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Abstract

Polycystic ovary syndrome (PCOS) is a common hormonal disorder that affects one out of eight
women and has high metabolic and psychological comorbidities. PCOS is thought to be associated with
obesity, hormonal dysregulation, and systemic low-grade inflammation, but the underlying mechanisms
remain unclear. Here we study the genetic relationship between PCOS and obesity, testosterone, sex
hormone binding globulin (SHBG), and a wide-range of inflammatory markers. First, we created a large
meta-analysis of PCOS (7,747 PCOS cases and 498,227 controls) and identified four novel genetic loci
associated with PCOS. These novel loci have been previously associated with gene expression in multiple
PCOS-relevant tissues including the thyroid and ovary. We then further incorporated GWASs for obesity
(n=681,275), SHBG (n=190,366), testosterone (n=176,687), and 138 inflammatory biomarkers (average
n=30,000). Using Mendelian randomization methods, we replicated genetic causal relationships from
obesity and SHBG to PCOS. We identified significant genetic correlations between PCOS and eleven
inflammatory biomarkers, including novel and strong correlations with death receptor 5 (LDSC rg = 0.54,
FDR = 0.043), among others. Although no statistically significant causal relationship was observed
between inflammatory markers and PCOS, 31 inflammatory biomarkers showed significant causal effects
on SHBG or testosterone, supporting a potentially etiological role of chronic inflammation in influencing
sex hormone levels. Finally, we show that combining the polygenic risk scores of PCOS and PCOS-related
traits improves genetic prediction of PCOS cases in the UK Biobank and MGB Biobank, as compared to
using only the risk score of PCOS. Together, these results support the theory that immune responses are
altered in PCOS patients and that chronic inflammation may play a role in testosterone dysregulation.

1 Introduction

Polycystic ovary syndrome (PCOS) is a complex endocrine disorder that is estimated to affect between
5-20% of women of reproductive age [1]. PCOS is mainly diagnosed using the Rotterdam criteria, which
requires the presence of two out of the following three symptoms: biochemical or clinical hyperandrogenism,
irregular menstruation or anovulation, and polycystic ovarian morphology [2]. Women with PCOS report
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lowered work ability and quality of life [3, 4, 5]. PCOS has been related to comorbidities including metabolic,
reproductive and psychological disorders, obesity, diabetes, dyslipidemia, metabolic syndrome, obstructive
sleep apnea, cardiovascular disease, subfertility, endometrial cancer, depression, anxiety, and eating disorders
[6].

The pathogenesis of PCOS includes both genetic and environmental factors, but the specific mechanisms
remain unclear [7]. PCOS is polygenic and highly heritable (heritability >70% based on twin studies) [8].
Genome-wide association studies (GWAS) have identified 22 genetic loci associated with PCOS, but the
proportion of heritability explained remains low with a limited number of functional studies [9, 10, 11].
Hyperandrogenism and PCOS pathogenesis have been linked to factors such as weight gain, obesity, and
insulin resistance; chronic low-grade inflammation [12]; and low sex hormone binding globulin (SHBG) levels
[13]. Previous studies have found significant genetic correlations between PCOS, BMI, and waist-to-hip ratio
(WHR) [14], and a potential causal role of BMI, type 2 diabetes, SHBG, and other traits in the development
of PCOS based on previous Mendelian randomization (MR) studies [15]. PCOS patients often have elevated
inflammation markers compared with age- and BMI-matched controls [16, 17, 18], and anti-inflammatory
therapy can reverse PCOS-like traits in animal models [7]. This supports a potential role for altered immune
response in PCOS.

Here we investigate the genetic relationship between PCOS, obesity, testosterone, and SHBG, and how
this relationship is connected with and potentially mediated by inflammation. Figure 1 shows an overview
of our study design.
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Figure 1: Flowchart depicting data sources and analysis strategies.

2 Results

2.1 PCOS Meta-analysis

We first combined Tyrmi et al. [9] and Day et al. [10] summary statistics to create a large meta-analysis
of PCOS. The meta-analysis identified 26 genome-wide significant (p < 5 × 10−8) linkage disequilibrium
(LD) independent loci with significant associations with PCOS. Four of thwese loci have not been previously
reported to be associated with PCOS in the literature: rs61030588, rs11234902, rs56738967, rs78378222.
Details about the lead variants are shown in table 1, and the full meta-analysis results are shown in figure 2.

All of the identified novel loci for PCOS were significant expression quantitative trait (eQTL) loci in
multiple tissues [19]. Rs61030588 on chromosome 2 is within the gene MSH6 and is a known eQTL in
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CHR:BP Ref/Effect RSID Beta Effect Allele Freq p-value Nearest Gene

Replicated PCOS Loci

2: 43561780 G/A rs7563201 -0.108 0.521 5.93× 10−8 THADA
2: 213387900 C/T rs7564590 0.144 0.645 1.90× 10−12 ERBB4
5: 16836005 C/T rs9312937 -0.125 0.457 1.90× 10−12 MYO10
8: 11621450 G/A rs2740433 -0.140 0.344 1.91× 10−11 GATA4
9: 126637668 G/T rs7028482 -0.304 0.065 1.49× 10−14 DENND1A
11: 30226356 C/T rs11031005 -0.202 0.142 8.31× 10−14 FSHB
11: 113949232 C/T rs1784692 0.203 0.138 3.69× 10−12 ZBTB16
12: 75978358 G/A rs1148006 -0.117 0.705 4.70× 10−8 KRR1
22: 29098376 G/A rs182075939 -0.523 0.046 1.93× 10−16 CHEK2

New PCOS Loci

2: 47995854 G/A rs61030588 -0.125 0.283 3.42× 10−8 MSH6
11: 86712340 G/A rs11234902 -0.141 0.762 7.42× 10−10 FZD4-DT
16: 79740541 G/C rs56738967 0.117 0.695 2.46× 10−8 MAF
17: 7571752 G/T rs78378222 -0.405 0.021 4.47× 10−8 TP53

Table 1: Loci that reach genome-wide significance for PCOS in the meta-analysis and (top) are in LD with
loci previously reported for PCOS; or (bottom) are not in LD with loci previously reported for PCOS.

Figure 2: Manhattan plot of PCOS meta-analysis

multiple tissues including the thyroid and ovaries. MSH6 is a gene involved in DNA repair, which has
previously been implicated in menopause age and ovarian aging [20]. The novel PCOS locus rs11234902 on
chromosome 11 is a significant thyroid tissue eQTL for RP11-736K20.6, an RNA gene. The novel locus on
chromosome 16, rs56738967, is a significant eQTL for MAFTRR in a large number of tissues including the
thyroid and ovary. MAFTRR is a lncRNA involved in gene regulation. The new locus on chromosome 17 is on
an intronic region of TP53, a tumor suppressor gene. This variant has been reported to increase risk of uterine
fibroids, gliomas, and lean mass, while other variants on TP53 are inked to levels of SHBG and testosterone
[21, 22, 23]. The rs78378222 locus is a significant eQTL for TP53 in several tissues including adipose tissue.
The full tables of eQTL hits for novel PCOS loci lead variants are included in the supplementary file 1.

2.2 Genetic Correlation

2.2.1 Genetic correlations between PCOS, obesity, testosterone, and SHBG

We curated GWAS summary statistics for body mass index (BMI) and female-specific GWAS for SHBG,
testosterone, waist-to-hip ratio (WHR), and female-specific waist-hip ratio adjusted for BMI (WHRadjBMI),
and computed the genetic correlations between these traits with PCOS using LDSC.

The genetic correlations between these PCOS-related traits are shown in table 3. PCOS has strong genetic
correlations with SHBG (rg=0.45), BMI (rg=0.35), and WHR (rg=0.35), and has weaker correlations with
WHRadjBMI (rg=0.17) and testosterone (rg=0.16). SHBG is inversely correlated with all of obesity-related
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traits especially WHR. We did not find significant correlations between testosterone and SHBG.
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Figure 3: Genetic correlations and p-values (-log10), computed via LDSC, between the non-inflammatory
traits in our study. Values that did not meet FDR < 0.05 are not shown.

2.2.2 Genetic correlations of inflammatory biomarkers with PCOS, obesity, testosterone, and
SHBG

We created meta-analyses of 138 inflammatory biomarkers, including immune cell counts and biomarker
serum levels. The sample sizes of these biomarkers ranged between 2,538 and 505,690 individuals, and SNP-
based heritability ranged from 0 to 0.5. The full table describing these inflammatory biomarkers are shown
in the supplementary file 2.

We first examined genetic correlations between inflammatory biomarkers and PCOS, SHBG and testos-
terone. For inflammatory biomarkers with significant genetic correlations with at least one of the three traits
(FDR < 0.05), we further examined their genetic correlations with obesity traits (as shown in figure 4, with
the values included in supplementary file 3).

PCOS showed significant genetic correlation with TRAILr2, IL2, leptin, IL1ra, HGF, CRP, adiponectin,
as well as circulating counts of total white blood cells (WBC), lymphocytes (LymC), neutrophils (NeuC),
and monocytes (MonC). Most of these inflammatory biomarkers that correlated with PCOS showed signifi-
cant genetic correlation of similar magnitude with BMI, and WHR, or negative SHBG. The exception was
TRAILr2, which is only related to BMI but not WHR.

SHBG is significantly genetically correlated with 36 inflammation markers, all of which were also signifi-
cantly correlated to an obesity trait in the opposite directions. Testosterone only showed significant genetic
correlations with three inflammatory markers, namely with leptin, CRP, and monocyte count.

Hierarchical clustering on the inflammatory LDSC correlations suggests that WHR, BMI, and low SHBG
share a similar inflammatory profile, while PCOS has a inflammatory profile closer to WHRadjBMI and
testosterone.
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Figure 4: Genetic correlations (top) and -log10 p-value (bottom) computed via LDSC between the traits
PCOS, BMI, WHR, WHRadjBMI, SHBG, testosterone and the inflammation markers. Correlations and
p-values shown are FDR < 0.05. Rows and columns are clustered by genetic correlation using hierarchical
clustering, and we reversed the correlation direction of SHBG before clustering.

2.2.3 Causal relationships between PCOS, obesity, testosterone, and SHBG

To investigate potential causal relationships, we conducted bi-directional MR analysis between PCOS, obesity
traits, testosterone, and SHBG. We validated our MR results using several different methods, including
CAUSE [24], mode-based estimation (MBE), MR-Egger, and the inverse-variance weighted (IVW) method.
We did not test the causal relationship between PCOS and testosterone, as testosterone levels are often used
to define PCOS. These MR results are shown in the supplementary file 4.

All MR methods suggest that higher BMI could lead to PCOS (effectCAUSE = 0.59, pCAUSE = 6.4×10−4).
Most methods suggest that WHR has a causal effect on PCOS, and a few methods suggest that WHRadjBMI
is causal. Most of the tests also suggest that low SHBG levels have a significant causal effect on PCOS with
effect size about -0.25 (pCAUSE = 0.041). PCOS did not show statistically significant causal effects on any of
the tested traits (figure 5), which is consistent with previous MR studies [15]. All MR methods suggest that
higher BMI, WHR, and WHRadjBMI may lower SHBG levels and that higher WHRadjBMI may decrease
testosterone levels (see supplementary file 4).
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Figure 5: Mendelian randomization estimated causal effects and 95% credible intervals between BMI, WHR,
WHRadjBMI, SHBG, Testosterone, and PCOS. Green arrows indicate positive causal effects and red arrows
indicate negative causal effects. The thickness and shade of the arrows is proportional to effect size. All
estimates are based on the CAUSE model and are significant (p<0.05) for the hypothesis that a causal model
is a better fit than a sharing model.

2.2.4 Causal relationships between inflammatory biomarkers and PCOS, SHBG, and testos-
terone

Next we conducted bi-directional MR between PCOS, testosterone, SHBG and the panel of 138 inflammatory
biomarkers. For inflammatory markers that are significantly related to any of these traits, we further
conducted bi-directional MR between them with BMI and WHR to examine the role of obesity. Our main
results were estimated with the MBE MR method, because it has less bias and lower type-I error rates
than IVW and is significantly faster than CAUSE. We also examined results from other MR methods to
gauge the robustness of the potential associations. Results of MR with inflammatory markers are detailed in
supplementary file 5. We did not find statistically significant causality between PCOS and any inflammatory
markers based on MR analysis, likely due to the low heritability of the PCOS GWAS.

Twenty-eight inflammatory biomarkers showed a significantly causal effect for SHBG. Of these 28 biomark-
ers, only CD36antg and CRP were found to decrease SHBG while the other 26 were found to increase SHBG.
TWEAK has the strongest causal association with SHBG, an effect that was replicated in all of the MR meth-
ods (betaMBE = 0.46, pMBE = 2.46 ∗ 10−219, betaIVW = 0.260, pIVW = 5.74 ∗ 10−3, betaMR-Egger = 0.351,
pMR-Egger = 1.46 ∗ 10−2).

Higher genetically-predicted testosterone was found to cause increased levels of CRP (betaMBE = 0.0926,
pMBE = 6.91 ∗ 10−7) (see supplementary table 3). Four inflammatory biomarkers showed significant causal
relations with testosterone (FDRMBE =< 0.01): genetically-predicted TWEAK (betaMBE = 0.057, pMBE =
3.7 ∗ 10−8) and MMP9 (betaMBE = 0.043, pMBE = 2.9 ∗ 10−4) were found to increase testosterone, while
genetically-predicted IL2Rb (betaMBE = −0.057, pMBE = 7.44 ∗ 10−5) and IP10 (betaMBE = −0.126,
pMBE = 1.33 ∗ 10−5) were found to decrease testosterone. Interestingly, TWEAK is also the only biomarker
which shows a causal effect for both testosterone and SHBG.

We next assessed whether inflammation could be partially mediating the causal effect from obesity to sex
hormones. BMI showed a significant causal effect on 4 out of 28 biomarkers that had significant causality
for SHBG, as visualized in figure 6a. MR suggests that higher BMI may elevate levels of MMP17, IL10Rb,
and IL8, which may in turn increase SHBG levels. Higher BMI and testosterone could increase CRP levels,
which may lower levels of SHBG.

Many of the inflammation markers that were found to increase SHBG were also found to decrease
WHRadjBMI (figure 6b), suggesting that these markers could have a protective role. Of the 28 inflam-
matory biomarkers showing causal effect for SHBG, 15 are also significant for WHRadjBMI, 15 significant
for WHR, and 1 (FASLG) for BMI. Details of the MR results are available in the supplementary file 5.
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Figure 6: Mendelian randomization results between inflammatory biomarkers and PCOS-related traits. (a)
Inflammatory biomarkers may mediate some of the causal relationship between obesity and hormones. (b)
Inflammatory biomarkers which significantly regulate SHBG or Testosterone, and the causal relationship of
these markers on BMI and WHR adjusted by BMI. Pink circles represent inflammatory markers, blue circles
represent traits, and arrows show the direction of causality. Only MBE results are shown in this figure, and
only effects with FDR < 0.01 are included. Green arrows indicate positive causality, red arrows indicate
negative causality, and the width/shade of the arrow indicates strength. Full MR results can be found in
the supplementary file 5.

2.3 Polygenic risk scores combining causal risk factors improve PCOS predic-
tion

Finally, we created a model for predicting genetic risk of developing PCOS based on the combined polygenic
risk scores (PRSs) of PCOS, BMI, WHR, WHRadjBMI, SHBG, and testosterone.

We created PRS from the PCOS, BMI, WHR, WHRadjBMI, SHBG, testosterone summary statistics and
applied them to all women in the UK Biobank and Mass General Brigham (MGB) biobank, standardizing
each PRS to mean 0 and variance 1. We then created lasso logistic regression models to predict PCOS cases
using the PRSs, and compared the prediction to that based solely on PCOS PRS. We trained the logistic
regressions and selected hyperparameters via a nested 10-fold cross validation to avoid overfitting.

Our new PRS-based model improved PCOS prediction in both the UK Biobank and the MGB Biobank
on held-out data. In the UK Biobank, the area under the ROC curve (AUROC) improved from 0.59 when
only using the PCOS PRS to 0.72 when combining the PRSs. In the MGB biobank, the AUROC improved
from 0.59 to 0.61. UK Biobank and MGB Biobank model performance and coefficients are shown in figure
7.

The coefficients used to predict PCOS varied between the UK biobank and the MGB biobank. In the UK
Biobank, BMI PRS had the largest effect size for predicting PCOS cases, followed the PCOS, SHBG, and
the testosterone PRSs. In the MGB Biobank, the PCOS and BMI PRS accounted for most of the prediction
power.

Further inclusion of including inflammation PRSs did not improve PCOS predictions in UK biobank or
the MGB biobank.

3 Discussion

This study investigated genetic correlations and causal relationships between PCOS and obesity, testosterone,
SHBG, and biomarkers indicative of a wide-range of inflammatory pathways. Our large GWAS meta-analysis
of PCOS identified four novel loci. We demonstrated genetic correlations and potential causal relationships
between obesity, testosterone, and SHBG with PCOS, and the potential role of chronic inflammation in these
relationships. Interestingly, the genetic correlation between PCOS and testosterone is smaller compared with
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Figure 7: Genetic prediction of PCOS cases in the UK Biobank (top) and MGB biobank (bottom). A nested
10-fold cross validation lasso logistic model was trained on each biobank. The left plots show the receiver
operating characteristic (ROC) curve for predicting PCOS cases when only using the PCOS polygenic risk
score (PRS). The middle plots show the ROC curve when combining the PCOS PRS with the BMI, WHR,
WHRadjBMI, SHBG, and testosterone PRSs, and the left plots show the corresponding model coefficients
for each PRS.

those with SHBG, BMI, WHR, and WHRadjBMI, despite hyperandrogenism often being used to characterize
PCOS. Finally, we showed that incorporating genetics of causal risk markers of PCOS, namely obesity,
testosterone, and SHBG, improved genetic risk prediction of PCOS. This study provides evidence that
PCOS shares genetic architecture with a range of inflammatory biomarkers. We found significant genetic
correlations between PCOS and eleven inflammatory biomarkers, including biomarkers that have not been
previously related to PCOS in the clinical literature, such as TRAILr2 (also known as death receptor 5).
A previous study has found that TRAILr2 mediates testosterone-driven apoptosis of PCOS granulosa cells
in culture [25], which supports the hypothesis that TRAILr2 is involved in the parthenogenesis of PCOS.
While our study provides additional evidence that TRAILr2 may be related to PCOS, further research is
needed.

Using Mendelian randomization, we found that obesity is likely a causal risk factor for PCOS, while
SHBG may protect against PCOS, consistent with previous MR findings [26].

We found through MR that BMI, WHR, and WHRadjBMI all decrease SHBG, suggesting that the
previously reported association between obesity and SHBG may be causal [27]. We further found that the
relationship between WHR, WHRadjBMI and SHBG is bidirectional, with high SHBG in turn decreasing
WHR and WHRadjBMI. This could indicate a positive feedback loop between central obesity and low SHBG,
although verification is needed. Consistently, experiments in mice have previously reported that increasing
SHBG downregulates de novo lipogenesis and reduces liver fat [28]. Using MR analysis, we found evidence
that a broad array of inflammatory biomarkers may affect levels of SHBG, testosterone, and obesity. Of
note, higher genetically-predicted TWEAK showed particularly strong causal effects on increasing SHBG
and testosterone levels and lowering WHRadjBMI. We further found that testosterone may lead to higher
CRP levels, consistent with previous findings that women with PCOS have higher CRP levels than BMI and
age-matched controls [18]. These findings support the existing hypothesis that chronic inflammation may
lead to dysregulated hormonal production in the ovaries, and also indicate that a more complex profile of
inflammatory biomarkers may be involved in this process than previously considered.

The potential causal relationship between many inflammatory biomarkers and SHBG is surprising and
requires further explanation. The majority of these inflammatory biomarkers appear to show protective
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effect by showing a casual effect for increased SHBG and decreased WHRadjBMI and BMI. It should be
noted that many of the directions from MR analysis are opposite to the directions of genetic correlations
from LDSC. Further study is needed to validate our findings and elaborate on the mechanisms that underlie
these results.

While the results of MR suggest causal links, there could also be mediators such as insulin resistance,
diabetes, CVD, metabolic syndrome, and other conditions that are causal for testosterone, SHBG levels, and
chronic inflammation. For this reason it is important to interpret the results as one piece of evidence and
apply general caution as needed whenever dealing with Mendelian randomization studies.

Taking advantage of these related traits, we created a model to improve genetic prediction of PCOS by
incorporating multiple PRS scores, and found that including information from the genetics of obesity, SHBG,
and testosterone significantly improved PCOS prediction in two independent biobanks. This result indicates
that the power of current PCOS GWAS is still limited for polygenic risk prediction and can be improved
by incorporating PRSs from genetically-related traits. Since PCOS is hard to diagnose, up to 75% of cases
remain unidentified [29], and using genetics to flag potential cases could help improve detection of high risk
population and enable early intervention.

It is worth noting, though, that even the improved AUROC remains relatively low—0.72 in the UK
Biobank and 0.61 in the MGB Biobank. A likely reason for this is that there are probably many people
with undiagnosed or unreported PCOS in both biobanks. The population prevalence of PCOS is predicted
to be between 5% and 15% in European populations [30], but its reported prevalence in the UK Biobank
is approximately 0.01% and in the MGB biobank approximately 4.7%. PCOS is challenging to properly
diagnose, requiring multiple clinical and laboratory assessments including a pelvic ultrasound. It is possible
that many of the ”false positives” in the model could be women who have PCOS but are undiagnosed.
Another possibility is that these polygenic risk scores are not accurate enough to effectively separate women
with PCOS from those without.

When we added inflammatory biomarkers into the model for genetic prediction of PCOS, they did not
further improve PCOS prediction in either biobank. It is possible that any effect of these biomarkers on
obesity, testosterone, and SHBG is already captured by PRSs of obesity, testosterone, and SHBG.

Our study has several limitations. The aforementioned under-diagnosis of PCOS cases not only affects the
ability to create PRS scores within the biobanks, but also the power of PCOS GWAS due to false negatives
within the biobanks. Furthermore, MR analysis has limitations and any violations to the assumptions may
bias the results—MR can only suggest potential causal relationships that must be verified in clinical studies.
Importantly, this study was limited to individuals of European ancestry due to the small case counts in
biobanks; PCOS has high prevalence globally and thus future studies including diverse populations are
needed [31, 32]. Since PCOS may present itself differently between populations, it is especially important
that biobanks increase diversity to improve PCOS research for all.

In summary, our study identifies four novel genetic loci for PCOS and demonstrates shared genetic
architecture and potential causal relationships between PCOS and obesity, SHBG, testosterone, and inflam-
mation. Together, these results support theories that immune responses are altered in PCOS patients and
that chronic inflammation plays a role in dysregulating testosterone and SHBG levels.

4 Methods

4.1 Data Sources

4.1.1 PCOS Summary Statistics Data

We obtained PCOS summary statistics from the PCOS GWAS in the FinnGen and Estonia Biobanks [9]
and a recent cross-population PCOS meta-analysis in European populations [10]. In the FinnGen and
Estonia biobanks there were a total of 3,609 cases and 229,788 controls. All cases were self-reported and
all other women were considered controls. In Tyrmi et al. [9], GWASs were conducted on the FinnGen and
Estonia cohort before they were combined in an inverse-variance-weighted meta-analysis. Both GWASs used
population-specific imputation panels: the Sequencing Initiative Suomi V3 [33] for FinnGen and Mitt et al.
[34] for EstBB. Associations were run using the SAIGE generalized mixed model [35], and included age,
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genotype batches, and PCs 1-10 as covariates. Due to including rarer variant alleles, Tyrmi et al. [9] includes
22.8 million SNPs.

In Day et al. [10] there are 4,137 PCOS cases and 20,129 controls pooled together in a fixed-effect,
inverse-weighted-variance meta-analysis from 6 cohorts (Rotterdam, British Birth Cohort, Estonian Genome
Center of the University of Tartu (EGCUT), deCODE genetics, Chicago, and Boston). In total there are
8.8 million SNPs. The Estonian cohort used in Day et al. [10] has 157 cases and 2807 controls which overlap
with cases and controls used in Tyrmi et al. [9]. This causes a 2% overlap between the two studies. Since
we did not observe any inflation in LD regression intercept and the overlap is small, we assume this will not
create disproportionate effects and continue with the analysis.

4.1.2 Obesity Summary Statistics Data

We obtained BMI summary statistics data from Yengo et al. [36], a meta-analysis of GIANT and UKB for
a total N of 681,275 men and women. WHR and WHRadjBMI summary statistics are from a GIANT and
UKB meta-analysis, conducted by Pulit et al. [37]. We used female-specific summary statistics, resulting in
N=263,148 for WHR and N=262,759 for WHRadjBMI.

4.1.3 Testosterone and SHBG GWAS

SHBG and testosterone serum level GWAS were conducted using the UK Biobank females who identified as
“White British” and matched ancestry based on principal components. Serum levels for SHBG were available
for 190,366 women and serum levels for total testosterone were available for 176,687 women. GWAS was
conducted using the BOLT-LMM algorithm, adjusting for the first 20 PCs, age, age2, menopausal status,
pre-menopausal oral contraceptive use, and postmenopausal hormone therapy use [38]. We replicated all
genetic correlation analysis with pre-menopausal testosterone and SHBG and found the same results, so
kept the analysis using the joined pre and post-menopausal serum levels in order to increase power.

4.1.4 PCOS in the UK Biobank

Samples in the UK Biobank were used to train and test the polygenic risk score model for improved genetic
prediction of PCOS. We used UK Biobank release version 3 with participants limited to females who self-
identified as “White British” and matched ancestry based on principal components. PCOS cases were defined
by self report, by which there are 159 cases.

Controls were filtered based on Rotterdam phenotypes to try to minimize the number of false negatives.
Controls were selected from females that did not report ICD codes indicating excess androgen or irregular
menstruation. ICD codes used to indicate excess androgen and irregular menstruation are the same as in
Zhang et al. [39]. To enable a more balanced ratio for classification in the logistic regression, nineteen controls
were randomly matched by age to each case to match the lower estimated population prevalence of 5%.

4.1.5 PCOS in the MGB Biobank

Samples, genomic data, and health information were obtained from the Mass General Brigham Biobank, a
biorepository of consented patients samples at Mass General Brigham (parent organization of Massachusetts
General Hospital and Brigham and Women’s Hospital). These samples were also used to train and test the
polygenic risk score model for improved genetic prediction of PCOS. Participants were limited to females
who self-identify as white.

PCOS cases were defined by ICD self report, through which there are 374 cases. The control criteria in
the MGB biobank was the same as in the UK biobank. Women who reported ICD codes indicating excess
androgen or irregular menstruation were removed from the analysis to minimize false negatives. Using this
criteria, there were a total of 7,553 controls.

4.1.6 Inflammatory Biomarker Data and Summary Statistics

To characterize inflammation on both cellular and molecular level and from multiple inflammatory pathways,
we curated GWAS for a total of 138 inflammatory biomarkers.
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Blood immune cell types: GWAS for 6 biomarkers are curated for counts of white blood cells, neutrophils,
lymphocytes, monocytes, eosinophils, basophils. We conducted GWAS for these cell types (inverse normal
transformed) in the UK Biobank using BOLT-LMM, adjusting for 20 PCs, age, age2, sex, and study center.
The GWAS summary statistics were further combined with published summary statistics from the Biobank
Japan (BBJ) [40] using an inverse-variance weighted meta-analysis using METAL. Lymphocyte subtypes:
GWAS for 6 lymphocyte subsets, including CD4+ T cells, CD8+ T cells, CD56+ natural killer (NK) cells,
CD3+ T cells, CD19+ B cells, and the derived measure CD4:CD8 ratio, are obtained from Ferreira et al.
[41].
Molecular biomarkers of inflammation: GWAS for 126 biomarkers, including CRP and biomarkers
indicative of diverse inflammatory pathways, were curated by meta-analysis of published and newly conducted
GWAS. For CRP, GWAS were conducted in the UK Biobank (similar methods with those for immune cell
subtypes); the NHS/HPFS (using Rvtests [42], after inverse-normal transformation, adjusting for the first
10 PCs, age, sex, cohorts and sub-studies); and GWAS summary statistics from UKB and NHS/HPFS
were further meta-analyzed with published GWAS summary statistics from the Biobank Japan. For other
biomarkers, we conducted GWAS for adiponectin, leptin, ICAM1, IL6, TNFaR1, TNFaR2, and IL18 in the
NHS/HPFS; we acquired other biomarkers GWAS summary data from several publicly available sources
including the Ahola-Olli et al. [43], Dastani et al. [44], and Kilpeläinen et al. [45], and GWAS of proteomics
including Suhre et al. [46], Sun et al. [47], and Ferkingstad et al. [48]. For GWAS of proteomics measured
using aptamer based SOMAscan platform, some markers in the proteomics dataset had different aptamers
for the same protein target; we chose the GWAS for the aptamer with more genome-wide significant signals.
We conducted meta-analysis for the same circulating protein biomarkers using the METAL [49] with the
inverse-variance-weighted method. The detailed information on the meta-analysis of these inflammatory
biomarkers is included in the supplement.

4.2 Analyses

4.2.1 PCOS Meta-Analysis and Genome-Wide Significant Loci

We combined Tyrmi et al. [9] summary statistics and Day et al. [10] in METAL [49] using the inverse-
variance-weighted method. The summary statistics were in genome build GRCh37 and analyzed in PLINK
[50] to clump loci using the setting p1 = 5e− 8, p2 = 1e− 5, clump-kb = 1000, and r2 = 0.01. We compared
clumps that reached genome-wide significance in the meta-analysis to PCOS-associated SNPs from previous
studies in order to identify novel loci. We consulted GWAS catalog to check previous studies for significant
loci [51] and used locuszoom to visualize the GWAS [52].

4.2.2 Genetic Correlations using LDSC

We ran LDSC [53] to find the genetic correlations. We first found genetic correlations between PCOS, BMI,
WHR, WHRadjBMI, SHBG, and testosterone, and later we calculated genetic correlations between these
traits and each of the 138 inflammation markers. We used a SNP list from HapMap3 [54], computed LD
scores in European ancestry from 1000 Genomes [55], and limited SNPs to those with MAF>0.01.

During the inflammation analysis, p-values were corrected via false discovery rate (FDR), and only
correlations with FDR< 0.05 (138 inflammation markers × 6 traits = 828 tests) were included in the
analysis.

4.2.3 Mendelian Randomization

We conducted Mendelian randomization to test causal relationships with PCOS and related metabolic,
hormonal, and inflammatory traits. We tested for causality in both directions between PCOS, each obesity
trait, each hormonal trait, and each inflammation marker. Since androgen excess can be used as part of
diagnosing PCOS, testosterone and PCOS break some of the MR assumptions, and thus their causality was
not tested.

For trait-to-trait MR analyses, we implemented several MR models. First we used the Causal Analysis
Using Summary Effect estimates (CAUSE) model [24]. CAUSE accounts for correlated and uncorrelated
horizontal pleiotropic effects and thereby avoids more false positives. To find significant SNPs that are not
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in LD, we used PLINK [50] with parameters p1 = 5e − 8, p2 = 5e − 8, clump-kb = 1000, and r2 = 0.01.
We also compared the CAUSE estimates to estimates calculated via the mode-based estimate (MBE) [56],
MR-EGGER [57], and inverse variance weighting (IVW) methods. We calculated each of these tests via the
Mendelian randomization R package [58].

For trait-to-inflammation or inflammation-to-trait MR analyses, we only used the Mendelian random-
ization R package [58]. For every test we mainly used mode-based estimate (MBE) method, which allows
relaxation of the instrumental variable assumptions and has less bias and lower type-I error rates than other
methods [56]. We also looked for consistency using the IVW, and MR-EGGER methods. The CAUSE
method was not implemented, since it takes a too long of a time to run each test. We only report as
significant associations with FDR < 0.01 (138 tests) to minimize the number of false positive correlations.

4.2.4 Polygenic Risk Score Model to Improve PCOS Prediction

Our goal was to improve PCOS prediction by combining the PCOS polygenic risk score (PRS) with genetic
scores of related risk factors. First we included the PRSs of PCOS, obesity measurements, SHBG, and
testosterone, and we later added 138 inflammatory PRSs to further improve the prediction. We compared
these models to a model that only considers the PCOS PRS.

To calculate the PRSs, we used sBayesR [59] to create a list of variants and effect sizes for each trait
(PCOS, Testosterone, SHBG, BMI, WHR, WHRadjBMI). We used decreasing p-values starting at 0.5, using
the highest possible p-value where sBayesR converged. For the inflammation biomarkers, we used PRS-CS
with the 1000 Genomes Phase 3 reference panel [55] and the PRS-CS auto setting to create a list of variants
and effect sizes [59]. Then we used PLINK [50] to apply these SNP effects to create polygenic risk scores for
every female of European descent in the UK Biobank and MGB Biobank.

We created lasso logistic regression models to predict PCOS cases from multiple PRSs in both the MGB
biobank and UKB biobank. The logistic regressions were trained via a nested cross validation (CV), with
a 10-fold outer CV and 5-fold inner CV. For the outer loop, the whole dataset was randomly split into
10 equal groups. Each group was used once as a holdout set, with the remaining 9 groups used as the
training set; a randomly-split inner 5-fold cross validation within only the training set was used to tune the
regularization parameters; the resulting regression model was used to predict the out-of-sample 10th group.
The prediction performance was evaluated using the area under the receiver operating characteristic (ROC)
curve. In evaluation, PCOS cases were weighted higher than controls (weights were inversely proportional
to class frequencies) to account for class imbalances. Scikit-Learn was used to implement all models [60].
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[4] Linda Kujanpää, Riikka K. Arffman, Paula Pesonen, Elisa Korhonen, Salla Karjula, Marjo-Riitta
Järvelin, Stephen Franks, Juha S. Tapanainen, Laure Morin-Papunen, and Terhi T. Piltonen. Women
with polycystic ovary syndrome are burdened with multimorbidity and medication use independent of
body mass index at late fertile age: A population-based cohort study. Acta Obstetricia Et Gynecologica
Scandinavica, 101(7):728–736, July 2022. ISSN 1600-0412. doi: 10.1111/aogs.14382.
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