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18 Abstract

19 Campylobacter spp. are a common cause of bacterial gastroenteritis in Australia, primarily acquired 

20 from contaminated meat. We investigated the relationship between genomic virulence characteristics 

21 and the severity of campylobacteriosis, hospitalisation, and other host factors.

22 We recruited 571 campylobacteriosis cases from three Australian states and territories (2018–2019). 

23 We collected demographic, health status, risk factors, and self-reported disease data. We whole 

24 genome sequenced 422 C. jejuni and 84 C. coli case isolates along with 616 retail meat isolates. We 

25 classified case illness severity using a modified Vesikari scoring system, performed phylogenomic 

26 analysis, and explored risk factors for hospitalisation and illness severity.

27 On average, cases experienced a 7.5-day diarrhoeal illness with additional symptoms including 

28 stomach cramps (87.1%), fever (75.6%), and nausea (72.0%). Cases aged ≥75 years had milder 

29 symptoms, lower Vesikari scores, and higher odds of hospitalisation compared to younger cases. 

30 Chronic gastrointestinal illnesses also increased odds of hospitalisation. We observed significant 

31 diversity among isolates, with 65 C. jejuni and 21 C. coli sequence types. Antimicrobial resistance genes 

32 were detected in 20.4% of isolates, but multidrug resistance was rare (0.04%). Key virulence genes 

33 such as cdtABC (C. jejuni) and cadF were prevalent (>90% presence) but did not correlate with disease 

34 severity or hospitalisation. However, certain genes appeared to distinguish human C. jejuni cases from 

35 food source isolates.

36 Campylobacteriosis generally presents similarly across cases, though some are more severe. 

37 Genotypic virulence factors identified in the literature to-date do not predict disease severity but may 

38 differentiate human C. jejuni cases from food source isolates. Host factors like age and comorbidities 

39 have a greater influence on health outcomes than virulence factors.

40 Keywords: antimicrobial resistance, Campylobacter, clinical outcomes, severity, virulence, whole 

41 genome sequencing.
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42 Author summary

43 This study focused on Campylobacter, a common cause of gastroenteritis in Australia. We explored 

44 the relationship between Campylobacter’s genomic characteristics and disease severity, 

45 hospitalisation, and host-related factors.

46 In 2018 – 2019, we collected data from 571 campylobacteriosis cases from Eastern Australia, focusing 

47 on demographics, health status, risk factors, and self-reported symptoms. We sequenced 422 C. jejuni 

48 and 84 C. coli case isolates and 616 retail meat isolates. We used a modified Vesikari scoring system 

49 to assess illness severity, performed phylogenomic analysis, and explored hospitalisation and severity 

50 risk factors.

51 Cases experienced an average 7.5-day period of diarrhoea with additional symptoms including 

52 stomach cramps, fever, and nausea. Older individuals (75+ years) had milder symptoms but a higher 

53 chance of hospitalisation. Those with chromic gastrointestinal conditions faced increased 

54 hospitalisation odds. Case isolates showed considerable diversity. Antimicrobial resistance genes were 

55 detected in some isolates, but multidrug resistance was rare. Virulence genes did not predict severity 

56 or hospitalisation, but some genes did differentiate between case and food source C. jejuni isolates. 

57 Host-related factors including age and comorbidities are more important in determining health 

58 outcomes.

59
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60 Introduction

61 Campylobacter spp. are the most commonly reported cause of bacterial gastroenteritis globally [1], 

62 with Australia having among the highest rates in industrialised countries [2-4]. Most Campylobacter 

63 infections are acquired from consumption of contaminated meat, primarily poultry [1, 5, 6]. The 

64 clinical features of campylobacteriosis range from mild acute illness with diarrhoea, abdominal 

65 cramps, and fever to severe enterocolitis with prolonged abdominal pain and bloody diarrhoea [7, 8]. 

66 While disease is mostly self-limiting, some cases require antimicrobial therapy and hospitalisation [7, 

67 9]. Some symptoms and host factors (e.g., age and chronic illness) are more likely to predict healthcare 

68 use for acute gastrointestinal illness [10, 11]. Previous studies have found vomiting, bloody diarrhoea, 

69 infective dose, fever, and loss of appetite associated with longer illness duration and risk of 

70 hospitalisation [12, 13].

71 Pathogen virulence and host susceptibility factors explored in microbiological studies may have 

72 implications for disease presentation and outcomes for Campylobacter spp. However, specific 

73 virulence mechanisms associated with severe illness have not been clearly defined due to the genetic 

74 diversity and uniqueness of the pathogen [14-16]. The main mechanisms associated with pathogenesis 

75 in enteric bacteria are motility, adhesion, colonisation, toxin production, invasion, and immune 

76 modulation [8, 16-20].

77 Identifying specific genes or gene combinations responsible for particular virulence phenotypes 

78 enables understanding of the mechanisms of Campylobacter infection. While microbiological studies 

79 have identified genes associated with putative virulence factors, there is a lack of epidemiological 

80 studies confirming the role these genes play in disease manifestation. In this study we characterise 

81 notified Australian campylobacteriosis cases by severity and compare with the genomic characteristics 

82 of Campylobacter spp. isolated from food and humans.
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83 Methods

84 Case selection and recruitment

85 We recruited 571 notified campylobacteriosis cases from the Australian Capital Territory (ACT), Hunter 

86 New England health district of New South Wales (NSW), and Queensland (Qld) between February 2018 

87 and October 2019, as part of a previously described large Australian study [6, 21]. Suspected 

88 campylobacteriosis cases provided stool samples to local pathology laboratories to identify and isolate 

89 the pathogen. Samples that were positive for Campylobacter spp. were reported to the state or 

90 territory public health department. Isolates were referred to reference laboratories and processed for 

91 whole genome sequencing (WGS). Cases, or their legal guardian if aged less than 18 years, provided 

92 consent for study enrolment. Interviews were generally conducted within two weeks of laboratory 

93 notification, by either ACT public health unit staff (ACT cases) or by a computer-assisted telephone 

94 interview team (NSW and Qld cases). Interviewers collected information on case characteristics 

95 (demographics, medication use, health conditions), a list of self-reported symptoms, and disease 

96 characteristics. Cases were asked to confirm their diarrhoeal status during illness (>3 loose bowel 

97 movements in any 24-hour period), the date of illness onset, that no household member had 

98 diarrhoea or tested positive for Campylobacter in the four weeks prior to illness onset, and that they 

99 had not travelled outside of Australia in the two weeks prior to illness onset [21]. 

100 Modified Vesikari Scoring System

101 We modified the Vesikari scoring system (VSS) [22] to characterise illness severity (Table 1): retained 

102 duration of diarrhoea in days and maximum number of diarrhoeal stools in a 24-hour period; replaced 

103 the ‘treatment type’ variable (i.e., rehydration or hospitalisation) with ‘healthcare use’ (primary care, 

104 1–2 days in hospital, or ≥3 days in hospital), and; substituted the presence of symptoms for clinical 

105 characteristics as these data were not collected from our self-reported cases. We defined 

106 hospitalisation as being admitted overnight due to campylobacteriosis. These modifications are 

107 consistent with studies that categorised bacterial gastroenteritis in paediatric cases [23, 24]. We 
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108 allocated equal weighting to variables associated with the course of disease as well as each reported 

109 symptom apart from blood in stool, which was given two points (Table 1) [25]. We classified cut-offs 

110 for mild, moderate, and severe disease as ≤8 points, 9–12 points, and ≥13 points respectively, in line 

111 with previous scoring systems [22-24].

112 Table 1. Modified Vesikari scoring system for campylobacteriosis in Australian children and adults, 2018–2019.  

Score
0 1 2 3

Symptom presentation
Vomiting No Yes - -
Self-reported fever No Yes - -
Stomach cramps No Yes - -
Headache No Yes - -
Nausea No Yes - -
Muscle and body aches No Yes - -
Blood in stool No - Yes -
Course of disease
Duration of diarrhoeal 
illness (days)

0 1–3 4–6 ≥7

Maximum number of 
bowel movements in 
any 24-hour period

<3* 3–5 6–10 ≥11

Healthcare use - Primary care 
(notified case)

1–2 days in 
hospital

≥3 days in 
hospital

Score classification: ≤8 mild, 9–12 moderate, ≥13 severe
*Exclusion criterion for case definition

113 Food sample collection

114 Raw chicken meat and offal (organ meat) and beef, lamb, and pork offal were collected from retail 

115 outlets in NSW, Qld, and Victoria (chicken only) from 2017–2019, and from the ACT in 2018, as 

116 previously described [26, 27]. Offal samples included giblets, neck, liver, kidney, heart, and tongue. As 

117 Campylobacter spp. prevalence is generally low on beef, lamb, and pork meat, offal was sampled to 

118 obtain a suitable number of isolates for WGS. 

119 Whole genome sequencing and genomic analysis

120 For each Campylobacter isolate, genomic DNA was extracted and WGS was performed using an 

121 Illumina NextSeq500 (Illumina, San Diego, California, USA) as described previously [27]. In total, we 

122 sequenced 508 isolates from human stool samples and 616 isolates from retail meat and offal. Kraken2 
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123 was used to confirm taxonomic classification and isolate purity 

124 (https://pubmed.ncbi.nlm.nih.gov/31779668/); two isolates from two human cases were confirmed 

125 as C. lari and were excluded from this analysis. De novo assembly of the genome sequence for each 

126 isolate from sequencing reads was performed using SPAdes 

127 (https://pubmed.ncbi.nlm.nih.gov/32559359/). The multi-locus sequence type (MLST) was 

128 determined from each isolate using the MLST software (v2.19.0; https://github.com/tseemann/mlst) 

129 and the PubMLST Campylobacter jejuni/coli database [28]. Isolate genome sequences were also 

130 screened for resistance determinants using the abriTAMR pipeline (v1.0.7; https://github.com/MDU-

131 PHL/abritamr) and the AMRFinderPLUS database (v3.10.16; 

132 https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/). Virulence genes 

133 present in each isolate genome sequence were detected using Abricate 

134 (https://github.com/tseemann/abricate) with genes from the Virulence Factor Database (VFDB) [29]. 

135 The parameters used for gene detection were the top hit with >80% gene coverage and >80% nucleic 

136 acid sequence identity. Abricate was found to be unsuitable for detecting the porA and the flaA gene 

137 in this set of isolates. The paralogous flaA and flaB genes caused assembly issues which resulted in 

138 incomplete flaA gene assemblies. The peptide sequence 

139 ADKAMDEQLKILDTIKTKATQAAQDGQSLKTRTM from near the N-terminus of FlaA was found to be 

140 encoded in a contig from each assembly. Subsequently, the presence of the complete flaA and flaB 

141 genes was inferred by mapping reads from each isolate to the flaA gene of C. jejuni strain NCTC11168. 

142 For porA, a protein level detection using the PorA protein from C. jejuni strain NCTC11168 as the 

143 subject for a blast search against the assembled genome of each isolate was used due to sequence 

144 identity less than 80%. Core genome comparison of isolates within a species was performed using 

145 Bohra (https://github.com/MDU-PHL/bohra). The genome sequences of C. jejuni strain RM1221 

146 (NC_003912) and C. coli strain 76339 (NC_022132) were used as reference genome sequences for the 

147 C. jejuni and C. coli core genome comparisons respectively.
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148 Inference of antimicrobial resistance phenotype

149 We used resistance genes and mutations to infer phenotypic resistance (Table S1) in agreement with 

150 our previous phenotypic testing results [30]. We investigated chromosomal mutations in the blaOXA-61 

151 promotor region, the 23S rRNA gene, and the quinolone resistance determining region of gyrA, as 

152 previously described [27]. Ampicillin (AMP) resistance was inferred from a point mutation at position 

153 57 in the blaOXA-61 promotor region, associated with gene expression inactivation [31]. Resistance to 

154 erythromycin (ERY) was determined based on the nucleotide at positions 2074 and 2075 of the 23S 

155 rRNA gene [32]. Ciprofloxacin resistance (CIP) was determined by examining the amino acid at position 

156 86 of GyrA (T86I confers resistance) [33]. The presence of the tet(O), aph(3’)-IIIa, and erm(B) genes 

157 inferred resistance to tetracycline (TET), gentamicin (GEN), and ERY, respectively [34-36]. We defined 

158 multi-drug resistance (MDR) as displaying a resistant gene profile for three or more antimicrobial drug 

159 classes [37]. Short-read WGS data for all isolates were deposited to the NCBI Sequence Read Archive 

160 under bioprojects PRJNA592186, PRJNA560409, and PRJNA591966 

161 (https://www.ncbi.nlm.nih.gov/sra) (Table S2). 

162 Virulence factor analysis

163 We selected virulence genes that frequently occur in studies of genetic determinants of severe 

164 campylobacteriosis in humans [8, 38-40]. We compared the prevalence of each virulence gene in each 

165 Campylobacter species in Australia with pooled prevalence from a small collection of isolates from 

166 international studies. We also assessed virulence genotype clustering and total gene count by MLST. 

167 Additionally, we included the total number of virulence genes present in isolates as a categorical 

168 predictor variable in generalised linear models described below. After excluding any genes that were 

169 present or absent from all isolates, we used virulence genes to predict hospitalisation and long 

170 diarrhoeal illness. Further, we compared virulence factors between food and case isolates to 

171 determine if these factors predict human campylobacteriosis. We tested multiple predictive modelling 

172 methods including random forest, logic regression, and binary discriminant analysis [41-44]. We 
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173 considered Kappa statistic values >0.3 to indicate that the chosen model performed substantially 

174 better than naïve classification.

175 Statistical analysis

176 All data analyses were performed with R (version 4.0.2) [45]. We used Pearson’s chi square test and 

177 Student’s t-test to assess statistical differences between categorical variable groups and means (p 

178 ≤0.05). We fitted a generalised additive model with a logit link to predict prevalence of symptoms and 

179 hospitalisation as a smooth function of age [46]. We used generalised linear models to calculate 

180 adjusted odds ratios (aORs) for demographic factors, medication use, health conditions and disease 

181 profiles on the outcomes of hospitalisation, diarrhoeal disease lasting longer than seven days, and 

182 antibiotic prescription following illness. We estimated aORs controlling for age group, gender, and 

183 location, including any variables with a p-value ≤0.2 in a multivariable model. We used backward 

184 stepwise logistic regression to identify variables for the final model (variables with p-values ≤0.05), 

185 assessing significance, aORs and confidence intervals (CIs), and biological plausibility. We used ggplot2 

186 to visualise all data figures, and used iToL (v5.0) for phylogenetic tree visualisation [47, 48]. 

187 Ethics

188 This study was approved by the Australian National University Human Research Ethics Committee 

189 (Ref. 2016/426), ACT Health Human Research Ethics Committee (Ref. ETH.8.17.168), Hunter New 

190 England Human Research Ethics Committee (Ref. 17/08/4.03), Qld Health Human Research Ethics 

191 Committee (Ref. RD007108), and the University of Melbourne Office of Research Ethics and Integrity 

192 (Ref. 1750366.1).

193
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194 Results

195 Symptom profiles and severity

196 We included 571 cases from the ACT (n = 93), NSW (n = 178) and Qld (n = 300). The highest proportion 

197 of cases (38.8%, 219/565) reported experiencing 11–20 loose bowel movements within a 24-hour 

198 period with a mean length of illness of 7.5 days (standard deviation [SD] 4.9), generally increasing with 

199 age from 6.4 days (SD 3.0) in 5–14-year-olds to 8.7 days (SD 9.6) in ≥75-year-olds. Case patients 

200 reported an average of four symptoms in addition to diarrhoea, frequently including stomach cramps 

201 (87.1%; 487/559), fever (75.6%; 428/566) and nausea (72.0%; 393/546). Case age influenced symptom 

202 profiles, with symptoms such as stomach cramps, fever, headaches, and blood in stool less commonly 

203 reported in older cases (Fig1a and 1b). The proportion of cases hospitalised was 24.9% (142/571), 

204 which increased with age from 10.2% (5/49) of 0–4-year-olds to 45.0% (18/40) of ≥75-year-olds 

205 (Fig1c). Overall, 49.8% (283/568) of case patients reported that they were prescribed antibiotics 

206 following illness, with 59.3% (83/140) of hospitalised cases reporting antibiotic prescription compared 

207 to 46.7% (200/428) of non-hospitalised cases (p = 0.01). Cases as young as 15 years old reported using 

208 proton-pump inhibitors (PPIs), a medication prescribed to treat stomach acid-related gastro-

209 oesophageal disorders and to prevent ulcers [49, 50]. Thirty percent (39/130) of 35–54-year-olds 

210 reported using PPIs, increasing to 37.5% (15/40) in ≥75-year-olds. Symptom profiles were generally 

211 similar between males and females. However, females were more likely to report stomach cramps 

212 (91.1%, 216/237, p = 0.02) and nausea (80.7%, 188/233, p = 0.00) than males (84.2%, 271/322 and 

213 65.5%, 205/313, respectively). There was no significant difference in the probability of hospitalisation 

214 (25.5% [84/330] males, 24.1% [58/241] females) or duration of illness (7.4 days [SD 5.0] males, 7.6 

215 days [SD 4.8] females). The mean VSS score was 10.7 (95% CI 5.7–15.7) (Fig 2). VSS scores were 

216 influenced by age, with scores peaking in 15–34-year-olds (11.7, 95% CI 7.6–15.8) and tapering off in 

217 older adults ≥75 years (8.8, 95% CI 4.0–13.6) (Fig 3). 

218
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219 Fig 1. (a) Symptom profiles of Australian campylobacteriosis cases (muscle and body aches, nausea, and 
220 stomach cramps), 2018–2019. (b) Symptom profiles of Australian campylobacteriosis cases (blood in stool, 
221 fever, headache, and vomiting), 2018–2019. (c) Course of disease characteristics of Australian 
222 campylobacteriosis cases (hospitalisation, hospitalisation ≥3 days, length of illness ≥7 days), 2018–2019. The 
223 solid lines indicate estimated prevalence from a univariable generalised additive model with a logit link. 
224 Shading around each line represents the 95% confidence interval for the prevalence estimate.

225

226

227  

228
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229 Fig 2. Distribution of modified Vesikari Scoring System scores for 571 campylobacteriosis cases in Australia, 
230 2018–2019. Bars represent the percentage of cases reporting the corresponding Vesikari Score. Error bars are 
231 calculated from binomial confidence intervals using the Pearson-Klopper exact method. Counts are provided 
232 above the bar for each Vesikari Score.

233

234 Fig 3. Distribution of modified Vesikari Scoring System scores by age for 571 campylobacteriosis cases in 
235 Australia, 2018–2019. The solid line indicates the estimated score from a generalised additive model with a 
236 logit link. Shading around the line represents the 95% confidence interval for the score estimate.

237

238
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239 We constructed three multivariable models, adjusting for age, sex, and location for the outcomes of 

240 hospitalisation, antibiotic prescription, and duration of illness for cases with a sequenced 

241 Campylobacter isolate (n = 506; Tables S3–S5). We found that vomiting (aOR 2.6, 95% CI 1.5–4.6) and 

242 chronic gastrointestinal (GI) illness (e.g., Crohn’s disease, irritable bowel syndrome, ulcerative colitis; 

243 aOR 4.4, 95% CI 1.8–11.1) were associated with higher odds of hospitalisation (Table S3).

244 Factors associated with an increased odds of antibiotic prescription following illness included having 

245 blood in stool (aOR 1.6, 95% CI 1.1–2.4), having diarrhoea lasting longer than seven days (aOR 2.0, 

246 95% CI 1.3 – 2.9), and being hospitalised (aOR 1.9, 95% CI 1.1–3.2) (Table S4). Factors associated with 

247 increased odds of diarrhoeal disease lasting longer than seven days included having headaches (aOR 

248 1.7, 95% CI 1.1–2.6) and taking proton pump inhibitors (PPIs) (aOR 2.0, 95% CI 1.2–3.3) (Table S5). We 

249 found a cyclical relationship between hospitalisation, length of illness, and antibiotic prescription 

250 following illness with these factors showing as significant in each model. We chose to report the most 

251 biologically plausible pathways.

252 Genetic diversity of clinical isolates

253 We included 422 C. jejuni and 84 C. coli isolates derived from human clinical samples in this study. C. 

254 jejuni isolates were assigned to 65 unique MLSTs while C. coli isolates were assigned to 21 (Table S6). 

255 The most common sequence types detected were ST50 for C. jejuni (17.8%, 75/422), and ST1181 for 

256 C. coli (27.4%, 23/84) (Table S6; S1 and S2 Figs). Pairwise core genome single nucleotide polymorphism 

257 (SNP) distances between C. jejuni isolates ranged from zero to ~37k SNPs, while C. coli isolates ranged 

258 from zero to ~82k SNPs.

259 Antimicrobial resistance genes

260 We detected antimicrobial resistance (AMR) genes and point mutations in 20.4% (103/506) of the 

261 human isolates, with MDR genotype profiles in 0.04% (2/506) of isolates (Fig 4, S3 Fig, S4 Fig). Results 

262 for resistance determinants in the food isolates are reported elsewhere [27]. We did not detect AMP 

263 or CIP genomic resistance genes or mutations in one C. jejuni and 21 C. coli isolates, although this was 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.16.23297105doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.16.23297105
http://creativecommons.org/licenses/by/4.0/


14

264 not tested phenotypically. The most common resistant mechanism detected was for CIP with 12.3% 

265 (62/505) of isolates (C. jejuni 13.1% [55/421], C. coli 8.3% [7/84]) and for TET at 9.7% (49/506) of 

266 isolates (C. jejuni 11.1% [47/422], C. coli 2.4% [2/84]). An AMP resistant genotype was detected in 

267 5.2% (25/485) of isolates (C. jejuni 5.7% [24/422], C. coli 1.6% [1/63]), with isolates possessing the 

268 blaOXA-184 gene (n = 3) or a blaOXA-61 gene and active promotor (n = 22; a point mutation at position 57 

269 in the promotor regulates gene expression). A GEN resistant genotype was present in 0.4% (2/506) of 

270 isolates (C. jejuni 0.2% [1/422], C. coli 1.2% [1/84]), and ERY resistant genotype was present in 0.2% 

271 (1/506) of isolates (not detected in C. jejuni, 1.2% [1/84] in C. coli), possessing the 23S rRNA A2075G 

272 mutation. Two isolates were inferred to be MDR: one C. coli isolate harboured five antimicrobial 

273 determinants (AMP, CIP, ERY, GEN, and TET) and one C. jejuni isolate harboured four (AMP, CIP, GEN, 

274 and TET).

275 Fig 4. Genotypic antimicrobial resistance profiles of 506 Campylobacter isolates for ampicillin (AMP), 
276 ciprofloxacin (CIP), erythromycin (ERY), gentamicin (GEN), and tetracycline (TET). Isolates were classified as 
277 susceptible if they did not possess a known resistance gene or mutation (n = 403). The number of isolates 
278 possessing each resistance profile is noted above the respective bar. Error bars are calculated from binomial 
279 confidence intervals using the Pearson-Klopper exact method. 

280
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281 Virulence factors

282 Human clinical C. jejuni isolates had a median of 96 virulence genes detected (range 82–118) and C. 

283 coli isolates had a median of 72 genes (range 64–86). Two-thirds of screened genes were highly 

284 conserved (≥95% present) across isolates in both species, with 68.1% (81/119) for C. jejuni, and 68.7% 

285 (68/99) for C. coli. The flaA, flaB, and porA genes were present in all isolates through additional 

286 screening. We detected virulence gene clustering by MLST (Table S6; S1 Fig; S2 Fig). Further, 14 of 19 

287 and nine of 12 virulence genes selected for international comparison for C. jejuni, and C. coli, 

288 respectively, were highly conserved across isolates, particularly those associated with adhesion and 

289 colonisation (e.g., cadF, porA, and pebA), motility (e.g., flaA), cytotoxin production (e.g., cdtABC), and 

290 invasiveness (e.g., ciaBC and flaC) (Table 2). Genes associated with immune modulation (e.g., cstIII and 

291 neuABC) were present variably across C. jejuni isolates at approximately 35.0%. These genes were rare 

292 or absent in C. coli isolates. Lipooligosaccharide (LOS) and capsule gene screening was limited to those 

293 genes present in C. jejuni NCTC 11168. 

294 We compared all virulence genes present in either our human isolates and 285 C. jejuni and 331 C. coli 

295 isolates from meat and offal. Virulence gene pseE/maf5 was more common in C. jejuni food isolates 

296 than in case isolates while Cj1421c, Cj1422c, kpsC, rbfC, fliK, Cj1136, Cj1138, waaV, and wlaN were 

297 more common in C. jejuni case isolates (Table S7). No isolates significantly differed between food and 

298 human isolates for C. coli.  We did not observe an association between the total number of virulence 

299 genes present and the odds of longer duration of diarrhoeal illness, hospitalisation, or antibiotic 

300 prescription following illness (Tables S3–S5). Random forest analyses of 58 C. jejuni and 43 C. coli 

301 virulence genes with less than 100.0% prevalence across isolates did not detect any individual or 

302 specific combinations of virulence genes that predicted severe illness or hospitalisation, nor did 

303 analysis of 72 C. coli genes comparing campylobacteriosis case isolates with food isolates (Kappa <0.3) 

304 (S1 and S2 File). Analysis of 65 C. jejuni virulence genes comparing case and food isolates highlighted 
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305 that some virulence genes such as fliK, Cj1138, and Cj1136 were enriched in isolates from humans 

306 (Kappa 0.51) (S5 Fig).
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307 Table 2. Comparison of prevalence of selected Campylobacter virulence genes in Australia and internationally.

C. jejuni C. coli

International prevalence* International prevalence*Virulence function Gene Australian 
prevalence 
(n = 422) % % (range) n/N isolates 

(# studies)

Australian 
prevalence 
(n = 84) % % (range) n/N isolates 

(# studies)
flaA† 100.0 100.0 (100.0 – 100.0) 185/185 (2) 100.0 – –

flhA 99.8 99.4 (99.4 – 99.4) 154/155 (1) 100.0 – –

cadF 100.0 99.6 (97.9 – 100) 600/602 (8) 100.0 85.1 (8.3 – 100.0) 63/74 (3)

jlpA 99.8 98.4 (96.2 – 100.0) 185/188 (3) – 100.0 (100.0 – 100.0) 9/9 (1)

porA‡ 100.0 90.4 (87.3 – 100.0) 123/136 (2) 100.0 59.5 (16.7 – 100.0) 25/42 (3)

Motility, adhesion, and 
colonisation

pebA 100.0 100.0 (100.0 – 100.0) 205/205 (3) 100.0 100.0 (100.0 – 100.0) 9/9 (1)

ciaB 97.6 95.6 (50.0 – 100.0) 483/505 (7) 96.4 100.0 (100.0 – 100.0) 21/21 (2)

ciaC 100.0 – – 100.0 – –Invasion

flaC 100.0 96.8 (88.5 – 100.0) 251/257 (4) 100.0 100.0 (100.0 – 100.0) 42/42 (3)

cdtA 99.3 96.7 (82.6 – 100.0) 442/457 (5) – 36.5 (13.2 – 100.0) 27/74 (3)

cdtB 99.5 99.3 (97.1 – 100.0) 601/605 (8) – 56.5 (49.1 – 100.0) 35/62 (2)

cdtC 100.0 99.0 (94.1 – 100.0) 384/388 (4) – 35.1 (15.1 – 100.0) 26/74 (2)
Cytotoxin production

wlaN 31.8 51.7 (17.4 – 100.0) 164/317 (4) – – –

htrB 99.8 99.0 (99.0 – 99.0) 101/102 (1) 2.4 28.6 (28.6 – 28.6) 6/21 (1)

waaC 100.0 99.0 (99.0 – 99.0) 101/102 (1) 96.4 100.0 (100.0 – 100.0) 21/21 (1)

cstIII 34.8 49.7 (31.4 – 83.6) 78/157 (2) – – –

neuA 35.1 – – – – –

neuB 35.1 33.3 (33.3 – 33.3) 34/102 (1) 1.2 – –

Immune modulation 
(lipooligosaccharide; LOS)

neuC 34.6 30.4 (30.4 – 30.4) 31/102 (1) 1.2 4.8 (4.8 – 4.8) 1/21 (1)
* prevalence of international isolates sourced from international studies [8, 38-40, 51-55]. The point estimate is calculated across all isolates. The range is reported 
highest and lowest prevalence in the included studies. ‘–‘ gene was not screened or reported. † flaA gene prevalence in Australia determined from presence of amino 
acids due to flaA/flaB paralog interference at nucleotide sequence level. ‡ porA gene prevalence in Australia determined from presence of amino acids due to low read 
quality.
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309 Discussion

310 Campylobacteriosis cases in Australia displayed relatively similar disease profiles, although 

311 some cases experienced more severe symptoms and outcomes, and Campylobacter isolates showed 

312 considerable variation in their genome, as in many geographic regions [8]. We found in silico AMR 

313 determinants in one-fifth of human clinical isolates, with very few isolates possessing MDR genotypes. 

314 Many putative virulence genes were highly conserved across patient case and retail meat isolates, 

315 suggesting these may be central to the pathogen’s fitness regardless of the ability to cause disease. 

316 Others, including those associated with immune modulation in microbiological studies, were far less 

317 conserved or even rare in human and food isolates, reflecting their less essential role in Campylobacter 

318 viability [56]. We did not identify any associations between individual or combinations of virulence 

319 genes and severe disease characteristics. However, we did detect an association between certain 

320 genes and C. jejuni case isolates compared with food isolates, namely fliK, Cj1136, and Cj1138.

321 The spectrum of health outcomes from Campylobacter infections is complex, but host factors 

322 including age, comorbidities, and medication use likely play an important determining role [57]. While 

323 cases aged between 15 and 34 years were more likely to report a higher modified VSS score, older 

324 cases had higher odds of being hospitalised. A previous study systematically describing acute 

325 gastroenteritis symptoms by age group similarly found that older adults were more likely to be 

326 hospitalised and have severe illness, but reported symptoms decreased with age [58]. A hospital-

327 based data linkage study in Australia reported that comorbidities were present in 34.5% of cases, and 

328 that hospitalisation rates noticeably increased among patients aged over 60 years [57]. These studies 

329 also found increases in invasive infection, hospitalisation, length of illness and mortality accompanied 

330 increasing age [57, 58]. Other factors beyond traditional symptoms of gastroenteritis may be more 

331 likely to result in hospitalisation for older cases, such as dehydration or loss of appetite [13, 58]. Our 

332 study found that over 30% of cases aged ≥35-years-old had used PPIs prior to illness and that use was 

333 associated with longer duration of diarrhoea. This is consistent with a data linkage study that found 
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334 that PPI use was significantly associated with infectious gastroenteritis hospitalisation [50]. While PPIs 

335 are considered a safe and effective medication, approved for long-term use, many patients are 

336 unaware of the increased risks of infectious gastrointestinal illness and subsequent hospitalisation 

337 that may accompany their use. While certain symptoms may indicate a need for hospitalisation, the 

338 overall severity of disease does not necessarily predict hospitalisation. Instead, the age of a case is the 

339 most significant determinant of the symptoms they experience and their need for seeking healthcare.

340 While previous genomic epidemiological studies have explored the role of virulence factors in 

341 campylobacteriosis, we did not detect any direct relationship between human clinical disease 

342 outcomes and the presence of individual virulence genes, combinations of virulence genes, or total 

343 number of virulence genes [16, 59]. However, random forest analysis of C. jejuni isolates found genes 

344 associated with the flagellar hook length gene (fliK) and LOS synthesis (Cj1136 and Cj1138) to be more 

345 prevalent in case than food isolates. As food is the primary vehicle for Campylobacter this finding 

346 suggests these genes are important for exposure to translate into clinical disease [60, 61]. 

347 Campylobacter have developed a symbiotic relationship with avian and mammalian species [62]. 

348 There are likely to be a range of genes and gene combinations that have developed to maintain this 

349 relationship. Additionally, poultry hosts carry a wide variety of Campylobacter as part of their normal 

350 flora; genes curated for symbiosis in poultry may cause disease in humans. 

351 Animal models have been used to study Campylobacter virulence, but current models are 

352 unable to successfully reproduce diarrhoeal illness seen in humans [63-65]. Due to this lack of a 

353 suitable animal model, understanding Campylobacter virulence mechanisms remains limited. 

354 Nevertheless, expression of factors associated with pathogen motility, adhesion, invasion, and toxin 

355 production may play a role in Campylobacter infection [17, 54, 66, 67]. In this study, the flhA and flaA 

356 genes associated with motility were highly conserved across both C. jejuni and C. coli isolates, 

357 consistent with previous findings [19, 38, 54]. Genes associated with adhesion and colonisation of 

358 epithelial cells (i.e., cadF, jlpA, porA, and pebA) were also highly conserved in our study isolates and in 
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359 those investigated previously [38, 52, 54, 55]. In particular, the cadF gene is considered an essential 

360 gene for adhesion to intestinal cells during the initial stages of campylobacteriosis [17, 52, 54]. 

361 Similarly, the presence of the ciaB and flaC genes are considered critical for the invasion of epithelial 

362 cells [66]. However, our study results indicate that even in the absence of ciaB, clinical disease can 

363 occur. 

364 Cytolethal distending toxin (CDT) is a commonly distributed toxin across Gram-negative 

365 bacteria (e.g., Shigella and Escherichia coli) and is well characterised in Campylobacter spp. [18, 59]. 

366 CDT operates by promoting intestinal epithelial cell damage and death and is implicated in severe 

367 illness caused by C. jejuni [19, 68, 69]. Previous studies have suggested that all three gene subunits of 

368 the cdtABC operon are required for full toxin function [70-72]. Global prevalence of the cdtABC operon 

369 is high in C. jejuni strains but is variable in C. coli strains; the cdtABC genes were absent in the C. coli 

370 isolates in our study and ranged from ~13% to 100% across international studies. A previous study 

371 found gene differences between Campylobacter species, attributing this to a reliance on C. jejuni-

372 focused research for understanding virulence [40]. We detected high prevalence of the cdtABC operon 

373 in C. jejuni isolates in our study (>99%), but a previous study comparing diarrhoeal and non-diarrhoeal 

374 campylobacteriosis cases detected a much lower prevalence of 76.5% in the non-diarrhoeal cases, 

375 indicating that this gene cluster may play a role in development of diarrhoea [8].

376 The functions of individual genes associated with the LOS (i.e., htrB, waaC, cstIII, wlaN, 

377 neuABC) are not well defined, but are thought to be implicated in the development of Guillain-Barré 

378 syndrome (GBS), an immunoreactive condition where nervous system receptors are targeted and 

379 damaged by the host immune response [39]. The function of these genes is to sialyate Campylobacter 

380 LOS on the surface of C. jejuni cells, mimicking sialyation on gangliosides found on human peripheral 

381 nerve cells; this molecular mimicry can trigger GBS [73, 74].  The wlaN, cstIII and neuABC genes were 

382 present in approximately one third of C. jejuni isolates and were mostly absent in C. coli. Further 
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383 investigation is needed to elucidate the relationship between the expression of these genes and 

384 development of GBS. 

385 In our previously published Australian study of Campylobacter genomics, we reported that 

386 the prevalence of AMR determinants was low in Campylobacter isolates compared to other high-

387 income countries [30]. Here, we observed a high rate of antibiotic use following infection, regardless 

388 of hospitalisation status, length of illness, or case age. Australian prescription guidelines recommend 

389 the use of azithromycin, CIP, or norfloxacin for those with severe disease or in vulnerable groups [75]. 

390 While AMR is low in Australia, attributed to regulations on the prescription of quinolones in humans 

391 and food-producing animals [76], growing levels of AMR is a global issue and antimicrobial 

392 stewardship is a priority for public health. High prescription rates should be investigated further to 

393 ensure optimal patient care while combating antibiotic resistance. Previous studies have examined 

394 relationships between virulence markers and AMR [38, 66, 72], with one study reporting a relationship 

395 between resistance to fluoroquinolones and TET and the presence of the virB11 and wlaN genes [38] 

396 and another with resistance to TET or ERY and cdtA and dnaJ genes [72]. We observed some clustering 

397 of AMR genes by sequence type but did not identify any relationships between AMR and virulence 

398 genes or severe disease outcomes. 

399 Our study cases were recruited from among cases notified to a health department, meaning 

400 that all cases experienced symptomatic illness requiring care and therefore mild or asymptomatic 

401 cases were unlikely to have been recruited [10, 25]. Further, cases from the ACT and NSW were largely 

402 recruited from hospital-based laboratory service samples suggesting that our hospitalisation rate is 

403 not representative of the general hospitalisation rate for campylobacteriosis. An ACT-based study 

404 estimated that 13.6% of campylobacteriosis cases were hospitalised, increasing to 20.0% when non-

405 admitted emergency department visits were included [57]. We relied on self-reported symptoms from 

406 cases, which may be less reliable than a clinical assessment by a healthcare professional. Some 

407 symptoms can be subjective and may not be accurately reported (e.g., fever) or respondents may be 
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408 reluctant to report them. Older respondents and those with poorer memory or pre-existing health 

409 conditions may have experienced issues with recall, particularly when asked about specific symptoms, 

410 resulting in recall bias. Finally, we explored a subset of known putative virulence-associated genes 

411 sourced from the VFDB. This was not a comprehensive list and did not explore all virulence genes 

412 noted in the literature. We included a small number of studies and isolates in our international gene 

413 comparison, which is unlikely to be representative of global gene prevalence. As research into 

414 virulence determinants continues, further genes and gene combinations should be explored to 

415 understand their role in disease. 

416 In this study, we did not find direct associations between genetic markers of virulence and 

417 disease outcomes for Campylobacter. However, we did detect associations between certain virulence 

418 genes and human C. jejuni isolates compared with food isolates. Our study provides valuable insights 

419 into the genomic diversity, the prevalence of virulence markers, and the low prevalence of antibiotic 

420 resistance among Campylobacter isolates. To continue uncovering unknown aspects of the pathogen, 

421 Campylobacter surveillance should continue to incorporate WGS to provide high-resolution data, 

422 particularly for developing baseline estimates of genomic characteristics in mild, moderate, and 

423 severe disease to understand associations with severity. To support this, researchers conducting 

424 cohort studies should consider examining virulence factor prevalence between symptomatic and 

425 asymptomatic cases, as well as the development of more severe sequelae such as GBS in cases. Future 

426 studies in Australia should follow international studies that have investigated the presence or absence 

427 of certain virulence genes, AMR, and the molecular relationships between human clinical and source 

428 isolates to enable a more comprehensive understanding of the pathogenesis of campylobacteriosis 

429 [38, 77, 78].

430

431
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738 Figure captions
739 Fig 1. (a) Symptom profiles of Australian campylobacteriosis cases (muscle and body aches, 
740 nausea, and stomach cramps), 2018–2019. (b) Symptom profiles of Australian campylobacteriosis 
741 cases (blood in stool, fever, headache, and vomiting), 2018–2019. (c) Course of disease 
742 characteristics of Australian campylobacteriosis cases (hospitalisation, hospitalisation ≥3 days, 
743 length of illness ≥7 days), 2018–2019. The solid lines indicate estimated prevalence from a 
744 univariable generalised additive model with a logit link. Shading around each line represents the 95% 
745 confidence interval for the prevalence estimate.

746 Fig 2. Distribution of modified Vesikari Scoring System scores for 571 campylobacteriosis cases in 
747 Australia, 2018–2019. Bars represent the percentage of cases reporting the corresponding Vesikari 
748 Score. Error bars are calculated from binomial confidence intervals using the Pearson-Klopper exact 
749 method. Counts are provided above the bar for each Vesikari Score.

750 Fig 3. Distribution of modified Vesikari Scoring System scores by age for 571 campylobacteriosis 
751 cases in Australia, 2018–2019. The solid line indicates the estimated score from a generalised 
752 additive model with a logit link. Shading around the line represents the 95% confidence interval for 
753 the score estimate.

754 Fig 4. Genotypic antimicrobial resistance profiles of 506 Campylobacter isolates for ampicillin 
755 (AMP), ciprofloxacin (CIP), erythromycin (ERY), gentamicin (GEN), and tetracycline (TET). Isolates 
756 were classified as susceptible if they did not possess a known resistance gene or mutation (n = 403). 
757 The number of isolates possessing each resistance profile is noted above the respective bar. Error bars 
758 are calculated from binomial confidence intervals using the Pearson-Klopper exact method. 
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760 S1 Table: Antimicrobial resistance genes and mutations used to infer phenotypic resistance in 
761 Campylobacter isolates. 

762 S2 Table. Summary of Campylobacter isolates (n = 1122) included in this study. 

763 S3 Table. Univariable results for hospitalisation, adjusted for age group, sex, and location, and 
764 final multivariable model. OR: odds ratio, aOR: adjusted odds ratio, CI: confidence interval, ref: 
765 reference category, Inf: no limit on confidence interval.

766 S4 Table. Univariable results for prescription of antibiotics following illness, adjusted for age 
767 group, sex, and location, and final multivariable model. OR: odds ratio, aOR: adjusted odds ratio, CI: 
768 confidence interval, ref: reference category, Inf: no limit on confidence interval.

769 S5 Table. Univariable results for length of diarrhoeal illness, adjusted for age group, sex, and 
770 location, and final multivariable model. OR: odds ratio, aOR: adjusted odds ratio, CI: confidence 
771 interval, ref: reference category, Inf: no limit on confidence interval.

772 S6 Table: Summary of multi-locus sequence type (MLST) and virulence gene prevalence in 
773 Campylobacter jejuni and C. coli human isolates.

774 S7 Table. Comparison of isolate virulence gene prevalence between human and retail meat 
775 isolates, Australia, 2018–2019. N/A: no gene present, or no analysis possible due to zero levels. * 
776 indicates significant result (p < 0.05).

777 S1 Fig. Prevalence of virulence genes and gene clustering by multi-locus sequence type (MLST) for 
778 C. jejuni human isolates. The colour scale represents the proportion of isolates within each MLST 
779 expressing each virulence gene.
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780 S2 Fig. Prevalence of virulence genes and gene clustering by multi-locus sequence type (MLST) for 
781 C. coli human isolates. The colour scale represents the proportion of isolates within each MLST 
782 expressing each virulence gene.

783 S3 Fig. Maximum likelihood phylogenetic tree showing the core genome relationship between C. 
784 jejuni isolates (n = 422) from humans in the Australian Capital Territory (ACT), New South Wales 
785 (NSW), and Queensland (Qld). The circle lanes from inner to outer indicate jurisdiction, multilocus 
786 sequence type (MLST), the number of class of antimicrobial genotype detected, and the number and 
787 trait class of virulence genotype detected.

788 S4 Fig. Maximum likelihood phylogenetic tree showing the core genome relationship between C. 
789 coli isolates (n = 84) from humans in the Australian Capital Territory (ACT), New South Wales 
790 (NSW), and Queensland (QLD). The circle lanes from inner to outer indicate jurisdiction, multilocus 
791 sequence type (MLST), the number and class of antimicrobial genotype detected, and the number 
792 and trait class of virulence genotype detected.

793 S5 Fig. Relative importance by Gini* coefficient of Campylobacter jejuni virulence genes for 
794 predicting case isolates^ compared with meat isolates in Australia, 2018–2019. * Mean decrease in 
795 Gini coefficient measures how much of each variable contributes to the homogeneity of the nodes 
796 and leaves in the random forest. The higher the value of mean decrease Gini score, the higher the 
797 importance of the variable. Values should be considered relative to those of other variables rather 
798 than absolute values. ̂ Genes more common in case isolates include fliK, Cj1136, Cj1138, Cj1135, maf4, 
799 neuC, rfbC, wlaN, cysC, Cj1422c, Cj1421c, gmhA2, kpsC, waaV, fcl, Cj1420c, ciaB, and Cj1419c although 
800 not all differences in gene prevalence are significant (p <0.05).

801 S1 File. Random Forest model outputs for Campylobacter jejuni and C. coli determining virulence 
802 genes that predict hospitalisation or length of diarrhoeal illness in Australia, 2018–2019.

803 S2 File. Random Forest model outputs determining virulence genes that predict a human case 
804 compared with retail meat and offal isolates in Australia, 2018–2019.
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