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Abstract 

Clinical studies of major depression (MD) often examine differences between groups whilst ignoring 

within-group variation. However, inter-individual differences in brain function are increasingly 

recognised as important and may impact effect sizes related to group effects. Here, we examine the 

magnitude of individual differences in relation to group differences that are commonly investigated (e.g., 

related to MD diagnosis and treatment response). Functional MRI data from 107 participants (63 female, 

44 male) were collected at baseline, 2 and 8 weeks during which patients received pharmacotherapy 

(escitalopram, N=68), and controls (N=39) received no intervention. The unique contributions of different 

sources of variation were examined by calculating how much variance in functional connectivity was 

shared across all participants and sessions, within/across groups (patients vs controls, responders vs non-

responders, female vs male participants), recording sessions and individuals. Individual differences and 

common connectivity across groups, sessions and participants contributed most to the explained variance 

(>95% across analyses). Group differences related to MD diagnosis, treatment response and biological 

sex made significant but small contributions (0.3-1.2%). High individual variation was present in 

multimodal association areas, while low individual variation characterized primary sensorimotor regions. 

Group differences were much smaller than individual differences in the context of MD and its treatment. 

These results could be linked to the variable findings and difficulty translating research on MD to clinical 

practice. Future research should examine brain features with low and high individual variation in relation 

to psychiatric symptoms and treatment trajectories to explore the clinical relevance of the individual 

differences identified here.  

 

Significance statement 

Studies on major depression often investigate differences in brain function between groups (e.g., those 

with/without a diagnosis) with the aim of better understanding this prevalent condition. Our study shows 

that group differences only tell part of the story, by highlighting strong common and individually unique 

features of brain network organization, relative to surprisingly subtle features of diagnosis and treatment 
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success. From the overall explained variation in brain connectivity, about 50% was shared across 

everyone, while another 45% was unique to individuals. Only ~5% could be attributed to diagnosis, 

treatment success and biological sex differences. Our results suggest that examining individual 

differences, and their potential clinical relevance, alongside group differences may bring us closer to 

improving clinical outcomes for major depression. 

 

Trial registration: ClinicalTrials.gov: NCT01655706. 
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Introduction 

Neuroimaging studies examining major depression (MD) have identified group differences 

between patients and controls, for different treatment outcomes, and in relation to biological sex/gender 

(Bangasser & Cuarenta, 2021; Brakowski et al., 2017; Dichter et al., 2015; Gudayol-Ferré et al., 2015; 

Labaka et al., 2018; Mulders et al., 2015; Ruigrok et al., 2014; Wheelock et al., 2019). Although such 

research has increased our understanding of brain function related to MD, less attention has been given to 

individual differences and commonalities across groups. A recent study showed that, in neurotypical 

individuals, common and stable individual features were the largest contributors to the variance in fMRI 

functional connectivity (FC) across sessions and tasks (Gratton et al., 2018). In addition, there is evidence 

to suggest that such stable individual features may relate to cognition and clinical symptoms (Finn et al., 

2015; Gordon et al., 2018; Wang et al., 2020). These findings highlight the potential importance of 

individual differences and commonalities across groups, in addition to group differences.  

 Several studies have investigated FC in the context of MD and antidepressant treatment 

(Brakowski et al., 2017; Dichter et al., 2015; Gudayol-Ferré et al., 2015; Mulders et al., 2015). 

Connectivity features related to MD are most consistently identified across three major resting state 

networks; the default mode network (DMN), salience network (SN) and cognitive control network (CCN) 

(Brakowski et al., 2017; Mulders et al., 2015). Similarly, connectivity features have been linked to 

treatment success, most commonly within the (anterior) DMN and between frontal and limbic regions 

(Brakowski et al., 2017; Dichter et al., 2015; Gudayol-Ferré et al., 2015). Despite such consistencies, 

differences across studies are also observed. Next to variable methodologies, inter-individual 

heterogeneity is often cited as a potential reason for inconsistencies (Brakowski et al., 2017; Müller et al., 

2017).  

 While patients with MD are heterogeneous in clinical symptoms (Fried & Nesse, 2015) and 

response to treatment (Rush et al., 2006), less is known about individual differences in brain function. 

Instead, individual variation in the brain has mostly been investigated in neurotypical samples. These 

studies have identified stable individual differences (Chen et al., 2015; Gratton et al., 2018), including 
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greater individual variation in association networks, and less in primary sensorimotor networks (Chen et 

al., 2015; Kong et al., 2019; Mueller et al., 2013; Seitzman et al., 2019). Importantly, this research 

indicates that larger amounts of data than typically used in neuroimaging studies of MD (e.g., 25-200 

minutes instead of 5-10 minutes) are needed for stable individual estimates of FC (Gordon et al., 2017; 

Gratton et al., 2020; Laumann et al., 2015). Using longer fMRI scans (here we use 30 minutes) to explore 

the magnitude and spatial distribution of individual alongside group differences in the brain may therefore 

be especially relevant for MD, considering the hopes that neuroimaging will eventually support clinical 

decision making for individual patients (Fonseka et al., 2018; Fu & Costafreda, 2013).  

Other relevant factors in understanding MD and treatment outcomes are biological sex, gender 

identity and gender expression. Though more research is needed to understand the complex biological, 

social, cultural, and socioeconomic causes underlying these differences, higher rates of MD have been 

observed in women compared to men (Whiteford et al., 2013) and the expression of MD symptoms 

differs between women and men (Altemus et al., 2014). Women may also respond better to SSRI’s than 

men (Khan et al., 2005). In terms of brain features, sex differences have been observed in both the general 

population (Ruigrok et al., 2014; Wheelock et al., 2019) and MD (Bangasser & Cuarenta, 2021; Labaka et 

al., 2018). Despite these differences, in a recent structural MRI study of neurotypical participants, 

individuals rarely matched the ‘typical female’ or ‘typical male’ brain, instead showing unique individual 

features (Joel et al., 2015), highlighting the potential importance of individual differences in this 

dimension as well.  

 In the present study, we examined the relative contribution of sources of variance in 

neuroimaging data in the context of MD and its treatment. To our knowledge, no other studies have 

quantified individual variation in psychiatric populations. We used multi-site fMRI data from the CAN-

BIND initiative, including 68 patients and 39 controls (Kennedy et al., 2019; Lam et al., 2016). 

Participants were scanned three times (baseline, 2 and 8 weeks; ~30 minutes of fMRI data per scan) with 

patients receiving escitalopram after their baseline scan. We calculated the cross-correlation between 

individual- and session-specific FC matrices to assess similarities and differences within and across 
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groups (controls vs patients, treatment responders vs non-responders, female vs male participants), 

sessions (baseline, 2 and 8 weeks) and individuals, as well as the MD*session and MD*sex interactions. 

We also assessed where in the brain these effects were most prominent. 

We hypothesized that considerable variance would be explained by individual differences and 

similarities across all participants and sessions (common effect) (Gratton et al., 2018). We expected 

minimal contribution from variance over sessions in controls (no change over time), and a small but 

significant contribution of sessions in patients (change related to treatment). Based on research examining 

similarities and differences between patients and controls (Winter et al., 2021) and female and male 

participants (Joel et al., 2015), we expected the contribution of MD diagnosis, treatment response, sex and 

their interactions to be significant, but smaller than the common and individual contributions. Finally, we 

expected the common effect to be most prominent in sensorimotor areas, individual differences to be 

present in multimodal association cortices (Gratton et al., 2018; Kong et al., 2019; Mueller et al., 2013), 

and variance explained by MD diagnosis and treatment response to be present in the DMN, SN and CCN 

(Brakowski et al., 2017; Dichter et al., 2015; Mulders et al., 2015). 

 

Methods 

The data analyzed in this study were collected as part of the Canadian Biomarker Integration Network for 

Depression (CAN-BIND) initiative. A detailed report of the protocol [30] and primary outcomes [29] 

have been published elsewhere. We preregistered our analyses on the Open Science Framework (OSF; 

https://osf.io/79gv8/?view_only=9e105962ce4c4ebf8cf35393471a7b69), and report the changes that we 

made post-registration (see Transparent_Changes_Document.docx). 

 

Participants 

The sample included in these analyses consisted of 107 participants, including 68 patients with a primary 

diagnosis of major depression (MD) and 39 controls. From the larger CAN-BIND-1 dataset, we selected 

participants who had complete and high-quality neuroimaging data for the resting state, affective go/no-
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go and monetary incentive delay tasks at all three fMRI recording times, to get the longest total recording 

times under similar conditions per participant. Sex was measured as the self-reported sex of the individual 

(based on biological reproductive functions) and/or the clinician’s assignment based on a physical 

examination and was coded as binary (female or male; see limitations section for discussion on this). 

Using this definition, among patients and controls respectively, 42 and 21 participants were female, while 

26 and 18 were male. Participants were recruited at six sites in Canada, were 18-60 years of age and 

spoke sufficient English for the completion of this study. Demographic information is reported in Table 

1. Ethics approval was granted by local ethics committees and all participants gave written informed 

consent.  

 Diagnostic assessment using the Mini International Neuropsychiatric Interview (MINI; (Sheehan 

et al., 1998)) was performed by a trained research assistant to ensure MD participants met criteria for a 

major depressive episode according to the DSM-IV-TR, and entry level severity was confirmed using the 

Montgomery-Åsberg Depression Rating Scale (MADRS; (Montgomery & Åsberg, 1979)). All had 

MADRS scores >24 at enrollment, with their current episode lasting at least 3 months. Exclusion criteria 

for patients included meeting the diagnostic criteria for another psychiatric condition (except for anxiety), 

having a diagnosis of bipolar depression, experiencing psychotic symptoms in the current depressive 

episode, being at high risk for suicide or hypomanic switch, experiencing substance dependence in the 

last six months, being pregnant or breastfeeding, showing no response to four previous adequate 

pharmacotherapy interventions and having a previous unfavorable response to the medications used in the 

study. Patients on antidepressant medications prior to the study went through a wash-out period 

equivalent to five half-lives or more. Controls had no psychiatric diagnosis (as assessed with the MINI), 

and participants from both groups were excluded if they had a history of neurological conditions, head 

trauma or other unstable medical conditions, or any contraindications to MRI.  

After the baseline visit was completed, patients received escitalopram at an initial dose of 10mg/d, 

increasing to 20mg/d after two or four weeks unless contra indicated by side effects. Every two weeks, 

patients’ symptom scores were assessed using the structured interview guide (SIGMA) for the MADRS 
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(Williams & Kobak, 2008). Participants whose MADRS scores decreased >50% from baseline to week 8 

were considered responders (N = 33), while participants whose MADRS scores decreased <50% (or 

increased) were considered non-responders (N = 35). Demographic information for both groups is 

presented in Table 2.  

We completed power analyses prior to our planned analyses, using G*Power 3.1 (Faul et al., 2007). 

We estimated the effect size for the comparison of the common and individual effects based on results 

from Gratton et al. (Gratton et al., 2018) and found that our sample provides high statistical power (>0.99) 

for such effects. For effects that have not been investigated previously (e.g., sex, MD diagnosis and 

treatment response), we calculated statistical power for canonical small (Cohen’s d = 0.2), medium (d = 

0.5) and large (d = 0.8) effect sizes, which revealed we had sufficient power to detect large and medium 

effects (power >0.86). This was sufficient for our study as we were interested in determining which 

sources of variance contributed the most, and were less interested in small effects.  

 

Tasks 

During each scanning session, participants completed a 10-minute eyes-open resting state scan. They also 

performed a 10-minute affective go/no-go task, where they saw squares and circles on top of irrelevant 

emotional images (faces with angry or neutral expressions). They were instructed to press a button every 

time a circle appeared and inhibit their response when they saw a square. Stimuli were presented in a 

mixed block-event series design, with each block either showing only angry or only neutral faces. 

Participants completed 16 blocks in the same order. Lastly, they performed an 11.5-minute Monetary 

Incentive Delay (or anhedonia) task, during which they were instructed to press a button while a red 

square was presented on the screen. Before each target, a cue appeared indicating whether or not a reward 

would be given for a successful trial. Participants received feedback on each trial regarding response 

accuracy and reward status. These tasks have been previously described in (Lam et al., 2016; MacQueen 

et al., 2019). As we were interested in brain activity unrelated to the task, no data were excluded based on 

performance.  
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fMRI data collection 

Data were collected at the six sites using four different models of MRI scanners. All were 3.0 Tesla 

systems with multicoil phased-array head coils. Extensive quality control and standardization procedures 

were employed to ensure that data could validly be aggregated across scanner types and recording sites 

(Glover et al., 2012; MacQueen et al., 2019). The influence of variation across scanners on our analyses 

was also explored through supplementary analyses (see Supplementary analyses section below). 

Participants were scanned three times, at baseline, week 2 and week 8 of the study. Whole-brain T2*-

sensitive blood oxygenation level dependent (BOLD) echo planar imaging (EPI) series was used to 

acquire the functional images with the following parameters: voxel dimensions (in mm) = 4x4x4, echo 

time (TE) = 25 or 30ms, repetition time (TR) = 2s, flip angle = 75° or 90°, field of view (FOV) = 256mm, 

matrix =64x64, number of slices = 34-40, acquisition order = interleaved (Lam et al., 2016; MacQueen et 

al., 2019). 

 

fMRI preprocessing 

fMRI data were preprocessed with the OPPNI pipeline (Churchill et al., 2015, 2017; 

https://github.com/raamana/oppni) using the same parameters for resting state and task data. This pipeline 

involves motion correction, identification and interpolation of outliers, slice time correction, spatial 

smoothing across MRI scanners from different sites, regression of low frequency temporal trends, head 

motion estimates, global signal modulations and physiological noise, low pass filtering and spatial 

normalization to a structural MNI template. In addition, the data were directly registered to a sample-

specific EPI template through an affine transformation followed by a nonlinear transformation following 

the EPInorm strategy (Calhoun et al., 2017). A more detailed description of these steps can be found in 

(van der Wijk et al., 2021), which used the same parameters.   

Next, we regressed out task-evoked activity from the affective go/no-go and anhedonia data for 

each participant and session using finite impulse response (FIR) task regression, which provides a flexible 

fit in terms of the exact shape of the HRF for each individual (Cole et al., 2019). This and the following 
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steps were completed in MATLAB 2018b (The MathWorks, Inc., Natick, Massachusetts). We used code 

provided by Cole et al. ((Cole et al., 2019); firLag parameter = 10 TRs/20 seconds) to create time-locked 

FIR regressors from the following primary regressors. For the affective go/no-go task, we used one for the 

instruction slides, and one each for the four types of blocks. For the anhedonia task, we used two for the 

cues, one for the target, and four for each type of feedback. An intercept was also added to each 

regression model. The task-residualized data were used for further analysis. Next, we subtracted the mean 

of the time course for each voxel from each data point for that voxel. Last, we concatenated the resting 

state and task data to create time courses of ~30 minutes per participant and session.  

 

Parcellation 

We parcellated each individual’s brain into 333-regions (Gordon et al., 2016). Seven regions (six in the 

orbitofrontal cortex and one in the right inferior temporal gyrus) did not have coverage and were therefore 

excluded. The average time course over the voxels within each region was extracted and used for the 

functional connectivity estimation. 

 

Data analysis 

We performed analyses on controls-only, patients and controls together, and patients-only to examine the 

contribution of different sources of variance following the methodology in (Gratton et al., 2018). First, we 

estimated functional connectivity between all regions within each individual and session using product-

moment correlations between the ROI time courses and applied a Fisher’s z-transformation. Next, we 

correlated the upper half of each session and individual’s whole-brain connectivity matrix with that of 

each other session (including sessions from the same individual) and individual’s whole-brain 

connectivity pattern to construct a similarity matrix (see Figure 1c). In this similarity matrix, each row 

and column represented a specific individual and session, together depicting the similarity of whole-brain 

functional connectivity for different pairs of individuals and sessions. We applied Fisher’s z-

transformation to these similarity matrices as well.  
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To quantify the magnitude of different sources of variance, we calculated the average over 

different parts of the similarity matrix (as illustrated in Figure 1e). The diagonal of the matrix (all ones by 

definition) was not included in the averages. Each average was also calculated within the three rows 

representing each participant to get an estimate of each effect based on the similarity values of that 

participant with their own and the other participants’ data (see Figure 1g). These participant-specific 

values were submitted to dependent sample t-tests in MATLAB with permutation testing (1000 

permutations) to estimate significance. While the data were not fully independent, they were 

exchangeable, which is what is required for permutation testing (LaFleur & Greevy, 2009). 

We compared each effect to its baseline (see Figure 1f) and the other effects of the same type 

(e.g., main effects to other main effects), meaning we conducted four statistical comparisons for the 

controls-only, and ten comparisons for each of the patients and controls and patients-only samples. We 

used the false-discovery rate (FDR) method to correct for multiple comparisons (Benjamini & Yekutieli, 

2001). We calculated the normalized relative effect magnitude as an indication of effect size. First, we 

subtracted the baseline from each effect (see Figure 1f), and then divided by the sum of all baseline-

corrected magnitudes. As such, normalized relative effect magnitude values reflect the proportion of each 

effect that is unique, i.e., not explained by its baseline, relative to the combined unique magnitude of all 

effects. For the interaction effects, we used the main effect with the highest similarity as baseline (e.g., if 

the MD effect was larger than the sex effect, the MD effect would serve as the baseline for the MD*sex 

interaction). If an effect had a lower magnitude than its baseline, the baseline-corrected magnitude was set 

to zero. 

We also examined the distribution of these effects in the brain by conducting the same analysis 

for each region separately, i.e., instead of correlating the upper-triangle of the whole-brain connectivity 

matrix, we correlated the connectivity estimates of one brain region with all other brain regions across 

participants and sessions to create a similarity matrix for each region (see Figure 1d). We calculated the 

normalized relative effect magnitude for each effect and region to illustrate where in the brain the effects 

were most prominent, but did not perform statistical analyses on these region-specific estimates. 
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Supplementary analyses 

We conducted several supplementary analyses to ensure the validity of our main analyses. First, 

we performed the whole-brain analyses excluding ROIs with fewer than eight voxels (45/326 ROIs 

excluded), as the average time courses extracted from these ROIs may have been less reliable/accurate. 

Next, we conducted the whole-brain analyses for patients and controls, and patients only on scanner, sex, 

age and education matched subsamples to examine if these factors may have influenced our results. In 

addition, these analyses served to ascertain if unequal group sizes may have distorted our findings. More 

methodological details (e.g., about the matching procedure) and the results of these analyses are reported 

in the supplementary materials.  

 

Code & data accessibility  

All custom codes for these analyses are available at 

https://osf.io/79gv8/files/github?view_only=9e105962ce4c4ebf8cf35393471a7b69. The data used in this 

manuscript has been collected as part of the CAN-BIND initiative, an Integrated Discovery Program of 

the Ontario Brain Institute (OBI). OBI has released data from CAN-BIND’s foundational study which 

aims to identify biomarkers that predict treatment response in people with depression. The dataset 

currently available on Brain-CODE includes baseline and longitudinal data from participant follow-up 

visits in weeks 2 to 8 of the study (Phase 1). All data have been standardized, cleaned and curated to 

maximize utility for analysis across different data modalities, and imaging data was converted to a BIDS-

friendly naming convention. For access requirements, please visit OBI’s Brain-CODE Neuroinformatics 

Platform (https://www.braincode.ca/) or email info@braininstitute.ca. 

 

Results 

Participants 

The demographic information for patients and controls, broken into female and male participant 

subgroups, is presented in Table 1. Two 2 (patients vs controls) x2 (female vs male participants) 
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ANOVAs indicated there was no significant effect of age (all Fs < 1.48, all ps > .23). However, there was 

a significant main effect of MD diagnosis for years of education (F(1,103) = 11.34, p = .001). Namely, 

participants in the control group (M = 18.49, SD = 1.97) had a higher number of years of education 

compared to the participants in the patient group (M = 17.15, SD = 1.79), which is consistent with 

previous studies alike. We examined the potential impact of this difference in our supplementary analyses 

and found no evidence of an effect (see Supplementary materials). Table 2 displays the clinical and 

demographic information for responder and non-responder groups, again broken down into female and 

male participant subgroups. As expected, there was a significant main effect of response for MADRS 

symptom scores at week 2 (F(1,64) = 11.61, p = .001) and week 8 (F(1,64) = 119.95, p < .001). Apart 

from that, no significant effects were observed. 
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Figure 1. Overview of analysis procedure. The analysis for patients and controls is used as an example, 
but steps were the same for analyses with controls only and patients only. a) The fMRI data from resting 
state, affective go/no-go and anhedonia (or monetary incentive delay) tasks were preprocessed using the 
OPPNI pipeline (Churchill et al., 2015, 2017), parcellated into 326 regions and concatenated for each 
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participant and session. b) FC was calculated as the correlation between the time courses of each region 
pair, resulting in a region-by-region FC matrix. c) For the whole-brain analyses, the upper triangle (grey) 
of the FC matrix from each participant and session was correlated with that of every other participant and 
session to create a similarity matrix. d) For the region-specific analyses, a similarity matrix was 
constructed for each ROI by correlating each ROI’s row in the correlation matrix with that of the same 
row of other participants and sessions. e) The contribution of each source of variance was estimated by 
calculating the average similarity over different configurations of the similarity matrix. From left to right, 
the presented patterns display the configuration for the calculation of the common effect (similar FC 
across all participants and sessions), the session effect (similar FC across participants within sessions), the 
sex effect (similar FC among female and among male participants), the MD effect (similar FC among 
patients with an MD diagnosis and among controls), the MD*session interaction (similar FC among 
patients and controls within sessions), the MD*sex interaction (similar FC among female patients, male 
patients, female controls and male controls), and the individual effect (similar FC within individuals 
across sessions). f) From the average similarity for each effect, we calculated the normalized relative 
effect magnitude by first subtracting the baseline for each effect (indicated by the dashed red lines) and 
then dividing by the total relative similarity. For the region-specific analyses, we visualized the 
normalized relative effect magnitudes but did not perform statistical comparisons. g) For the whole-brain 
analyses, we also calculated the average similarity for each effect per individual by taking the average of 
the patterns for the three rows representing each participant. The example shows this for the MD effect. 
For each participant, indicated by different color outlines, we calculated the average similarity of that 
participant to all other participants and sessions within the same group (i.e., by taking the average across 
black squares within the three rows representing the three recording sessions of that participant). This 
way, we calculated each of the effects shown in part e of the figure at an individual level as well. These 
participant-specific average similarity values were then entered into dependent samples t-tests to examine 
differences in effect magnitudes. Each capital letters (A-F) represent individuals and the lowercase letters 
(x-z) the different effects (i.e., Ax is the MD effect magnitude for participant 1, Az is the effect magnitude 
for a different effect for that same participant).  
FC = functional connectivity; ROI = region of interest; MD = major depressive disorder 
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Table 1. Demographic Characteristics of Female and Male Patients with MD and Controls (Mean ± 

SEM), and their Statistical Differences 

 Patients with MD 
(N = 68) 

Controls 
(N = 39) 

Statistical 
difference 

 Female 
(N = 42) 

Male 
(N = 26) 

Female 
(N = 21) 

Male 
(N = 18) 

 

Age (years) 34.36 ± 1.81 
(18-59) 

38.46 ± 2.46 
(18-59) 

33.00 ± 2.59 
(18-60) 

34.89 ± 3.02 
(21-57) 

MD: F(1,103) = 
1.00, p = .32;  

Sex: F(1,103) = 
1.48, p = .23; 
Interaction: 

F(1,103) = 0.65, p 
= .65 

Education 
(years) 

17.00 ± 0.26 
(14-20) 

17.38 ± 0.38 
(14-20) 

18.71 ± 0.38 
(14-22) 

18.22 ± 0.53 
(13-22) 

MD: F(1,103) = 
11.34, p = .001;  
Sex: F(1,103) = 

0.02, p = .89; 
Interaction: 

F(1,103) = 1.34, p 
= .25 

Race/ 

ethnicitya 

Black (2); East 
Asian (4); 
Jewish (1); 

Latin 
American/ 

Hispanic (2); 
South Asian 

(1); Southeast 
Asian (2); 

White (34); 
Other (2) 

Latin 
American/ 

Hispanic (1); 
South Asian 

(2); 
Southeast 
Asian (1); 

White (22); 
Other (1) 

East Asian 
(5); South 
Asian (3); 
Southeast 
Asian (2); 
White (12) 

Latin 
American/ 

Hispanic (1); 
South Asian 
(3); White 

(15) 

NA 

Site CAM (4); 
MCU (7); 
QNS (2); 

UBC (20); 
UCA (9) 

MCU (6); 
QNS (5); 
TGH (1); 
UBC (7); 
UCA (7) 

CAM (2); 
MCU (3); 
QNS (6); 
TGH (2); 
UBC (4); 
UCA (4) 

CAM (3); 
MCU (3); 
QNS (1); 
TGH (1); 
UBC (2); 
UCA (8) 

NA 

Handedness left (2); right 
(38); 

ambidextrous 
(2) 

left (5); right 
(21) 

left (2); right 
(19)  

left (5); right 
(10); 

ambidextrous 
(3) 

NA 

Current 
marital 
status 

never married 
(22); 

separated (1); 
married (9); 
divorced (4); 

never married 
(14); 

separated (2); 
married (7); 
divorced (2); 

never married 
(12);  

married (5); 
domestic 

partnership 

never married 
(11);  

married (5); 
divorced (1); 

domestic 

NA 
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domestic 
partnership 

(5); widowed 
(1) 

domestic 
partnership 

(1) 

(4) partnership 
(1) 

MD = major depressive disorder; CAM = Centre for Addiction and Mental Health; MCU = McMaster 
University; UBC = University of British Columbia; TGH = Toronto General Hospital; QNS = Queen’s 
University; UCA = University of Calgary, NA = not applicable. a Participants were asked which of the 
presented race/ethnicity categories they most closely identified with. Categories were based on Canadian 
census questionnaires (Statistics Canada, 2006). 
 
 
Table 2. Clinical and Demographic Characteristics of Female and Male Responders and Non-Responders 

to Antidepressant Pharmacotherapy (Mean ± SEM), and their Statistical Differences 

 Responders 
(N = 33) 

Non-responders 
(N = 35) 

Statistical 
difference 

 Female 
(N = 19) 

Male 
(N = 14) 

Female 
(N = 23) 

Male 
(N = 12) 

 

MADRS at 
baseline 

28.16 ± 1.00 

 

28.93 ± 1.07 

 

30.39 ± 1.32 

 

30.00 ± 1.33 

 

Response: F(1,64) = 
1.67, p = .20; 

Sex: F(1,64) = 0.02, 
p = .88; 

Interaction: F(1,64) 
=0.21, p = .65 

MADRS at 
week 2 

18.11 ± 1.73 

 

18.57 ± 1.73 

 

24.48 ± 1.27 

 

23.50 ± 1.78 

 

Response: F(1,64) = 
11.61, p = .001; 

Sex: F(1,64) = 0.02, 
p = .88; 

Interaction: F(1,64) 
= 0.19, p = .66 

MADRS at 
week 8  

8.21 ± 1.15 

 

7.07 ± 1.49 

 

20.61 ± 1.09 

 

22.92 ± 1.35 

 

Response: F(1,64) = 
119.95, p < .001; 

Sex: F(1,64) = 0.21, 
p = .65; 

Interaction: F(1,64) 
= 1.79, p = .19 

Age (years) 34 ± 2.49 (19-
55) 

38.36 ± 3.44 
(18-59) 

34.65 ± 2.63 
(18-59) 

38.58 ±3.68 
(20-59) 

Response: F(1,64) = 
0.02, p = .89; 

Sex: F(1,64) = 1.84, 
p = .18; 

Interaction: F(1,64) 
< 0.01, p = .94 

Education 
(years) 

17.21 ± 0.43 
(14-20) 

17.29 ± 0.61 
(14-20) 

16.83 ± 0.32 
(14-19) 

17.50 ± 0.45 
(16-20) 

Response: F(1,64) = 
0.04, p = .85; 

Sex: F(1,64) = 0.68, 
p = .41; 

Interaction: F(1,64) 
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= 0.43, p = .51 

Race/ 

ethnicitya 

Black (1); 
East Asian 
(3); South 
Asian (1); 

White (15); 
Other 

Latin 
American/ 

Hispanic (1); 
South Asian 
(1); White 

(12); Other (1) 

Black (1); 
East Asian 
(1); Jewish 
(1); Latin 
American/ 

Hispanic (2); 
Southeast 
Asian(2); 

White (19); 
Other (1) 

South Asian 
(1); Southeast 

Asian (1); 
White (10) 

NA 

Site CAM (2); 
MCU (2); 
UBC (9); 
UCA (6) 

MCU (3); 
QNS (3); 
TGH (1); 
UBC (4); 
UCA (3) 

CAM (2); 
MCU (5); 
QNS (2);  

UBC (11); 
UCA (3) 

MCU (3); 
QNS (2); 
UBC (3); 
UCA (4) 

NA 

Handedness left (2);  right 
(16); 

ambidextrous 
(1) 

left (3); right 
(11) 

right (22); 
ambidextrous 

(1) 

left (2); right 
(10) 

NA 

Current 
marital 
status 

never married 
(11);  

married (5); 
divorced (2); 

domestic 
partnership 

(1) 

never married 
(8);  

separated (1); 
married (3); 
divorced (1); 

domestic 
partnership 

(1) 

never married 
(11); 

separated (1); 
married (4); 
divorced (2); 

domestic 
partnership 

(4); widowed 
(1) 

never married 
(6);  

separated (1); 
married (4); 
divorced (1) 

NA 

MADRS = Montgomery-Åsberg Depression Rating Scale; MD = major depressive disorder; CAM = 
Centre for Addiction and Mental Health; MCU = McMaster University; UBC = University of British 
Columbia; TGH = Toronto General Hospital; QNS = Queen’s University; UCA = University of Calgary, 
NA = not applicable. a Participants were asked which of the presented race/ethnicity categories they most 
closely identified with. Categories were based on Canadian census questionnaires (Statistics Canada, 
2006).  
 

Sources of variance in whole-brain FC 

We investigated the contributions of different sources of variance relative to their baselines in controls-

only, patients and controls together and patients-only. The pattern was similar across all three samples 

(see Figure 2 and Table 3). Namely, common FC across all participants and conditions (common effect) 

and individual-specific FC (individual effect) contributed most to the observed variance (normalized 
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relative effect magnitude = 50.9-51.5% and 46.0-47.5% respectively). The individual effect was 

significantly bigger than its baseline in all samples (ps < .001). The contributions of sex, MD, response 

effects and their interactions were significant but small (normalized relative effect magnitude = 0.3-1.2%, 

ps < .001). The session effect and its interactions were significantly smaller than their baselines (ps < 

.001). 

 

Table 3. Results of Paired Samples T-Tests to Compare Magnitude of Effects in Controls Only, Patients 

and Controls and Patients Only 

Sample Comparison t-
value 

DF SD Uncorrected 
p-value 

Cohen’s 
d 

Controls only       

 Common > session 9.32 38 0.004 < .001* -1.49 
 Common < sex -7.85 38 0.006 < .001* 1.26 
 Session < sex -10.48 38 0.008 < .001* 1.68 
 Sex < individual -15.27 38 0.149 < .001* 2.44 

Patients and 
controls       

 Common < MD -6.52 106 0.006 < .001* 0.63 
 Common > session 6.72 106 0.002 < .001* -0.65 
 Common < sex -7.35 106 0.006 < .001* 0.71 
 MD > session 8.20 106 0.007 < .001* -0.79 
 MD = sex -0.62 106 0.009 .530 0.06 
 Session < sex -8.69 106 0.007 < .001* 0.84 
 MD > MD*session interaction 11.89 106 0.003 < .001* -1.15 
 Sex < MD*sex interaction -7.44 106 0.008 < .001* 0.72 

 
MD*session interaction < 
MD*sex interaction -12.11 106 0.009 < .001* 1.17 

 MD*sex interaction < individual -25.40 106 0.145 < .001* 2.46 
Patients only       

 Common < Response -3.95 67 0.01 < .001* 0.48 
 Common > session 9.72 67 0.00 < .001* -1.18 
 Common < sex -4.88 67 0.01 < .001* 0.59 
 Response > session 6.68 67 0.01 < .001* -0.81 
 Response = sex -1.41 67 0.01 .179 0.17 
 Session < sex -6.41 67 0.01 < .001* 0.78 

 
Response > Response*session 
interaction 13.09 67 0.00 < .001* -1.59 

 Sex < Response*sex interaction -4.71 67 0.02 < .001* 0.57 
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Response*session interaction < 
Response*sex interaction -7.45 67 0.02 < .001* 0.90 

 
Response*sex interaction < 
individual -20.18 67 0.14 < .001* 2.45 

* marks significant effects after FDR correction.  

 

Localization of effects 

We also illustrate the normalized relative effect magnitudes calculated per ROI to indicate where each 

effect was most prominently present in the brain. As the distributions of the common and individual 

effects were similar across samples, we present the results from the patients and controls together in 

Figure 3 (patients-only results can be found in Figure S1). In both samples, the common effect was most 

strongly present in default mode network, somatosensory, motor, visual and auditory areas. The 

individual effect was expressed most strongly in frontoparietal, dorsal attention and cingulo-parietal 

network areas. The sex, MD, and response effects and their interactions contributed relatively little, 

therefore the distribution of these effects cannot be seen on the same scale as the common and individual 

effects. However, we illustrate them on a narrower scale in Figure S2. 
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Figure 2. Contributions of different sources of variance in FC in A) controls-only, B) patients and 
controls, and C) patients-only. a) Similarity matrix displaying the Fisher transformed correlations between 
the whole-brain FC of different participants and sessions. The matrices are organized by group (sex and 
MD diagnosis or response), individual and session (baseline, week 2 and week 8) as illustrated in Figure 
1; b) Average similarity for each effect. Figure 1e illustrates how each average was calculated. The red 
dashed lines indicate the baseline for each effect, which was subtracted to calculate the normalized 
relative effect magnitudes; c) Normalized relative effect magnitude for each effect.  
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Figure 3. Normalized relative effect magnitude in each region of the brain for each effect (common, MD, 
Sex, MD*sex and individual) in patients and controls. The MD, sex and MD*sex effects are presented on 
a narrower colour scale in Figure S2 so the localization of these effects can be distinguished.   
 

Exploratory analyses 

As the results above point to a large contribution of individual variation relative to other sources of 

variance (e.g., MD diagnosis, sex and response to treatment), we further explored the contributions of 

individual*task and individual*session interactions (see Figure S5) in exploratory analyses. Instead of 

pooling data across tasks, we calculated functional connectivity for each task and session. We had 9.8 
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minutes of data for the resting state and affective go/no-go task, and 11.5 minutes for the anhedonia task, 

which provide ~72-82% reliability for the individual connectivity matrices (Gordon et al., 2017; Laumann 

et al., 2015).  

 These exploratory analyses revealed a similar pattern of results for the effects examined with the 

pooled data (see Table 4 and Figure 4). The only notable difference was that the session effect was no 

longer smaller than its baseline for controls and patients, and for patients-only. In addition, we found a 

significant contribution of the individual*task interaction for all three samples (normalized relative effect 

magnitude = 14.2-15.0%, all ps < .001). Interestingly, the individual*session interaction was significant in 

patients-only (normalized relative effect magnitude = 2.1%, p = .016), but not in the other two samples.  

We also examined regional localization for these effects. We illustrate these for patients-only in 

Figure 5 (patients and controls results can be found in Figure 6). The individual*task interaction was 

most prominent in right lateral prefrontal cortex, bilateral visual areas, and left somatosensory areas. The 

individual*session interaction was expressed primarily in bilateral subgenual cingulate cortex, medial 

temporal lobes and temporal poles. 
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Figure 4. Contributions of different sources of variance in FC as examined in our exploratory analyses in 
A) controls only, B) patients and controls, and C) patients only. a) Similarity matrix displaying the Fisher 
transformed correlations between the whole-brain FC of different participants and sessions. The matrices 
are organized by group (sex and MD diagnosis or response), individual, task (resting state, affective 
go/no-go and anhedonia) and session (baseline, week 2 and week 8) as illustrated in Figure S5; b) 
Average similarity for each effect. See Figure S5 for the pattern across which each average was 
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calculated. The red dashed lines indicate the baseline for each effect, which were subtracted to calculate 
the normalized relative effect magnitudes; c) Normalized relative effect magnitude for each effect.  
 

 

 
 
Figure 5. Normalized relative effect magnitude in each region of the brain for selected effects from the 
exploratory analyses (common, individual, individual*task, and individual*session) in patients only.  
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Table 4. Results of Paired Samples T-Tests to Compare Magnitude of Effects in Our Exploratory 

Analyses in Controls Only, Patients and Controls and Patients Only  

Sample Comparison t-value DF SD Uncorrected 
p-value 

Cohen’s 
d 

Controls only       

 Common > session 6.75 38 0.001 < .001* -1.08 
 Common < sex -5.95 38 0.006 < .001* 0.95 
 Session < sex -6.67 38 0.006 < .001* 1.07 
 Sex < individual -16.66 38 0.071 < .001* 2.67 

 
Individual = Individual*session 
interaction 0.02 38 0.033 .98 0.00 

 
Individual < Individual*task 
interaction -12.46 38 0.040 < .001* 1.99 

 
Individual*session interaction < 
Individual*task interaction -7.22 38 0.069 < .001* 1.16 

Patients and 
controls       

 Common < MD -5.54 106 0.004 < .001* 0.54 
 Common = session 0.01 106 0.001 .99 0.00 
 Common < sex -7.55 106 0.004 < .001* 0.73 
 MD > session 5.38 106 0.004 < .001* -0.52 
 MD = sex -1.80 106 0.006 .072 0.17 
 Session < sex -7.24 106 0.005 < .001* 0.70 
 MD > MD*session interaction 4.16 106 0.001 < .001* -0.40 
 Sex < MD*sex interaction -6.58 106 0.006 < .001* 0.64 

 
MD*session interaction < MD*sex 
interaction -9.39 106 0.006 < .001* 0.91 

 MD*sex interaction < individual -25.64 106 0.076 < .001* 2.48 

 
Individual = Individual*session 
interaction -2.01 106 0.037 .051 0.19 

 
Individual < Individual*task 
interaction -15.76 106 0.050 < .001* 1.52 

 
Individual*session interaction < 
Individual*task interaction -8.76 106 0.082 < .001* 0.85 

Patients only       

 Common < Response -6.04 67 0.004 < .001* 0.73 
 Common = session 0.64 67 0.001 .53 -0.08 
 Common < sex -5.43 67 0.006 < .001* 0.66 
 Response > session 6.05 67 0.004 < .001* -0.73 
 Response = sex -1.90 67 0.007 .058 0.23 
 Session < sex -5.28 67 0.007 < .001* 0.64 

 
Response > Response*session 
interaction 3.73 67 0.001 .002* -0.45 

 Sex < Response*sex interaction -4.18 67 0.012 .001* 0.51 
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Response*session interaction < 
Response*sex interaction -5.08 67 0.014 < .001* 0.62 

 
Response*sex interaction < 
individual -19.07 67 0.079 < .001* 2.31 

 
Individual < Individual*session 
interaction -2.43 67 0.038 .016* 0.29 

 
Individual < Individual*task 
interaction -11.12 67 0.056 < .001* 1.35 

 
Individual*session interaction < 
Individual*task interaction -5.92 67 0.089 < .001* 0.72 

* marks significant effects after FDR correction 

 

Discussion 

In this study, we investigated the relative contributions of several sources of variance observed in FC data 

collected across 8 weeks from participants with MD and controls, with a particular interest in the relative 

contribution of clinical characteristics including MD diagnosis and response to treatment. While 

commonly studied sources (MD diagnosis, response to/change with treatment and biological sex) did 

contribute to the overall variance, these effects were small (0.3-1.2%) relative to common and individual-

specific FC, which explained >95% of the variance in the data across analyses. Supplementary analyses 

showed that ROI size, scanner types, demographics or unequal group sizes did not meaningfully influence 

our findings. The localization analyses showed brain areas with low and high individual variation in line 

with previous findings in neurotypical individuals.  

The pattern of relative contributions of common versus individual variance in FC in our study 

resembled that reported by Gratton et al. (2018) in a small (N = 10) highly sampled group of neurotypical 

individuals (i.e., that common connectivity across all sessions and participants and individual differences 

contributed most to the overall variance). The regions where individual variation was low (strong 

common FC) or high (strong individual-specific FC) further matched previous work with neurotypical 

adults (Chen et al., 2015; Gratton et al., 2018; Kong et al., 2019; Mueller et al., 2013; Seitzman et al., 

2019). Namely, individual variation was low in primary sensory and motor, as well as some default mode 

network areas, and high in lateral (pre)frontal areas and mid temporal areas. Whereas sensorimotor 

networks develop early in life and are therefore more strongly guided by genetic determination (but also 
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see Graff et al., 2022), association networks continue to develop long after birth and may therefore be 

more impacted by environmental factors, leading to greater inter-individual variation (Mueller et al., 

2013). These findings indicate a degree of stability in the distribution and magnitude of shared and 

individual variation in FC regardless of mental health and treatment status. 

To our knowledge, this study is the first to examine the relative magnitudes of effects related to 

MD diagnosis, response to treatment and biological sex. The results suggest that these effects were small, 

which is consistent with studies revealing significant but small group differences next to a great degree of 

overlap in structural and functional brain features across groups (Joel et al., 2015; Winter et al., 2021). 

Considered together with large commonalities and individual differences, the small relative magnitude of 

these group effects may contribute significantly to the variable findings in neuroimaging features of MD 

and treatment response to date. Further, these findings may also shed some light on why, despite hopes to 

the contrary, it is proving difficult to use such features to predict treatment success at an individual level 

(Etkin, 2019; Gratton et al., 2020). As explained by Arbabshirani et al. (2017), large overlap between 

groups generally results in low classification rates, even when mean group differences are highly 

significant. Next to discriminatory value, ensuring that individual estimates are reliable (e.g., through the 

collection of greater amounts of data per individual) will likely be essential for neuroimaging findings to 

aid in predicting individual treatment outcomes (Gratton et al., 2020). Approaching this complex issue 

through multiple pathways that focus on both group differences and individual variation may be required 

for further progress in identifying predictors of treatment success that can be applied in clinical settings.  

One potential exciting direction highlighted by our study is exploring the clinical utility of the 

substantial individual differences found here. While most variation was not related to group membership 

based on MD diagnosis or treatment response, individual variation could still be relevant in the context of 

MD and its treatment. Particularly the high individual variation in regions involved in cognitive control 

may be important, as MD has been proposed to involve abnormal functional connectivity within and 

among the CCN and other resting state networks (DMN and SN; Brakowski et al., 2017; Mulders et al., 

2015). As both MD symptom profiles and cognitive control processes are complex and heterogenous 
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(Fried & Nesse, 2015; Joormann & Tanovic, 2015), a more detailed exploration of such specific features 

in relation to individual differences in the brain may provide more insight. This approach may be useful 

more broadly as well, as a concern raised in neuroimaging research on mental health conditions proposes 

that diagnostic categories may be too broad to capture specific neurobiological processes (Blackburn, 

2019; Cuthbert, 2014; Holtzheimer & Mayberg, 2011; Insel et al., 2010). A related issue is that features of 

the brain have been found to differ depending on the stage of the mental health condition  (e.g., first 

episode or recurrent depression; Frodl et al., 2003; Kronmüller et al., 2009; McGorry et al., 2006; Sheline 

et al., 2003; Yüksel et al., 2018). Several papers have therefore called for studies examining the brain in 

relation to more specific symptoms and/or stages of MD (Cuthbert, 2014; Holtzheimer & Mayberg, 2011; 

McGorry et al., 2006). Investigating the clinical relevance of individual variation in the brain using such a 

fine-grained approach may help disentangle if and how individual differences relate to depression 

symptoms and treatment effects. 

 Contrary to our hypotheses, the similarity of FC across participants within time points (i.e., the 

effect of consistent change over time across participants) was smaller than common FC in all main 

analyses. We believe that this happened because, in the design of the similarity matrix for this study, 

time-specific FC did not include any similarity values calculated within an individual (see Figure 1e). 

Since similarity within individuals over time points was high, the fact that such similarities were not part 

of the average for the time-specific FC may have led to lower averages compared to the common FC 

similarity, which did include similarity within individuals. This is supported by the observation that the 

similarity estimates for time-specific FC were no longer significantly smaller in two of the exploratory 

analyses, where within individual similarity values were part of the average (see Figure S5b).  

Even so, session-specific FC across participants did not contribute to the overall variance 

observed in the data beyond common FC, indicating changes over session did not occur the same way 

across participants, not even in patients receiving the same treatment. This finding is discrepant with 

previous research summarized in a systematic review that did identify similar changes across treatment 

(Gudayol-Ferré et al., 2015). Next to other methodological differences (e.g. whole-brain FC vs specific 
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edges), this may be accounted for by the fact that within-subject designs studying changes over time 

typically calculate change within an individual and then examine consistencies in these changes across 

participants. Here instead, our main analyses examined similarities over time points across participants 

directly. Previous study designs more closely resemble our exploratory analyses, which did highlight a 

contribution of individual- and session-specific FC in patients exclusively, indicating an effect of 

antidepressant treatment over time. The localization of this effect (temporal poles, subgenual cingulate 

cortex and medial temporal areas) also partly overlapped with previous findings (Gudayol-Ferré et al., 

2015; Mulders et al., 2015). Notably, our approach did not require changes to be in the same direction for 

each individual, instead highlighting regions where change took place within individuals regardless of 

direction. Exploring these individual patterns of change may help unpack the variable findings in the 

literature (Dichter et al., 2015; Fonseka et al., 2018).   

Our study had several limitations. First, the approach we utilized only considered the relative 

contribution of the included sources of variance, and therefore could not indicate if additional sources 

may have been missed. For simplicity, we examined only a limited number of categorical variables, but 

future research could include additional (continuous) factors (e.g., age; Geerligs et al., 2015). Second, our 

study would have benefitted from longer fMRI recordings. While the amount of data we had provided 

acceptable reliability for whole-brain FC estimates (Gordon et al., 2017), recent studies suggest larger 

amounts of data (e.g., up to 200 minutes per participant) are needed to achieve high reliability of 

individual connectivity estimates, especially for single connections and non-cortical regions (Gratton et 

al., 2020). In addition, like most research in psychology, our sample and we as researchers came from 

‘WEIRD’ (Western, Educated, Industrialized, Rich and Democratic) populations that represent only 

~12% of humanity (Henrich et al., 2010), indicating the need to invest in research done with and by more 

diverse people. Lastly, the use of biological sex and how it was measured was suboptimal. Namely, sex is 

not binary and other relevant, interrelated factors, such as gender expression and gender identity were not 

accounted for, which may have led to measurement errors (Lindqvist et al., 2021). However, given the 
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indications of the importance of sex and gender in the context of antidepressant treatment, we decided to 

use the information available to us. 

Here we show that common and individual-specific patterns of functional connectivity explain 

most of the variance in FC data, while more commonly reported group-specific patterns account for only 

a small amount. To our knowledge, no other studies have quantified individual variation in neuroimaging 

data in the context of MD and antidepressant treatment. Future studies should examine individual FC 

patterns and explore whether and how they relate to individual-specific symptom progression and 

treatment outcomes.  
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