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Abstract  

Genetic studies of the metabolome can uncover enzymatic and transport processes shaping 

human metabolism. Using WES-based rare variant aggregation testing to detect genes 

associated with levels of 1,294 plasma and 1,396 urine metabolites, we discovered 235 gene-

metabolite associations, many previously unreported. Validation through genetic and new 

computational approaches (in silico gene knockouts in whole-body models of human 

metabolism) provided orthogonal evidence that population-based studies of rare, damaging 

variants in the heterozygous state permit inferences usually obtained from inborn errors of 

metabolism. Allelic series of functional variants in transporters responsible for transcellular 

sulfate reabsorption (SLC13A1, SLC26A1) exhibited graded effects on plasma sulfate and 

human height, and pinpointed alleles that strongly increased risk for dozens of 

musculoskeletal traits and diseases in the population. We present a powerful approach to 

identify new players in incompletely characterized human metabolic reactions, and to reveal 

metabolic readouts of disease risk to inform disease prevention and treatment. 
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Introduction  

A complex interplay of thousands of enzymes and transport proteins is involved in 

maintaining physiological levels of intermediates and end-products of metabolism. 

Disturbances of their function can result in severe disease, such as those caused by inborn 

errors of metabolism (IEMs), or predispose to common metabolic diseases such as type 2 

diabetes or gout. While the study of rare, early onset, autosomal-recessive IEMs has 

uncovered many metabolite-related genes, such studies are limited by the very low number 

of persons homozygous for the causative variants. Genome-wide association studies (GWAS) 

in large study populations on the other hand have revealed thousands of common genetic 

variants that are associated with altered metabolite levels1–13. However, identified loci 

typically contain many genes and variants are often non-coding, making it challenging to 

identify the causal gene.   

 Gene-based aggregation testing of rare, putatively damaging variants in population 

studies can address this challenge. Previously, such studies have focused almost exclusively 

on the circulating metabolome14–20. We have recently shown that GWAS of paired plasma and 

urine metabolomes not only reveal many more associations, but also enable specific insights 

into renal metabolite handling2. We therefore aimed to perform gene-based testing of the 

aggregate effect of rare variants on the levels of 1,294 plasma and 1,396 urine metabolites 

quantified from 4,737 participants of the German Chronic Kidney Disease (GCKD) study with 

whole-exome sequencing (WES) data, in order to identify metabolism-related genes and to 

understand whether the underlying rare, almost exclusively heterozygous variants permit 

inferences otherwise only obtained from the study of IEMs.   

 Patients with IEMs typically show severe symptoms that originate from an 

accumulation or depletion of metabolites, while heterozygous carriers of the causative 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.17.23297094doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297094
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

variants often show milder changes of the same or related metabolic phenotypes21. We 

hypothesized that sex-specific analysis of metabolite-associated, X-chromosomal genes as 

well as knowledge-based, computational modeling based on sex-specific organ-resolved 

whole-body models (WBMs22; Methods) of human metabolism can inform on whether 

heterozygous damaging variants capture the metabolic effects of their unobserved 

homozygous counterparts. WBMs enable the investigation of homozygous gene defects 

through deterministic in silico knockout modeling. The resulting virtual IEMs reflect observed 

IEMs22–24. We further hypothesized that metabolite-associated rare variants identified in the 

GCKD study would show associations with related traits and diseases in very large population 

studies, and that the genetic effects would be proportional to their effects on metabolite 

levels if the implicated metabolites reflect the degree of the encoded proteins’ or pathways’ 

functional impairment and thereby are a molecular readout of disease-relevant processes. 

The UK Biobank (UKB), a very large population study with WES data and extensive health 

record linkage, permits the systematic study of the aggregated and individual effects of rare, 

damaging, metabolite-associated variants on a wide variety of traits and diseases.  

Here, we set out to perform gene-based rare variant aggregation testing to discover 

genes associated with metabolite levels and to characterize their genetic architecture across 

the allele frequency spectrum and across plasma and urine, to validate identified genes and 

variants and the range of their effects through genetic and novel computational approaches 

based on WBMs that we make publicly available, and to identify traits and diseases for which 

these metabolites represent molecular readouts to aid drug development. 

 

Results  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.17.23297094doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297094
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

As summarized in Figure 1, rare, putatively damaging variants that qualified for gene-based 

testing (Methods) were identified in 16,525 genes based on WES data from 4,737 GCKD study 

participants (mean age 60 years, 40% women; Supplementary Table 1). Metabolites were 

quantified by non-targeted mass spectrometry and covered a wide variety of metabolic 

super-pathways (Supplementary Table 2). Genome-wide burden tests for the association 

between each gene and the levels of each of 1,294 plasma and 1,396 urine metabolites (781 

overlapping) were carried out using two complementary approaches to select qualifying 

variants (QVs) for gene-based testing into “masks”. Both masks assume a loss-of-function 

mechanism, but account for different genetic architectures (Methods).  

 

Identification and properties of 192 significant gene-metabolite associations 

We identified 192 significant gene-metabolite pairs across both plasma (P-value <5.04e-9) 

and urine (P-value <4.46e-9), where 43 associations were detected in both (192+43 

associations overall, Figure 2a; Supplementary Table 3). The significant associations involved 

73 unique genes and 179 metabolites, with a comparable number of genes and metabolites 

identified in plasma and urine. There were 22 and 17 genes with significant associations 

exclusively in plasma and in urine, respectively. While the majority of associations was 

detected with both masks (Methods), the more inclusive mask “HI_mis” yielded more mask-

specific associations than the “LoF_mis” mask (Figure 2b). The proportion of lipids was 

substantially higher among associated metabolites detected in plasma compared to urine, 

consistent with the absence of glomerular filtration of many lipids (Figure 2b). Associations 

detected in both plasma and urine generally affected the levels of the implicated metabolite 

in the same direction (Figure 2a). 
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Comparison of our results to those from published studies that focused on rare variant 

aggregation testing of metabolite levels14–20,24 (Methods) showed that 32 of the 73 identified 

unique genes (44%) had not been reported as significant in any of these studies. Moreover, 

115 of all 192 detected gene-metabolite associations (60%) were novel (Supplementary Table 

4).  

Of the 73 metabolite-associated genes, 8 (11%) are targets of approved or currently 

developed drugs, and 28 (38%) are currently known to harbor causative mutations for IEMs 

(Supplementary Table 4). In our study of middle-aged and older individuals, QVs were almost 

exclusively observed in the heterozygous state, as illustrated by comparisons of metabolite 

levels between QV carriers and non-carriers (Supplementary Figures 1 and 2 for plasma and 

urine gene-metabolite pairs, respectively). Detailed annotation of each QV in both masks 

showed that 63 unique QVs in 15 genes and 73 unique QVs in 17 genes were listed in the 

ClinVar database as “pathogenic” or “pathogenic or likely pathogenic” for a corresponding 

monogenic disease. These observations support that gene-based aggregation of rare, 

heterozygous, putatively damaging variants effectively identifies gene-metabolite 

relationships.  

 

Prioritization and characteristics of driver variants  

We performed a forward selection procedure15 to assess the contribution of individual QVs 

to their gene-based association signals (Methods). Plots that visualize the association P-value 

based on the successive aggregation of the most influential QVs in plasma (Supplementary 

Figure 3) and urine (Supplementary Figure 4) revealed noteworthy differences: first, each of 

the two masks detected some genetic associations that were not significant with the 

respective other mask, highlighting differences in genetic architecture (e.g., SLC10A2 and 
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urine glycocholate with HI_mis vs. ABCA7 and plasma lactosyl-N-nervonoyl-sphingosine with 

LoF_mis). Second, some genes showed different association patterns for the same metabolite 

in plasma and in urine (e.g., TMLHE and hydroxy-N6,N6,N6-trimethyllysine). Third, histidine 

exemplifies a metabolite with different associated genes in plasma (HAL) and urine (SLC6A19), 

implicating an enzyme involved in its hepatic and blood-based breakdown and a transporter 

responsible for its tubular reabsorption. Fourth, the same metabolite was sometimes 

associated with several genes in the same matrix, which differed in terms of genetic 

architecture (e.g., urine diacetylspermidine with PAOX and HDAC10, or plasma N,N,N-

trimethyl-5-aminovalerate with SLC22A5 and TMLHE).  

The inclusion of effectively neutral variants among the QVs may dilute their joint 

signal. We thus prioritized the variants with the strongest individual contributions to the 

gene-based signal that resulted in the lowest possible association P-value when aggregated 

for burden testing15 (Methods) as “driver variants”. The proteins encoded by the vast majority 

of identified genes are directly involved in the generation, turnover, or transport of the 

associated metabolite(s). It is therefore a reasonable assumption that truly functional variants 

are those with the strongest individual contributions to the metabolite signal. Indeed, the 

minimum association P-value based on driver variants only was often many orders of 

magnitude lower than the one obtained from all QVs, as exemplified by DPYD and plasma 

uracil (Supplementary Figure 3). As expected, the proportion of splice, stop-gain and 

frameshift variants was higher among driver QVs, whereas non-driver QVs contained a 

greater proportion of missense variants (Fisher’s exact test: P-value=1.3e-6, Supplementary 

Figure 5a). The median effect of driver variants on metabolite levels increased from missense 

over start/stop-lost, frameshift, and stop-gain to variants predicted to affect splicing 

(Supplementary Figure 5b). 
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Lastly, we evaluated the convergence of rare and common variant association signals 

by assessing whether the regions around the identified genes contained common variants 

significantly associated with the respective metabolite in the same matrix (Methods). We 

detected significant associations for 157 of the 235 (192+43) unique gene-metabolite pairs 

(Supplementary Table 6). While the absolute effect size generally increased with lower minor 

allele frequency, there was no relation between the absolute aggregated effect size of rare 

variants with the presence of a GWAS signal in the region (Supplementary Figure 6). 

In summary, genetic architecture differs across metabolite-associated genes, and 

further improvements in the selection of functional variants may increase the yield of future 

gene discovery efforts. 

 

Heterozygous variant carriers inform about dose-response effects 

Our identification of known IEM-causing variants such as in CTH, PAH, SLC16A9, and SLC7A9 

supports the notion that heterozygous QVs are functional alleles. Moreover, we had 

previously confirmed experimentally heterozygous sulfate-associated QVs in SLC26A1 as loss-

of-function alleles and designated the encoded protein as an important player in human 

sulfate homeostasis.25 However, experimental studies of each of the detected 2,077 QVs and 

73 genes are infeasible, and IEMs are so rare that no homozygous person for a given gene 

may have been observed yet. We therefore used three orthogonal approaches, examination 

of hemizygosity, in silico knockout modeling, and investigation of variants prioritized through 

allelic series, to evaluate whether the observed metabolite-associated heterozygous variants 

captured similar information about a gene’s function as might be derived from homozygous 

damaging variants in the respective gene.   
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X-chromosomal associations as readouts of variant homozygosity 

Genes in the non-pseudo-autosomal region of the X chromosome offer an opportunity to 

study differences between heterozygous women and effectively homozygous (i.e., 

hemizygous) men. We therefore investigated sex differences for the two X-chromosomal 

genes identified in our screen, TMLHE and RGN (Supplementary Table 7).  

Indeed, male carriers of QVs in TMLHE showed clearly higher urine levels of N6,N6,N6-

trimethyllysine, the substrate of the encoded enzyme trimethyllysine dioxygenase, than 

female carriers, as well as markedly lower levels of its product hydroxy-N6,N6,N6-

trimethyllysine (Figure 3, Supplementary Table 7). In plasma, male QV carriers showed 1.15 

standard deviations (SD) lower levels of plasma hydroxy-N6,N6,N6-trimethyllysine as 

compared to non-carriers (P-value=6e-44), whereas female QV carriers only showed 0.45 SD 

lower metabolite levels than non-carriers (P-value=3e-4). Similar differences, albeit less 

pronounced, were observed for RGN and urine levels of the unnamed metabolite X-23436. 

Levels were higher in women than men, suggesting that X-23436 is a metabolite downstream 

of the reaction catalyzed by the encoded regucalcin (Supplementary Table 7). Data from the 

GTEx Project26 shows no sex differences in gene expression across tissues. Hence, sex-

differential effects of QVs on metabolite levels likely represent a dose-response effect 

resulting from QV hetero- vs. hemizygosity.  

 

Virtual IEMs mirror the effects of heterozygous variants 

We next investigated the implicated genes’ loss-of-function by generating virtual IEMs for 25 

genes that covered 59 gene-metabolite pairs, via in silico knockout modeling (Methods). We 

compared the maximal secretion flux of the metabolite of interest into blood and/or urine 

between the wild-type WBM and the gene knockout WBM. Initially, the direction of the 
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observed gene-metabolite associations was correctly predicted by virtual IEMs with an 

accuracy of 74.58% in the male and 77.97% in the female WBM, which is significantly better 

than chance (Fisher’s exact test: P-value=4.4e-03 (male), P-value=1.2e-04 (female); 

Supplementary Table 8). After model curation informed by the genome and metabolome 

data from the GCKD study, which included the addition of metabolites (e.g., 8-

methoxykynurenate) and pathways as well as alteration of constraints (e.g., diet; details in 

Supplementary Material, Supplementary Table 9), the number of modeled gene-metabolite 

associations increased to 67, and accuracy to 79.1% (male; P-value=2.1e-05) and 83.58% 

(female; P-value=2.9e-07). These findings underline the predictive nature of the virtual IEMs 

for the aggregated effects of heterozygous damaging variants, and highlight opportunities to 

further improve WBMs by curation of the underlying knowledge base. 

 

Microbiome-personalized WBMs capture quantitative changes in metabolites observed for 

heterozygous and homozygous loss of KYNU function  

Virtual IEMs only allow for qualitative prediction. To additionally study an equivalent to 

observed effect sizes, we introduced a second in silico modeling strategy as proof of principle. 

We successfully generated 582 microbiome-personalized27 WBMs (Methods), and calculated 

the effect size of an in silico KYNU knockout against the natural variation induced by the 

personalized microbiomes on metabolite excretion into urine (Supplementary Table 10). 

There were 16 of 242 metabolites available in both GCKD and the WBMs with modeling P-

value <0.05/242, implicating them as potential biomarkers of kynureninase deficiency 

(Supplementary Table 11), mostly belonging to tryptophan metabolism and the NAD+ de 

novo synthase pathway. The in silico effects of these 16 biomarkers predicted their observed 

counterparts (Pearson correlation r=0.61 (P-value=0.013); Figure 4a), and highlighted large 
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effects for 3-hydroxykynurenine, 8-methoxykynurenate, and xanthurenate. While both 

xanthurenate and 3-hydroxykynurenine are known biomarkers of kynureninase deficiency28, 

8-methoxykynurenate was novel. We next measured absolute levels of these metabolites in 

urine samples from a patient with a homozygous loss-of-function variant causing 

kynureninase deficiency and her parents29 (Methods), and confirmed that not only 

xanthurenate and 3-hydroxykynurenine but also 8-methoxykynurenate constituted a 

biomarker of this IEM (Figure 4b, Supplementary Figure 7). Microbiome-personalized WBMs 

correctly predicted smaller changes in 8-methoxykynurenate than in its precursor 

xanthurenate, consistent with the absolute levels measured in the IEM patient as well as with 

the association statistics from aggregate variants tests in the GCKD study (Figure 4b, 

Supplementary Figure 7b). Thus, in silico WBM modeling faithfully captured metabolic 

changes observed for both, population-based heterozygous variants and an IEM caused by a 

homozygous KYNU mutation.  

 

Association of metabolite-associated alleles and genes with human traits and diseases 

We queried data from ~450,000 UKB participants with WES for associations of the identified 

2,077 QVs and 73 genes with thousands of quantitative and binary health outcomes that may 

result from disturbances of the implicated metabolites. The prefiltered UKB dataset 

(Methods) contained 696 QVs and 72 genes. At the gene-level, significant associations (P-

value<2e-09; Methods) were identified between APOC3 and the binary health outcome 

“disorders of lipoprotein metabolism and other lipidaemias” (Supplementary Table 12), 

consistent with its association with 19 plasma phosphatidylethanolamine and diacylglycerol 

metabolites in our study. Moreover, 13 genes showed 282 significant associations with 

quantitative health outcomes. These mostly arose from clinical chemistry parameters and 
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contained many plausible and well supported examples (Supplementary Table 12). At the 

variant-level, there were 555 significant associations between a QV and a quantitative as well 

as two additional associations with a binary health outcome (Supplementary Table 13). These 

included well-established examples, but also less studied candidates such as an SLC6A19 

variant encoding the p.Asp173Asn substitution in the sodium-dependent neutral amino acid 

transporter, which was associated with lower serum creatinine and cystatin C levels and 

erythrocyte distribution width. 

We have previously shown that the comparison of the effect of common genetic 

variants on plasma and urine metabolite levels can deliver specific insights into functions of 

the kidney2. In this study of rare variants, all identified genes that were associated with one 

or more measures of kidney function (i.e., serum creatinine or cystatin C) in the UKB encode 

for transport proteins that are highly expressed in the kidney30–32: SLC47A1, SLC6A19, SLC7A9, 

and SLC22A7 (Supplementary Table 12). The gene products of SLC47A1, SLC6A19, and SLC7A9 

are localized in the apical membrane of tubular cells30–32, where they are involved in the 

secretion of organic cations (SLC47A1) or tubular reabsorption of amino acids (SLC6A19, 

SLC7A9). Their metabolic fingerprints were almost exclusively detected in urine 

(Supplementary Table 3) and reflected the encoded proteins’ functions. For example, carriers 

of QVs in SLC7A9 showed significantly higher levels of urine cystine and lysine, consistent with 

its function in the reabsorption of dibasic amino acids from urine. Conversely, SLC22A7 

encodes for an organic anion transporter in the basolateral membrane of tubular cells33. An 

exchange against intracellular glutamate has been reported34, which may contribute to the 

observed association with lower plasma gamma-glutamylglutamate levels among carriers of 

SLC22A7 QVs compared to non-carriers (Supplementary Table 3). QVs in SLC47A1 and 

SLC22A7 were only associated with creatinine levels but not with cystatin C, in agreement 
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with their known role as creatinine transporters35. In contrast, QVs in SLC7A9 and SLC6A19 

showed association with lower levels of both creatinine and cystatin C36, suggesting that their 

loss-of-function is associated with better kidney function through yet unidentified 

mechanisms. These observations illustrate how rare damaging variants leave a specific 

signature in plasma and urine metabolomes that mirror exchange processes at the 

membranes of kidney epithelial cells and are related to kidney function. 

 

Allelic series: metabolites represent intermediate readouts of pathophysiological processes 

Allelic series describe a dose-response relationship, in which increasingly deleterious 

mutations in a gene result in increasingly larger effects on a trait or a disease. We 

hypothesized that genetic effects on metabolite levels should manifest as allelic series if the 

metabolite represents a molecular readout of an underlying (patho-)physiological process. As 

proof of principle, we investigated plasma sulfate, because of solid evidence for causal gene-

metabolite relationships: first, QVs in SLC13A1 showed a significant aggregate effect on lower 

plasma sulfate levels (P-value=3E-18, lowest possible P-value=2e-25). The observed 

association is well supported by experimental studies establishing that the encoded Na+-

sulfate cotransporter NaS1 (SLC13A1) reabsorbs filtered sulfate at the apical membrane of 

kidney tubular epithelial cells37. Second, we had previously confirmed experimentally that 

plasma sulfate-associated QVs in SLC26A1 reduced sulfate transport capacity25 and confirmed 

a lowest possible P-value of 2e-11 for the aggregate effect of driver variants in SLC26A1 

(Supplementary Figure 8). The encoded sulfate transporter SAT1 localizes to basolateral 

membranes of tubular epithelial cells and works in series with NaS1 to mediate transcellular 

sulfate reabsorption (Figure 5a)38,39.  
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Based on a growth retardation phenotype in slc13a1 knockout mice40 and the 

observed association between SLC13A1 and lower sitting height in the UKB (P-value=3E-08, 

Supplementary Table 12 and 41), we investigated relations of three functional QVs in SLC13A1 

and SLC26A1 each with anthropometric measurements in the UKB (Methods). 

Supplementary Table 14 contains traits for which at least two QVs were nominally associated 

(P-value<0.05). There was a clear correlation between genetic effect sizes on plasma sulfate 

levels in the GCKD study and both sitting and standing height in the UKB (Pearson correlation 

coefficients of 0.57 and 0.70, respectively; Figure 5b). These observations support a causal 

relationship between transcellular sulfate reabsorption and human height, and designate 

plasma sulfate as an intermediate readout. Additionally, we could observe a significant lower 

standing height among carriers of driver variants in one of the two genes (SLC13A1 and 

SLC26A1) compared to non-carriers in a subsample of the GCKD study (N=3,239), where 

height was measured at baseline. Aggregating the effect of driver variants in SLC13A1 

provided an effect size of -0.54 (corresponding to -5.17 cm when the outcome height was not 

inverse normal transformed, P-value=1.6e-3, Supplementary Figure 9a). For SLC26A1 we 

obtained even a stronger effect size of -0.73 (corresponding to -6.68 cm, P-value=1.7e-6, 

Supplementary Figure 9b).  

The first patient homozygous for a loss-of-function stop gained mutation in SLC13A1, 

p.Arg12*, has just been described42. Besides sitting height >2 SD below the normal range, the 

patient featured multiple skeletal abnormalities. His fractional sulfate excretion of almost 

100%, as well as earlier model-based transport studies43, establish this variant as a complete 

loss-of-function resulting in renal sulfate wasting. We found that compared to non-carriers of 

p.Arg12*, heterozygous carriers showed 0.95 SD lower plasma sulfate levels (GCKD, 22 

carriers, P-value=9.9E-10) and 0.08 SD lower sitting height (UKB, 2,480 carriers, P-value=2.2E-
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07). Plasma sulfate measurements from heterozygous carriers therefore inform about 

phenotypes that will exhibit more extreme changes in the homozygous state.  

 

Functional variants of altered sulfate reabsorption increase odds of musculoskeletal diseases 

Rare loss-of-function variants in SLC13A1 and SLC26A1 have been linked to individual 

musculoskeletal phenotypes through IEMs and GWAS25,41,44,45. We further investigated the 

association between the same six functional, sulfate-associated QVs in SLC13A1 and SLC26A1 

and musculoskeletal disorders, fractures, and injuries in the UKB (Methods). There were 116 

nominally significant (P-value<0.05) associations with clinical traits and diseases, 113 of which 

were associated with increased odds of disease (Figure 5c). For instance, increased odds of 

various fractures ranged from 1.9 for closed pertrochanteric fracture (P-value=0.016, SAT1 

p.Leu348Pro) to 30.7 for closed fracture of the neck (P-value=2.1e-08, NaS1 p.Trp48*; 

Supplementary Table 15). 

Lastly, we investigated UKB participants who carried more than one copy of any of the 

six QVs more closely. The rare allele of the missense variant p.Arg272Cys in NaS1, observed 

in nine heterozygous carriers in GCKD, had been prioritized because of its location in a splice 

region, its high impact on plasma sulfate levels, and its particularly large effect on human 

height (Figure 5b). In the UKB, we found 294 heterozygous carriers of p.Arg272Cys, four 

persons who carried p.Arg272Cys in NaS1 as well as SAT1 p.Leu348Pro, and a single person 

homozygous for p.Arg272Cys. Age- and sex-specific z-scores for human height (Methods) 

showed a clear dose response effect (Figure 6a). Interestingly, the second group of four 

individuals were heterozygous for loss-of-function variants in each of the two transcellular 

sulfate reabsorption proteins, supporting that the pathway is important for human growth. 

Carrier status for NaS1 p.Arg272Cys was associated with increased odds of several 
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musculoskeletal diseases such as back pain and intervertebral disc disorders as well as 

fractures (Figure 6b). Homozygous persons were also identified for NaS1 p.Arg12* and SAT1 

p.Leu348Pro, with similar findings (Supplementary Figure 10). Together, these findings 

provide convincing evidence that lower transcellular sulfate reabsorption is associated with 

numerous adverse musculoskeletal traits and diseases. Prioritizing variants with strong 

effects in allelic series for subsequent investigation in larger studies, even if the biomarker 

association rests on only a few heterozygous alleles, is an effective strategy to gain insight 

into the impact of rare damaging variants on human health.  

 

Discussion 

We performed a comprehensive screen of the aggregate effect of rare, putatively damaging 

variants on the levels of 1,294 plasma and 1,396 urine metabolites from paired specimens of 

4,737 persons. Of the 192 identified gene-metabolite relationships, 115 have not yet been 

reported yet, and include plasma- and urine-exclusive associations that reflect organ function. 

We show via three computational and genetic approaches that the rare, almost exclusively 

heterozygous metabolite-associated variants in our study capture similar information about 

a gene’s function than obtained from the study of rare IEMs. 

We present several lines of evidence that heterozygous variants identified in a 

population sample permit insights into graded effects of impaired gene function without the 

need to identify patients with a corresponding biallelic IEM. First, 38% of identified genes in 

our study are known to harbor causative mutations for autosomal recessive IEMs that often 

exhibit concordant changes in the implicated metabolite. This is exemplified by elevated urine 

cystine in cystinuria patients (MIM #220100, SLC7A9), elevated urine tryptophan in patients 

with Hartnup disease (MIM #234500, SLC6A19), lower plasma carnitine in patients with 
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systemic primary carnitine deficiency (MIM #212140, SLC22A5), and elevated plasma 

histidine in patients with histidinaemia (MIM #235800, HAL).   

Second, men exhibited significantly larger effects of rare QVs in non-pseudo-

autosomal X-chromosomal genes on metabolite levels than women. This observation is 

consistent with male hemizygosity as an approximation of female homozygosity for a given 

variant, and with the known greater penetrance and severity of X-linked disorders in men as 

compared to women46. 

Third, in silico knockout in a virtual metabolic human, i.e. the full loss-of-gene function, 

was predictive for both direction and magnitude of observed metabolic changes associated 

with variant heterozygosity. Predicted different effect sizes on metabolite levels upon in silico 

loss of KYNU function were also reflected in absolute urine metabolite quantification of a 

patient with homozygosity for a full loss-of-function KYNU mutation29. Blockage of the NAD+ 

de novo synthase pathway, as reflected in the predicted reduction of the respective 

metabolites’ flux upon in silico knockout of KYNU, is considered causal for the severe 

symptoms associated with kynureninase deficiency, or Vertebral, Cardiac, Renal and Limb 

Defect Syndrome29. Therefore, the virtual IEM is in line with the current hypothesis regarding 

disease etiology. Thus, deterministic, knowledge-based in silico modeling generates context 

for better biological interpretation also of heterozygous variants, while the population-based 

genetic screens of metabolite levels permit the identification of knowledge gaps and errors in 

WBMs. Our modeling pipeline for generating virtual IEMs, which we make publicly available, 

will constitute a valuable resource for the scientific community in particular to scrutinize 

genes for which no IEM has been observed. 

Fourth, the presence of different causal QVs affecting a given metabolic reaction or 

pathway enabled the investigation of allelic series. The resulting dose-response relationships 
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proxy a range of target inhibition, which represents highly desirable information for drug 

development and is relevant because enzymes and transporters are attractive drug targets. 

Plasma sulfate-associated functional QVs in SLC13A1 and SLC26A1 showed a clear dose-

response effect between the degree of impaired epithelial transcellular sulfate reabsorption 

and lower human height. This observation is biologically plausible, because defects in genes 

linked to sulfate biology often result in perturbed skeletal growth and development47. In 

particular, constitutive knockouts of slc13a1 and slc26a1 in mice do not only cause 

hyposulfatemia and renal sulfate wasting40,48, but also general growth retardation in slc13a1 

knockout mice40. Interestingly, the missense variant p.Thr185Met in SAT1 exhibited the 

largest effect on sulfate. We have previously shown experimentally a dominant negative 

mechanism of this variant25, providing another mechanism how heterozygous variants may 

promote insights into an effectively full loss-of-gene-function. Moreover, our findings for the 

p.Arg272Cys variant in NaS1 show that even very few, heterozygous copies of a metabolite-

prioritized QV can give rise to the detection of homozygous individuals and hitherto 

unreported disease associations in subsequent larger studies. These observations suggest 

that the importance of impaired transcellular epithelial sulfate transport for musculoskeletal 

diseases, fractures, and injuries has been underestimated previously.  

Potential limitations of our study deserve discussion. First, due to the GCKD study 

design, it is unclear if our findings apply to persons of non-European ancestry. However, rare 

genetic variants that are predicted or experimentally shown to result in loss-of-function 

should show effects on associated metabolites and diseases regardless of genetic 

background. Second, burden tests assume that all aggregated QVs result in direction-

consistent effects of similar size, which, if violated, results in a loss of power49. Because our 

study assumed loss-of-function as the mechanism underlying metabolic changes, we did not 
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evaluate alternative aggregate variant tests such as SKAT50. SKAT is less powerful in a setting 

with direction-consistent effects51, does not provide effect sizes, and is difficult to interpret 

and replicate7,52. Third, inclusion of effectively neutral variants as QVs in a burden test can 

lead to an underestimation of a gene’s effect. Further methodological improvements are 

required in order to better predict a variant’s functional consequence, as well as for 

optimizing the selection and weighting of QVs to better reflect specific genetic architectures. 

Fourth, we analyzed non-targeted population metabolomics data. However, non-targeted 

metabolomics provides much broader coverage than conventional targeted screening within 

and across biochemical pathways53, thus enabling the discovery of genetic associations with 

previously unreported metabolites, as well as the detection of entirely new gene-metabolite 

relationships as observed here. Lastly, we utilized WBMs for in silico validation based on the 

steady state assumption, whereas it is conceivable that dynamic modeling may improve the 

predictive power of virtual IEMs. However, such modeling is computationally expensive, and 

adequate data for fitting dynamic models are often missing. A great advantage of the utilized 

constraint-based modeling is its scalability, permitting easy integration with genome-wide 

genetic screens. 

In conclusion, the exome-wide study of rare, putative loss-of-function variants can 

establish causal relationships with metabolites, and highlight metabolic biomarkers that 

reflect the degree of impaired gene function and result in graded, adverse effects on human 

health.  
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Figure Legends/Captions 

Figure 1: Overview of the study design 

Schematic representation of the gene-based rare variant aggregation study with plasma and 

urine metabolite levels using whole-exome sequencing data of 4,737 participants of the GCKD 

study and their follow-up analyses. 
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Figure 2: Overview of the 192 identified gene-metabolite associations across plasma and 

urine and their corresponding pathways 

(a) Significant associations with plasma metabolites are shown on the outermost band (red; 

shading reflects effect direction), with genes ordered by chromosomal location by order of 

genes across the genome. Associations with urine metabolites are shown on the middle band 

(blue; shading reflects effect direction). Gene-metabolite associations are based on rare 

variant aggregation testing from both masks. The ones labeled in gray were already reported 

in previous rare variant studies, whereas the ones labeled in bold black are considered novel. 

White spaces indicate that no significant association was detected in a given matrix. For all 

associations detected in both matrices, effect directions are consistent. The inner band 

represents the super-pathway of the associated metabolite. 

(b) The UpSet plot shows the number of identified gene-metabolite associations by mask and 

matrix, color-coded by the respective metabolite super-pathway. The horizontal bar plot on 

the right represents the total number of associations identified by mask and matrix. The 

proportion of lipids is markedly higher among associations detected with plasma metabolites 

as compared to urine. The vertical bar plot on the top on the left shows the number of shared 

associations by mask and matrix, while the sets among which the associations are shared are 

indicated below each column. While the majority of associations is detected by both masks, 

especially the less stringent HI_mis mask provides many mask-specific findings in both plasma 

and urine. The group of metabolites detected in both plasma and urine is dominated by amino 

acids. 
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Figure 3: Differences in urine metabolite levels between male and female carriers of QVs in 

X-chromosomal TMLHE reflect a dose-response effect 

The upper plots represent urine levels of N6,N6,N6-trimethyllysine after inverse normal 

transformation (y-axis) among male (left) and female (right) non-carriers and carriers of QVs 

in TMLHE based on the HI_mis mask (x-axis). Symbol color and shape indicates a variant’s 

driver status and consequence, respectively. The boxes range from the 25th to the 75th 

percentile of metabolite levels, the median is indicated by a line, and whiskers end at the last 

observed value within 1.5*(interquartile range) away from the box. Among men hemizygous 

for a QV in TMLHE, the levels of the substrate N6,N6,N6-trimethyllysine are markedly higher 

compared to heterozygous women, reflecting more severe impairment of encoded enzyme’s 

function in hemizygous men. The presented P-values  correspond to the sex-specific burden 

tests. Metabolites’ formulas are taken from https://commons.wikimedia.org/. 

The lower plots represent urine levels of hydroxy-N6,N6,N6-trimethyllysine after inverse 

normal transformation (y-axis) across male (left) and female (right) non-carriers and carriers 

of QVs in TMLHE based on the HI_mis mask (x-axis). Because hydroxy-N6,N6,N6-

trimethyllysine is the product of trimethyllysine dioxygenase, the enzyme encoded by TMLHE, 

loss-of-function QVs lead to decreased metabolite levels, more strongly among men than 

women.  
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Figure 4: Altered metabolite levels in urine are a readout of impaired KYNU function: 

converging evidence from three approaches 

(a) Relation between effect sizes (regression coefficients) upon in silico knockout of KYNU 

based on 582 microbiome-personalized WBMs (x-axis) and observed effect sizes in the GCKD 

study (y-axis) for 16 urine metabolites that showed significant changes upon in silico knockout 

of KYNU. WBM estimates are based on QP-modeling, and GCKD estimates on aggregating 

rare, damaging variants in KYNU. Symbol color represents the sub-pathway of the 

corresponding metabolite. The gray line is the linear regression line through the data points, 

the shaded gray area represents its 95% confidence interval. Simulated in silico effects of 

KYNU knockout are clearly correlated with the observed effects in humans (Pearson 

correlation r=0.61, P-value=0.013). 

(b) Three panels are shown for 8-methoxykynurenate: the left panel represents inverse-

normal transformed urine levels of the metabolite (y-axis) among non-carriers and carriers of 

QVs in KYNU (x-axis). Units correspond to standard deviations. The boxes range from the 25th 

to the 75th percentile of metabolite levels, the median is indicated by a line, and whiskers end 

at the last observed value within 1.5*(interquartile range) away from the box. The middle 

panel represents the distribution of the ln-transformed secretion flux of the metabolite in 

mmol/day into urine (y-axis) from min-norm simulations based on 582 microbiome-

personalized WBMs without and with simulated knockout of KYNU (x-axis). The right panel 

shows multiple reaction monitoring (MRM, m/z 220.0  174.1) chromatograms of the diluted 

urines of a child with a homozygous loss of KYNU function (patient), the heterozygous mother 

and the healthy father (maternal uniparenteral isodisomy). The signal at 12.5 min 

representing 8-methoxy-kynurenate is strongly enhanced in the patient sample. 

Chromatograms are normalized to urine creatinine concentrations; y-axes are normalized to 
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the intensity of the signal in the patient’s chromatograms. All three independent approaches 

arrive at the conclusion that elevated levels of 8-methoxykynurenate in urine are a readout 

of impaired KYNU function. 
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Figure 5: Impact of functional QVs in SLC13A1 and SLC26A1 on height, musculoskeletal traits 

and fractures support the role of plasma sulfate as intermediate readout. 

(a) Schematic representation of the sulfate reabsorption mechanism involving NaS1 encoded 

by SLC13A1 at the apical membrane and SAT1 encoded by SLC26A1 at the basolateral 

membrane of epithelial cells. 

(b) The scatter plot shows the relation between the effect sizes of 6 QVs on plasma sulfate 

levels in the GCKD study (x-axis) and on standing height in the UKB (y-axis). Effect sizes 

correspond to single variant association tests under additive modeling with inverse normal 

transformed traits. Symbol color and shape indicate the gene (shades of red: SLC13A1, shades 

of blue: SLC26A1) and consequence of the QV. Symbol size represents the P-value with 

respect to height. The gray line is the linear regression line through the data points. Variant 

effect sizes on plasma sulfate levels are clearly correlated with the ones on standing height 

(Pearson correlation r=0.70, allelic series). 

(c) The volcano plot shows odds ratios (x-axis) and -log10(P-values) (y-axis) for association of 

the 6 QVs with musculoskeletal diseases and fractures in the UKB, based on a Firth regression. 

Only clinical traits for which at least two carriers were identified are included in the plot. 

Symbol color indicates the QV and whether the corresponding P-value was nominally 

significant (P-value<0.05). Symbol size corresponds to the number of QV carriers with disease. 

While both increased and decreased odds of disease were observed when associations were 

not significant, increased odds for musculoskeletal diseases and fractures clearly dominated 

for significant associations. 
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Figure 6: Impact of different genotypes encoding the NaS1 p.Arg272Cys substitution on 

height and musculoskeletal traits and fractures 

(a) The boxplot shows differences in age- and sex-specific z-scores for standing height (y-axis) 

across persons heterozygous and homozygous for the p.Arg272Cys-encoding allele (x-axis). A 

dose-response effect is observable between heterozygous individuals (N=289, median=-0.13), 

individuals carrying NaS1 p.Arg272Cys as well as SAT1 p.Leu348Pro (N=4, median=-1.13), and 

one person homozygous for p.Arg272Cys (z-score=-3.51). 

(b) Association between the NaS1 p.Arg272Cys substitution with musculoskeletal diseases 

and fractures from the UKB, for which at least 2 carriers were identified (y-axis). Odds ratios 

(x-axis) are based on a Firth regression. The symbol color reflects the -log10(P-value) and the 

size the number of p.Arg272Cys carriers with disease. Only associations with P-value<0.05 are 

shown. 
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Online Methods 

Study design and participants 

The German Chronic Kidney Disease (GCKD) study is an ongoing prospective cohort study of 

5,217 participants with CKD that were enrolled from 2010 to 2012 and are under regular 

nephrologist care. Inclusion criteria were an age between 18 to 74 years and an eGFR 

between 30–60 mL/min/1.73 m2 or an eGFR >60 mL/min/1.73 m2 with an UACR >300 mg/g 

or with a urinary protein to creatinine ratio >500 mg/g.54 Biomaterial, including blood and 

urine, were collected at the baseline visit, processed and shipped frozen to a central biobank 

for storage at -80 degrees Celsius.55 More details on the description of the study design and 

participants characteristics have been published.54,56 The GCKD study was registered in the 

national registry for clinical studies (DRKS 00003971) and approved by local ethics committees 

of the participating institutions.54 All participants provided written informed consent.  

 

Whole-exome-sequencing and quality control 

Genomic DNA was extracted from whole blood and underwent paired-end 100-bp whole-

exome sequencing at Human Longevity Inc, using the IDT xGen v1 capture kit on the Illumina 

NovaSeq 6000 platform. More than 97% of consensus coding sequence (CCDS) release 2257 

had at least 10x coverage. The average coverage of the CCDS was 141-fold read depth. 

Exomes were processed from their unaligned FASTQ state in a custom-built cloud compute 

platform using the Illumina DRAGEN Bio-IT Platform Germline Pipeline v3.0.7 at Astra 

Zeneca’s Centre for Genomics Research, including alignment of reads to the GRCh38 

reference genome and variant calling.58 

Sample level quality control included removal of samples from participants who 

withdrew consent, duplicated samples, those with an estimated VerifyBamID contamination 
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level >4%59, samples with inconsistency between reported and genetically predicted sex, 

samples not having chromosomes XX or XY, samples having <94.5% of CCDS release 22 bases 

covered with ≥10-fold coverage57, related samples with kinship >0.884 (KING --kinship 

v2.2.3)60 and samples with a missing call rate >0.03. Furthermore, only samples with available 

high-quality DNA microarray genotype data and without outlying values (>8 SD) along any of 

the first 10 genetic principle components from a principal component analysis (for more 

details see61) were kept, for a final sample size of 4,779 samples. 

Variant level quality control as described previously58 included exclusion of variants 

with coverage <10, heterozygous variants with a one-sided binomial exact test P-value <1e-6 

for Hardy-Weinberg equilibrium, variants with a genotype quality score (GQ) <30, single 

nucleotide variants (SNV) with a Fisher’s strand bias score (FS) >60 and insertions and 

deletions (indel) with a FS >200, variants with a mapping quality score (MQ) <40, those with 

a quality score (QUAL) <30, variants with a read position rank sum score (RPRS) <-2, those 

with a mapping quality rank sum score (MQRS) <-8, variants that did not pass the DRAGEN 

calling algorithm filters, heterozygous genotype called variants based on an alternative allele 

read ratio <0.2 or >0.8, and variants with a missing call rate >10% among all remaining 

samples. That resulted in 1,038,062 variants across the autosomes and the X chromosome. 

 

Variant and gene annotation 

Variants from WES were annotated using the Variant Effect Predictor (VEP) version 10162 with 

standard settings, including the canonical transcript, gene symbol and variant frequencies 

from the Genome Aggregation Database (gnomAD version 2.1 

https://gnomad.broadinstitute.org/). VEP plugins were used to add the REVEL (version 2020-

5)63 and CADD (version 3.0)64 scores. The LoFtee VEP plugin (version 2020-8)65 was used to 
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downgrade loss-of-function variants. Furthermore, we added multiple in silico prediction 

scores using dbNSFP version 4.1a.66 

 For interpretation, genes were annotated for their potential function as enzymes 

using Uniprot (https://www.uniprot.org/)67 and as transporters using Gyimesi and Hediger 

202268. 

 

Metabolite identification and quantification 

Metabolite levels were quantified from stored plasma and spot urine as described 

previously2. In brief, non-targeted mass spectrometry analysis was conducted at Metabolon, 

Inc. Metabolites were identified by automated comparison of the ion features in the 

experimental sample to a reference library of chemical standard. Known metabolites 

reported in this study were identified with the highest confidence level of identification of the 

Metabolomics Standards Initiative69,70, unless marked by an asterisk. Unnamed biochemicals 

of unknown structural identity were identified by virtue of their recurrent nature. For peak 

quantification, the area under the curve was used, followed by normalization to account for 

inter-day instrument variation. 

 

Data cleaning of quantified metabolites 

Data cleaning, quality control, filtering and normalization of quantified metabolites in plasma 

und urine in the GCKD study has been described previously2. Samples and metabolites were 

evaluated for duplicates, missing and outlying values and metabolites with low variance were 

excluded. Levels of urine metabolites were normalized using the probabilistic quotient71 

derived from 309 endogenous metabolites with <1% missing values in order to account for 

differences in urine dilution. After removing metabolites for which less than 300 individuals 
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with WES data were available, the remaining 1,294 plasma and 1,396 urine metabolites 

(Supplementary Table 2) were subjected to inverse normal transformation prior to gene-

based aggregation testing. 

 

Additional variables 

Serum and urine creatinine were measured as part of standard biochemistry using an IDMS 

traceable enzymatic assay (Creatinine plus, Roche). Serum and urine albumin were measured 

using the Tina-Quant assay (Roche/Hitachi Diagnostics GmbH, Mannheim, Germany). GFR 

was estimated with the CKD-EPI formula72 from serum creatinine. UACR was calculated using 

the urinary albumin and creatinine measurements. Full information on WES data, covariates, 

and metabolites was available for 4,713 persons regarding plasma metabolites, and for 4,619 

persons regarding urine metabolites. Genetic principal components were derived based on a 

principal component analysis as described previously.61 

 

Rare variant aggregation testing on metabolite levels 

We performed burden tests to combine the effects of rare, putatively damaging variants 

within a gene on metabolite levels assuming a loss-of-function mechanism that results in 

concordant effect directions on metabolite levels49. The selection of high-quality QVs into 

masks based on their frequency and annotated properties is a state-of-the-art approach in 

gene-based variant aggregation studies.73 Annotations from the Variant Effect Predictor (VEP) 

version 10162 were used to select qualifying variants within each gene for aggregation in 

burden tests. Because the genetic architecture of damaging variants can vary across genes, 

two complementary masks for the selection of qualifying variants were defined. Both masks 

were restricted to contain only rare variants in canonical transcripts with a MAF of <1%. All 
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variants that were predicted to be either high-confidence loss-of-function variants or 

missense variants with a MetaSVM score >0 or in-frame non-synonymous variants with a 

fathmm-XF-coding score >0.5 were aggregated into the first mask, termed LoF_mis. The 

second mask, termed HI_mis, contained all variants that were predicted either to have a high-

impact consequence defined by VEP (transcript ablation, splice acceptor variant, splice donor 

variant, stop gained, frameshift variant, stop lost, start lost, and transcript amplification) or 

to be missense variants with either a REVEL score >0.5, a CADD PHRED score >20, or a M-CAP 

score >0.025. Only genes with a HGNC symbol, that were no read-throughs and that contained 

>3 qualifying variants in at least one of the masks were kept for aggregate variant testing, 

resulting in 16,525 analyzed genes. Burden tests were carried out as implemented in the 

seqMeta R-package version 1.6.774, adjusting for age, sex, ln(eGFR), the first three genetic 

principal components as wells as serum albumin for plasma metabolites and ln(UACR) for 

urinary metabolites, respectively. Genotypes were coded as number of copies of the rare 

allele (0, 1, 2) on the autosomes and also on the X chromosome for women. For men, 

genotypes in the non-pseudo-autosomal region of the X chromosome were coded as (0, 2). 

Statistical significance was defined as nominal significance corrected for the number of tested 

genes and principal components that explained more than 95% of the metabolites’ variance, 

leading to thresholds of 0.05/16525/600=5.04e-9 in plasma and 0.05/16525/679= 4.46e-9 in 

urine. For significant gene-metabolite associations, single-variant association tests between 

each qualifying variant in the respective mask and the corresponding metabolite levels were 

performed under additive modeling, adjusting for the same covariates mentioned above 

using the seqMeta R-package version 1.6.774. 

 

Comparison to previous rare variant association studies and to GWAS of metabolite levels 
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We compared our significant findings to the significant findings from eight published genetic 

studies of the plasma/serum or urine metabolome that focused on rare exonic variant 

aggregation testing and used sequencing and high-throughput metabolomics data14–20,24. We 

first assessed whether the genes identified in our study were reported as associated with any 

metabolite in any of the seven studies at their respective multiple-testing corrected 

significance threshold, after having mapped all gene names to their current version in 

Ensembl version 109 using https://www.ensembl.org/biomart/martview. We then 

ascertained for all matching i.e. previously reported genes whether they were associated with 

the same metabolite(s) as in our study. Metabolites were matched by biochemical name, with 

manual curation in case of similar names, and by HMDB ID and Compound ID for metabolites 

quantified at Metabolon, if available. 

The presence of common variants associated with the corresponding metabolite(s) in 

or near the identified genes was assessed by searching for common variants (MAF >1%) within 

a window of ±500 kb around the gene that were significantly (P-value <5e-8) associated with 

the implicated metabolite. Common variant associations were based on GWAS of inverse 

normal transformed metabolite levels in the GCKD study (N = 4,991 for plasma, N = 4,911 for 

urine) using REGENIE v2.2.475, based on TOPmed imputed genotypes and adjusting for age, 

sex and the first three genetic principal components2. Gene positions were based on Ensembl 

version 101. Conditional association analyses were not performed, because previous studies 

by ourselves and others have shown that the vast majority of gene-based rare variant 

association signals with metabolites is unaltered by conditioning on common variant 

genotypes.15,24,76 

 

Assessment of qualifying variant contributions and selection of driver variants 
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The investigation of the genetic architecture underlying gene-metabolite associations and the 

prioritization of QVs according to their contribution to the gene-based association signal was 

performed using the forward selection procedure described in Bomba et al 202215. First, for 

each QV v the P-value Pv is calculated by performing the burden test aggregating all QVs 

except for the variant v. Second, for each QV v the difference Δv between Pv and the total P-

value of the burden test including all QVs is calculated. The more a QV v contributes to the 

gene signal, the greater the resulting Δv. Therefore, the QVs are ranked by the magnitude of 

Δv. QVs not contributing to the gene signal or even having an opposite effect can provide a 

negative Δv. Finally, burden tests are performed by adding the ranked QVs one after the other 

until the lowest P-value is reached starting with the greatest Δv. We thereby identified a set 

of QVs for each gene-metabolite association that contained only those variants that 

contributed most to the gene-based association signal (i.e., led to a stronger association 

signal) and did not contain variants that introduced noise (i.e., neutral variants or those with 

a small or even opposite effect on metabolite levels). The resulting set of selected variants 

that drove the association signal and led to the lowest possible association P-value was 

designated “driver variants” for the respective gene-metabolite association. Driver variants 

within a gene might differ for different associated metabolites, and not all driver variants 

necessarily represent true causative variants. 

 

Relation of genes and variants to clinical traits and diseases 

We used different data sources to link the associated genes and qualifying variants identified 

in our study to clinical outcomes and diseases. Implicated genes were queried for related 

monogenic disorders and traits using the OMIM catalog (https://www.omim.org/; accessed 

on 1/6/2022) and for the presence of known IEMs using 
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https://panelapp.genomicsengland.co.uk/panels/467/ version v3.0. Drug target status and 

the corresponding indication were annotated for all identified genes by querying 

https://platform.opentargets.org/ on 7/12/2022. Clinical significance and the corresponding 

trait or disease were for all qualifying variants based on ClinVar 

https://www.ncbi.nlm.nih.gov/clinvar/ accessed on 3/30/2022. 

Furthermore, we searched for gene-level and variant-level associations of the genes 

and qualifying variants identified in our study with about 15,500 binary and 1,500 continuous 

phenotypes contained in the AstraZeneca PheWAS Portal (https://azphewas.com/; 

downloaded on 26/08/2022). This portal contains genetic associations identified based on 

whole-exome sequencing data from ~450,000 UK Biobank (UKB) participants.58 Binary 

phenotypes with <30 cases were excluded from both gene- and variant-level analysis. At the 

variant-level, associations were restricted to those identified in at least 30 samples. For gene-

level and variant-level associations, we only extracted the most significant collapsing model 

and genotype model per trait, respectively. Statistical significance was defined as P-value <2e-

0958, and suggestive significance as P-value <1e-05.  

In addition to the PheWAS Portal queries, we used WES and biomedical data of the 

UKB (application number 64806) to investigate allelic series of functional QVs in SLC13A1 and 

SLC26A1 with hypothesized related clinical traits and diseases. We focused on SLC13A1 

variants for which experimental validation was available or that likely result in a severe 

consequence (stop gained, splicing) in order to select truly functional QVs. Among these, the 

stop gained variant p.Arg12*, for which a complete loss-of-function has experimentally been 

validated43, the stop gained substitution p.Trp48*, for which associations with decreased 

serum sulfate levels44 and skeletal phenotypes41 were reported, and the missense variant 

encoding p.Arg272Cys, located in a splice region, were available in the UKB. For SLC26A1, we 
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selected QVs for which reduced sulfate transport activity had previously been shown25, of 

which p.Leu384Pro, p.Ser358Leu, and p.Thr185Met were available in the UKB. All 6 QVs 

passed the “90pct10dp” QC filter, defined as at least 90% of all genotypes for a given variant, 

independent of variant allele zygosity, had a read depth of at least 10 

(https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/UKB_WES_AnalysisBestPractices.pdf).  

Analyses were performed on the UKB Research Analysis Platform. Participants with all 

ancestries were included into analysis but excluded strongly related individuals, defined as 

those that were excluded from the kinship inference process and those for whom ten or more 

third-degree relatives were identified. After individual-level filtering, a total of N=468,292 

individuals remained for association analyses. Of these, there were 10 participants who were 

homozygous for one of the six QVs, and 7,280 persons heterozygous for at least one of the 

QVs. For these persons carrying at least one of the six QVs, we determined age- and sex-

specific z-scores of their quantitative anthropometric measurements, enabling interpretation 

of their measurements compared to non-carriers of the same age and sex. Age- and sex-

specific distributions were inverse normal transformed before calculating the z-scores. 

We investigated the association between each of the resulting six functional QVs with 

medical diagnoses defined by International Classification of Diseases version-10 (ICD-10) 

codes based on UKB field 41202 (primary/main diagnosis codes across hospital inpatient 

records). We selected musculoskeletal diseases (ICD-10 codes starting with ”M”), fractures 

and injuries (ICD-10 codes starting with “S” and containing “fracture”, “dislocation” or 

“sprain” terms). The association was examined using Fisher’s exact test under a dominant 

model, as well as through association analysis under additive model using Firth regression, as 

implemented in the “brglm2” R package77. We included sex, age at recruitment, sex*age, and 

first 20 genetic principal components (UKB field 22009) as covariates in the regression model. 
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The association with quantitative anthropometric traits was assessed after inverse normal 

transformation via linear regression, additive genotype modeling and adjusting for the same 

covariates as with binary traits. 

 

Set-up of the whole-body model and mapping 

The utilized WBM of human metabolism was built from genomic, biochemical and 

physiological data that originated from the generic genome-scale reconstruction of 

metabolism, Recon3D23. The sex-specific and organ-resolved WBM covers 13,543 unique 

metabolic reactions and 4,140 unique metabolites. The WBM was constrained as described 

previously22,24.  

Of all observed significant gene-metabolite pairs from the GCKD study, 51 genes and 71 

metabolites could be mapped onto RECON3D in total. For 37 of 51 genes, their associated 

metabolites could be mapped, resulting in 68 unique gene-metabolite pairs. To systematically 

investigate the consequences of genetic perturbations of gene 𝐺, we first identified all 

reactions 𝑅𝐺 = {𝑟𝐺1
, … , 𝑟𝐺𝑛

} that are carried out by the corresponding encoded enzymes 

across all organs in the WBM78. We included only genes in the generation of virtual IEMs that 

were exclusively causal for a non-empty set of reactions (i.e., for a gene 𝐺, associated with 

reactions  𝑅𝐺 = {𝑟𝐺1
, … , 𝑟𝐺𝑛

}, there did not exist a gene 𝐻, that was associated with any 

reaction of 𝑅𝐺), and metabolites where urine excretion reactions were defined in the WBM 

reconstruction. From the initial 37 genes, 25 genes and their mapped metabolites fulfilled 

those criteria and were selected for the generation of 25 corresponding virtual IEMs.  

 

In silico knockout modeling via linear programming  
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Following the method of Thiele et al. 22, the knockout simulations were based on maximizing 

the excretion or demand reaction of the metabolite of interest under different conditions.  In 

every optimization step, we assume steady state (𝑺𝒗 = 𝟎), where 𝑆 is the stoichiometric 

matrix (rows: metabolites; columns: reactions), and 𝒗 is the vector of fluxes through each 

reaction, adhering to specific constraints (𝒗𝒍 ≤ 𝒗 ≤ 𝒗𝒖). This procedure, known as flux 

balance analysis (FBA)79, can be written as a linear programming (LP) problem: 

(1) max
𝒗

𝒄𝑇𝒗 , 

subject to 𝑺𝒗 = 𝟎, 
𝒗𝒍 ≤ 𝒗 ≤ 𝒗𝒖. 

To model the impact of a gene-knockout on metabolite 𝑀, we maximized two key 

reactions: firstly, the urine excretion reaction of metabolite 𝑀 (e.g., 𝐸𝑋𝑀), and secondly the 

created unbounded demand reaction (e.g., 𝐷𝑀𝑀[𝑏𝑐]), designed to reflect the accumulation 

of the metabolite 𝑀 in the blood compartment. For simulating a wild-type model for gene 𝐺, 

we then solved the LP problem stated in (1), choosing the linear objective as the sum of all 

reactions across all organs catalyzed by the enzyme under consideration: 

(2) 𝑆𝐺 ≔ max ∑ 𝑟𝐺𝑘

𝑛

𝑘=1 
, 

subject to 𝑺𝒗 = 𝟎, 
𝒗𝒍 ≤ 𝒗 ≤ 𝒗𝒖. 

First, we checked if 𝑆𝐺 > 10−6; a criterion implemented in the function 

checkIEM_WBM of the (PSCM) toolbox v.1.122 for deciding whether the corresponding 

reactions can carry any flux, using the optimizeWBModel function of the COBRA toolbox80. 

Then, we unbound the upper bound of urine excretion, for each metabolite found to be 

significantly associated with gene 𝐺. Note that the blood demand reaction is unbounded by 

design. Next, we maximized the corresponding reactions of the metabolite biomarker 𝐵𝐺 =

{𝑏𝐺𝑀1
, … , 𝑏𝐺𝑀𝑚

}, as the LP-problem stated in (1) under the additional constraint that 
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∑ 𝑟𝐺𝑘

𝑛

𝑘=1 
= 𝑆𝐺 . This procedure delivers two flux values – the maximal urine excretion and 

the maximal flux into blood given the constraint setting. Finally, to simulate the complete loss 

of function, we blocked all reactions in all organs catalyzed by gene 𝐺 by setting their lower 

and upper bound to zero: 𝑟𝐺1
= ⋯ = 𝑟𝐺𝑛

= 0. As in the wild-type model, we then removed 

the upper bound of the urine excretion reaction and maximize the corresponding reactions 

𝐵𝐺 = {𝑏𝐺𝑀1
, … , 𝑏𝐺𝑀𝑚

}. Analogously, we derived two flux values as in the wild-type model. 

Subsequently, one can observe whether the knockout results in an increase, decrease or 

equal outcome in terms of fluxes into the blood or urine compartment for each metabolite 

that could be mapped in the WBM and that was found to be significantly associated with gene 

𝐺 in the GCKD cohort. 

Following that paradigm, we were initially able to compute 25 virtual IEMs and 

modeled 59 gene-metabolite pairs in urine and blood. After curation of the male and female 

model, 67 gene-metabolite pairs could be computed. Curation details can be found in the 

Supplementary Methods.  

LP-simulations were carried out under Windows10 using Matlab2021a (Mathworks, 

Inc.) as simulation environment, Ilog Cplex v10.09 (IBM, Inc.) as linear programming solver, 

the COBRA Toolbox v.3.480, and the physiologically and stoichiometrically constrained 

modeling (PSCM) toolbox v.1.122. 

 

Microbiome personalization of whole-body models 

Microbiome personalized WBMs were generated by creating community models based on 

the genome-scale reconstructions of microbes in the AGORA1 resource81. Briefly, from 

microbe identification and relative abundance data of a metagenomic sample, the genome-
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scale reconstructions of the identified microbes are joined to form a microbial community 

that is connected via a lumen compartment, where they can exchange metabolites82,83. These 

community models can then be integrated into the WBM, personalizing the WBM according 

to the underlying metagenomics data22. Each microbial community model is connected to the 

WBM by connecting the microbiota lumen compartment to the large intestinal lumen of the 

WBM. Microbial community models (n=616) were based on publicly available metagenomics 

data from Yachida et al.27, and then embedded into the male WBM to form 616 personalized 

WBMs. 

 

In silico knockout modeling using quadratic programming  

While maintaining the same conditions as outlined in (1), rather than maximizing a linear 

objective, we minimized a quadratic objective for each personalized WBM, as well as 

regulated the squared Euclidean norm of the solution vector 𝑣: 

(1) min
𝒗

𝟏

𝟐
𝒗𝑇𝒗 , 

subject to 𝑺𝒗 = 𝟎, 
𝒗𝒍 ≤ 𝒗 ≤ 𝒗𝒖, 

||𝒗||𝟐
𝟐 > 𝟏𝟎−𝟔.  

Because 𝑓(𝒗) = 𝒗𝑇𝒗 is a strictly convex function and the feasible set is convex, the solution 

of (3) is unique if it exists. This inherent uniqueness allows for the calculation of a unique 

distribution of fluxes, in contrast to a single flux maximum achieved through LP. The last 

condition in (3) is for regularization, where we chose the value 10−6, recommended in the 

COBRA Toolbox80. For each solution 𝒗, we obtained the corresponding urine excretion 

reactions of the metabolites that were significantly associated with KYNU in the GCKD study. 

For knockout simulations, the associated reactions of KYNU were set to zero (𝑟𝐾𝑌𝑁𝑈1
= ⋯ =

𝑟𝐾𝑌𝑁𝑈𝑛
= 0) and the optimization problem stated in (3) was solved if possible. A QP-solution 
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could be computed for 593 wild-type WBMs and for 592 knockout WBMs. For the remaining 

models, the QP-solver was not able to compute a solution. Considering samples for which a 

wild-type and knockout solution was available resulted in 582 paired wild-type / knockout 

WBM pairs. All urine secretion flux values were obtained from the unique QP-solution vector, 

including secretion fluxes for 242 metabolites covered in the GCKD urine metabolome data. 

The QP-simulations were carried out utilizing the high performance computing facility, called 

the Brain-Cluster, at the University Greifswald employing MATLAB 2019b (MathWorks, Inc.), 

ILOG CPLEX v10.10 (IBM, Inc.) as quadratic programming solver, and the COBRA Toolbox 

v.3.480. 

Statistical analysis of the in silico simulation results 

An extension of Fisher’s exact test for 2x3 contingency tables (Fisher-Freeman-Halton test) 

was used to determine significance when comparing the in vivo and in silico signs from LP-

modeling. For statistical analysis of the paired 582 microbiome-personalized WBMs, we 

performed for each of the 242 mapped urinary metabolites a fixed effect linear regression 

using the ln(urine secretion flux) as response variables, the knockout status as the sole 

predictor (wild-type vs. knockout), and the personalized microbiome as a fixed effect. 

Significance of the effect of the knockout was then tested, with the significance threshold set 

to 0.05/242 (Bonferroni correction). Importantly, the entire variance in the regression models 

had two sources: 1) the knockout, 2) the microbiome personalization. Significance testing of 

the in silico regression coefficient of the knockout variable therefore delivers a test whether 

the knockout explains substantial amounts of variance, in comparison to the variance induced 

by randomly sampled microbiome communities. The in silico regression coefficients were 

then correlated with the burden-derived observed regression coefficients of gene-metabolite 
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associations from the GCKD study, and significance was determined through the standard test 

for Pearson correlations.  

 

Absolute metabolite quantification for members of the family with the KYNU-attributed IEM 

Kynurenate, 8-methoxykynurenate, xanthurenate, kynurenine and 3-hydroxykynurenine 

were quantified in urine samples using high performance liquid chromatography coupled to 

tandem mass spectrometry (HPLC/MS/MS; Exion LC and 5500+ triple quadrupole MS, AB 

Sciex, Framingham, MA, USA). Urine samples were diluted 1:10 with water and 10 µL of the 

diluted samples were injected. HPLC separation was performed at 40 °C on a Force C18 

column (100 x 3.0 mm, 3 µm particles, Restek Corporation, Bellefonte, PA, USA) equipped 

with guard column using water (solvent A) and methanol (solvent B), both containing 0.01 

vol% formic acid and 1 mM ammonium formate. The flow rate was 300 µL/min and the linear 

gradient profile of solvent B was as follows: 0 min 1%, 1 min 1%, 10 min 40%, 12 min 90%, 

then isocratic at 90% until re-equilibration. The analytes were detected using positive ion 

electrospray ionization (5500 V and 350 °C, nitrogen curtain and ion source gas, declustering 

potential 1.0 V, entrance potential 10 V) and the multiple reaction monitoring mode (nitrogen 

collision gas). Compound specific MS parameters are given in Table 1. 

 

Table 1. Mass spectrometric parameters for detection and quantification of the analytes 

  Precursor ion 
[m/z] 

Product ion 
[m/z] 

Collision 
energy [V] 

Collision cell exit 
potential [V] 

Kynurenate Quantifier 190.0 144.1 29 10 

Qualifier 190.0 116.1 43 12 

8-methoxy-
kynurenate 

Quantifier 220.0 174.1 27 12 

Qualifier 220.0 118.1 39 14 

Xanthurenate Quantifier 206.0 160.1 27 12 

Qualifier 206.0 132.1 39 10 

Kynurenine Quantifier 209.0 94.1 19 10 

Qualifier 209.0 146.1 29 10 
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3-hydroxy 
kynurenine 

Quantifier 225.0 162.1 29 10 

Qualifier 225.0 110.1 19 10 

 

Quantification was based on external 4-point calibration curves covering the ranges of 

detected signal abundances in the samples. Quantitative results were normalized to urine 

creatinine concentrations (expressed as mmol/mol creatinine) before comparison between 

samples. 

 

External data sources 

To look for gene expression and QTLs across tissues, we used data from the GTEx Project 

(https://gtexportal.org/home/). The AstraZeneca PheWAS Portal (https://azphewas.com/) 

was used to search for gene- and variant-level associations of detected genes and QVs.GTEx 

Project (https://gtexportal.org/home/): investigation of gene expression and QTLs across 

tissues; AstraZeneca PheWAS Portal (https://azphewas.com/): search for gene- and variant-

level associations of detected genes and QVs; OMIM catalog (https://www.omim.org/): query 

for monogenic disorders and traits related to identified genes; Genomics England PanelApp 

(https://panelapp.genomicsengland.co.uk/panels/467/ version v3.0): search for known IEM 

related to the detected genes; Open Targets Platform (https://platform.opentargets.org/): 

search for drug target status and corresponding indication for identified genes; ClinVar 

archive (https://www.ncbi.nlm.nih.gov/clinvar/): query for clinical significance and 

corresponding trait/disease of detected QVs. 
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