure. Performance of the XGBoost models incorporated with epidemiological 558 

and mobility data, measured by macro-averaged Mean Absolute Error (mMAE) and 559 

accuracy. The overall mMAE and accuracy were averaged over seven NHS regions for 560 

each prediction horizon (1- to 4-week ahead). A. mMAEs of the XGBoost models trained 561 

with epidemiological and mobility features (green line) and epidemiological features (red 562 

line). B. Accuracy of the XGBoost models trained with epidemiological and mobility features 563 

(green line) and epidemiological features (red line).  564 

*Epidemiological  565 
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 567 

S6 Figure. The relative importance (Gain) of predictors used by the XGBoost ordered 568 

model.  569 

  570 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


44 

Data availability  571 

The source code and data used to produce the results and analyses presented in this 572 

manuscript and supporting figures and tables are available on a Git repository: 573 

https://github.com/VVVVivi/COVID_hosp_forecasting.git. Supporting figures and tables are 574 

provided in the same GitHub repository as extended data. 575 

Competing Interest  576 

No competing interests were disclosed. 577 

Acknowledgements  578 

The authors acknowledge funding from the MRC Centre for Global Infectious Disease 579 

Analysis (MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and 580 

the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO 581 

Concordat agreement, and also part of the EDCTP2 programme supported by the European 582 

Union. S.R. acknowledges the support from Wellcome Trust Investigator Award (UK, 583 

200861/Z/16/Z). KOK acknowledges funding from HMRF (INF-CUHK-1). RL acknowledges 584 

funding from Nanjing Medical University Talents Start-up Grants (NMUR20220001). 585 

Author Contribution  586 

Conceptualization: Haowei Wang, Steven Riley 587 

Data curation: Haowei Wang  588 

Formal analysis: Haowei Wang  589 

Methodology: Haowei Wang  590 

Software: Haowei Wang 591 

Supervision: Steven Riley 592 

Validation: Haowei Wang 593 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


45 

Visualization: Haowei Wang 594 

Writing – original draft: Haowei Wang 595 

Writing – review & editing: Haowei Wang, Steven Riley, Kin On Kwok, Ruiyun Li596 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


46 

Reference  597 

1.  World Health Organization (WHO). WHO Coronavirus (COVID-19) Dashboard. 2020 598 
[cited 11 Jan 2023]. Available: https://covid19.who.int/ 599 

2.  Sarker S, Jamal L, Ahmed SF, Irtisam N. Robotics and artificial intelligence in 600 
healthcare during COVID-19 pandemic: A systematic review. Rob Auton Syst. 601 
2021;146: 103902. doi:10.1016/j.robot.2021.103902 602 

3.  Ilin C, Annan-Phan S, Tai XH, Mehra S, Hsiang S, Blumenstock JE. Public mobility data 603 
enables COVID-19 forecasting and management at local and global scales. Sci Rep. 604 
2021;11: 13531. doi:10.1038/s41598-021-92892-8 605 

4.  Ganslmeier M, Furceri D, Ostry JD. The impact of weather on COVID-19 pandemic. Sci 606 
Rep. 2021;11: 22027. doi:10.1038/s41598-021-01189-3 607 

5.  McClymont H, Hu W. Weather Variability and COVID-19 Transmission: A Review of 608 
Recent Research. Int J Environ Res Public Health. 2021;18. 609 
doi:10.3390/ijerph18020396 610 

6.  Wu Y, Jing W, Liu J, Ma Q, Yuan J, Wang Y, et al. Effects of temperature and humidity 611 
on the daily new cases and new deaths of COVID-19 in 166 countries. Sci Total 612 
Environ. 2020;729: 139051. doi:10.1016/j.scitotenv.2020.139051 613 

7.  d’Albis H, Coulibaly D, Roumagnac A, de Carvalho Filho E, Bertrand R. Quantification of 614 
the effects of climatic conditions on French hospital admissions and deaths induced by 615 
SARS-CoV-2. Sci Rep. 2021;11: 21812. doi:10.1038/s41598-021-01392-2 616 

8.  Paireau J, Andronico A, Hozé N, Layan M, Crépey P, Roumagnac A, et al. An ensemble 617 
model based on early predictors to forecast COVID-19 health care demand in France. 618 
Proc Natl Acad Sci U S A. 2022;119: e2103302119. doi:10.1073/pnas.2103302119 619 

9.  Moran KR, Fairchild G, Generous N, Hickmann K, Osthus D, Priedhorsky R, et al. 620 
Epidemic Forecasting is Messier Than Weather Forecasting: The Role of Human 621 
Behavior and Internet Data Streams in Epidemic Forecast. J Infect Dis. 2016;214: 622 
S404–S408. doi:10.1093/infdis/jiw375 623 

10.  Ainslie KEC, Walters CE, Fu H, Bhatia S, Wang H, Xi X, et al. Evidence of initial 624 
success for China exiting COVID-19 social distancing policy after achieving 625 
containment. Wellcome Open Res. 2020;5: 81. doi:10.12688/wellcomeopenres.15843.2 626 

11.  Klein B, LaRock T, McCabe S, Torres L, Friedland L, Kos M, et al. Characterizing 627 
collective physical distancing in the U.S. during the first nine months of the COVID-19 628 
pandemic. arXiv [physics.soc-ph]. 2022. Available: http://arxiv.org/abs/2212.08873 629 

12.  Wang H, Kwok KO, Riley S. Forecasting influenza incidence as an ordinal variable 630 
using machine learning. medRxiv. 2023. doi:10.1101/2023.02.09.23285705 631 

13.  England Summary. [cited 13 Jan 2023]. Available: https://coronavirus.data.gov.uk/ 632 

14.  Office for National Statistics. Estimates of the population for the UK, England, Wales, 633 
Scotland and Northern Ireland. Office for National Statistics; 2022. Available: 634 
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populat635 
ionestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernir636 
eland 637 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

http://paperpile.com/b/YpRqm9/1jCyA
http://paperpile.com/b/YpRqm9/1jCyA
https://covid19.who.int/
http://paperpile.com/b/YpRqm9/y6VSf
http://paperpile.com/b/YpRqm9/y6VSf
http://paperpile.com/b/YpRqm9/y6VSf
http://dx.doi.org/10.1016/j.robot.2021.103902
http://paperpile.com/b/YpRqm9/8TdfV
http://paperpile.com/b/YpRqm9/8TdfV
http://paperpile.com/b/YpRqm9/8TdfV
http://dx.doi.org/10.1038/s41598-021-92892-8
http://paperpile.com/b/YpRqm9/fdDmA
http://paperpile.com/b/YpRqm9/fdDmA
http://dx.doi.org/10.1038/s41598-021-01189-3
http://paperpile.com/b/YpRqm9/bOXCB
http://paperpile.com/b/YpRqm9/bOXCB
http://paperpile.com/b/YpRqm9/bOXCB
http://dx.doi.org/10.3390/ijerph18020396
http://paperpile.com/b/YpRqm9/O9Ulx
http://paperpile.com/b/YpRqm9/O9Ulx
http://paperpile.com/b/YpRqm9/O9Ulx
http://dx.doi.org/10.1016/j.scitotenv.2020.139051
http://paperpile.com/b/YpRqm9/OGMQS
http://paperpile.com/b/YpRqm9/OGMQS
http://paperpile.com/b/YpRqm9/OGMQS
http://dx.doi.org/10.1038/s41598-021-01392-2
http://paperpile.com/b/YpRqm9/3uI28
http://paperpile.com/b/YpRqm9/3uI28
http://paperpile.com/b/YpRqm9/3uI28
http://dx.doi.org/10.1073/pnas.2103302119
http://paperpile.com/b/YpRqm9/A6zTK
http://paperpile.com/b/YpRqm9/A6zTK
http://paperpile.com/b/YpRqm9/A6zTK
http://paperpile.com/b/YpRqm9/A6zTK
http://dx.doi.org/10.1093/infdis/jiw375
http://paperpile.com/b/YpRqm9/9AaWu
http://paperpile.com/b/YpRqm9/9AaWu
http://paperpile.com/b/YpRqm9/9AaWu
http://dx.doi.org/10.12688/wellcomeopenres.15843.2
http://paperpile.com/b/YpRqm9/zjjl5
http://paperpile.com/b/YpRqm9/zjjl5
http://paperpile.com/b/YpRqm9/zjjl5
http://arxiv.org/abs/2212.08873
http://paperpile.com/b/YpRqm9/yb02J
http://paperpile.com/b/YpRqm9/yb02J
http://dx.doi.org/10.1101/2023.02.09.23285705
http://paperpile.com/b/YpRqm9/aNtsO
https://coronavirus.data.gov.uk/
http://paperpile.com/b/YpRqm9/ZtOKP
http://paperpile.com/b/YpRqm9/ZtOKP
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


47 

15.  Google. COVID-19 Community Mobility Reports. 2020. Available: 638 
https://www.google.com/covid19/mobility/ 639 

16.  Data Science Campus. google-mobility-reports-data: Archive of data extracted from the 640 
google community mobility reports. Github; 2020. Available: 641 
https://github.com/datasciencecampus/google-mobility-reports-data 642 

17.  Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, et al. The 643 
ERA5 global reanalysis. Quart J Roy Meteor Soc. 2020;146: 1999–2049. 644 
doi:10.1002/qj.3803 645 

18.  Frank E, Hall M. A Simple Approach to Ordinal Classification. Machine Learning: ECML 646 
2001. Berlin, Heidelberg: Springer Berlin Heidelberg; 2001. pp. 145–156. doi:10.1007/3-647 
540-44795-4_13 648 

19.  Parry S. 91_ordlogistic.pdf. 2016. Available: https://cscu.cornell.edu/wp-649 
content/uploads/91_ordlogistic.pdf 650 

20.  Badr HS, Du H, Marshall M, Dong E, Squire MM, Gardner LM. Association between 651 
mobility patterns and COVID-19 transmission in the USA: a mathematical modelling 652 
study. Lancet Infect Dis. 2020;20: 1247–1254. doi:10.1016/S1473-3099(20)30553-3 653 

21.  Kraemer MUG, Yang C-H, Gutierrez B, Wu C-H, Klein B, Pigott DM, et al. The effect of 654 
human mobility and control measures on the COVID-19 epidemic in China. Science. 655 
2020;368: 493–497. doi:10.1126/science.abb4218 656 

22.  Klein B, Zenteno AC, Joseph D, Zahedi M, Hu M, Copenhaver MS, et al. Forecasting 657 
hospital-level COVID-19 admissions using real-time mobility data. Commun Med. 658 
2023;3: 25. doi:10.1038/s43856-023-00253-5 659 

23.  Kwok KO, Wei WI, Huang Y, Kam KM, Chan EYY, Riley S, et al. Evolving 660 
Epidemiological Characteristics of COVID-19 in Hong Kong From January to August 661 
2020: Retrospective Study. J Med Internet Res. 2021;23: e26645. doi:10.2196/26645 662 

24.  Xiong C, Hu S, Yang M, Luo W, Zhang L. Mobile device data reveal the dynamics in a 663 
positive relationship between human mobility and COVID-19 infections. Proc Natl Acad 664 
Sci U S A. 2020;117: 27087–27089. doi:10.1073/pnas.2010836117 665 

25.  Salje H, Tran Kiem C, Lefrancq N, Courtejoie N, Bosetti P, Paireau J, et al. Estimating 666 
the burden of SARS-CoV-2 in France. Science. 2020;369: 208–211. 667 
doi:10.1126/science.abc3517 668 

26.  Davies NG, Klepac P, Liu Y, Prem K, Jit M, Eggo RM. Age-dependent effects in the 669 
transmission and control of COVID-19 epidemics. Nat Med. 2020;26: 1205–1211. 670 
doi:10.1038/s41591-020-0962-9 671 

27.  Walker PGT, Whittaker C, Watson OJ, Baguelin M, Winskill P, Hamlet A, et al. The 672 
impact of COVID-19 and strategies for mitigation and suppression in low- and middle-673 
income countries. Science. 2020;369: 413–422. doi:10.1126/science.abc0035 674 

28.  Wilder-Smith A, Freedman DO. Isolation, quarantine, social distancing and community 675 
containment: pivotal role for old-style public health measures in the novel coronavirus 676 
(2019-nCoV) outbreak. J Travel Med. 2020;27. doi:10.1093/jtm/taaa020 677 

29.  Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 Vaccines at Pandemic 678 
Speed. N Engl J Med. 2020;382: 1969–1973. doi:10.1056/NEJMp2005630 679 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

http://paperpile.com/b/YpRqm9/4Rh6e
http://paperpile.com/b/YpRqm9/4Rh6e
https://www.google.com/covid19/mobility/
http://paperpile.com/b/YpRqm9/OAk0P
http://paperpile.com/b/YpRqm9/OAk0P
https://github.com/datasciencecampus/google-mobility-reports-data
http://paperpile.com/b/YpRqm9/7VZrt
http://paperpile.com/b/YpRqm9/7VZrt
http://paperpile.com/b/YpRqm9/7VZrt
http://dx.doi.org/10.1002/qj.3803
http://paperpile.com/b/YpRqm9/tRF69
http://paperpile.com/b/YpRqm9/tRF69
http://dx.doi.org/10.1007/3-540-44795-4_13
http://dx.doi.org/10.1007/3-540-44795-4_13
http://paperpile.com/b/YpRqm9/ABTHZ
https://cscu.cornell.edu/wp-content/uploads/91_ordlogistic.pdf
https://cscu.cornell.edu/wp-content/uploads/91_ordlogistic.pdf
http://paperpile.com/b/YpRqm9/KsKsU
http://paperpile.com/b/YpRqm9/KsKsU
http://paperpile.com/b/YpRqm9/KsKsU
http://dx.doi.org/10.1016/S1473-3099(20)30553-3
http://paperpile.com/b/YpRqm9/RkBtZ
http://paperpile.com/b/YpRqm9/RkBtZ
http://paperpile.com/b/YpRqm9/RkBtZ
http://dx.doi.org/10.1126/science.abb4218
http://paperpile.com/b/YpRqm9/m51fB
http://paperpile.com/b/YpRqm9/m51fB
http://paperpile.com/b/YpRqm9/m51fB
http://dx.doi.org/10.1038/s43856-023-00253-5
http://paperpile.com/b/YpRqm9/geAjV
http://paperpile.com/b/YpRqm9/geAjV
http://paperpile.com/b/YpRqm9/geAjV
http://dx.doi.org/10.2196/26645
http://paperpile.com/b/YpRqm9/wL1kD
http://paperpile.com/b/YpRqm9/wL1kD
http://paperpile.com/b/YpRqm9/wL1kD
http://dx.doi.org/10.1073/pnas.2010836117
http://paperpile.com/b/YpRqm9/4aATk
http://paperpile.com/b/YpRqm9/4aATk
http://paperpile.com/b/YpRqm9/4aATk
http://dx.doi.org/10.1126/science.abc3517
http://paperpile.com/b/YpRqm9/jdeAe
http://paperpile.com/b/YpRqm9/jdeAe
http://paperpile.com/b/YpRqm9/jdeAe
http://dx.doi.org/10.1038/s41591-020-0962-9
http://paperpile.com/b/YpRqm9/Hioym
http://paperpile.com/b/YpRqm9/Hioym
http://paperpile.com/b/YpRqm9/Hioym
http://dx.doi.org/10.1126/science.abc0035
http://paperpile.com/b/YpRqm9/01cT9
http://paperpile.com/b/YpRqm9/01cT9
http://paperpile.com/b/YpRqm9/01cT9
http://dx.doi.org/10.1093/jtm/taaa020
http://paperpile.com/b/YpRqm9/iX5HS
http://paperpile.com/b/YpRqm9/iX5HS
http://dx.doi.org/10.1056/NEJMp2005630
https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


48 

30.  Haug N, Geyrhofer L, Londei A, Dervic E, Desvars-Larrive A, Loreto V, et al. Ranking 680 
the effectiveness of worldwide COVID-19 government interventions. Nature Human 681 
Behaviour. 2020;4: 1303–1312. doi:10.1038/s41562-020-01009-0 682 

31.  Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al. Estimating 683 
the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. 684 
2020;584: 257–261. doi:10.1038/s41586-020-2405-7 685 

 686 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

http://paperpile.com/b/YpRqm9/2NGTQ
http://paperpile.com/b/YpRqm9/2NGTQ
http://paperpile.com/b/YpRqm9/2NGTQ
http://dx.doi.org/10.1038/s41562-020-01009-0
http://paperpile.com/b/YpRqm9/d4CaS
http://paperpile.com/b/YpRqm9/d4CaS
http://paperpile.com/b/YpRqm9/d4CaS
http://dx.doi.org/10.1038/s41586-020-2405-7
https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/


 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.17.23297138doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297138
http://creativecommons.org/licenses/by-nc/4.0/

