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DiGAS: Differential gene allele spectrum as descriptor in genetic
studies

Antonino Aparo, Vincenzo Bonnici, Simone Avesani, Luciano Cascione, Ros-
alba Giugno

• We introduce a new generalized version of allele frequency spectrum.

• We propose a methodology, called DiGAS, based on the new defined
genomic information and independent from GWAS analysis that out-
performs existing methods in distinguish healthy/ill subjects with a
speed up of 5x.

• On a reference Alzheimer’s disease genomic datasets, ADNI, DiGAS
reaches F1 score up to 0.92.

• DiGAS methodology manages any type of genomic features, such as
genes, exons, upstream/downstream regions.
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Abstract

Diagnosing subjects in complex genetic diseases is a very challenging task.
Computational methodologies exploit information at genotype level by taking
into account single nucleotide polymorphisms (SNP). They leverage the result
of genome-wide association studies analysis to assign a statistical significance
to each SNP. Recent methodologies extend such an approach by aggregating
SNP significance at genetic level in order to identify genes that are related to
the condition under study. However, such methodologies still suffer from the
initial single-SNP analysis. Here, we present DiGAS, a tool for diagnosing
genetic conditions by computing significance, by means of SNP information,
but directly at the gene level. Such an approach is based on a generalized
notion of allele spectrum, which evaluates the complete genetic alterations of
the SNP set composing a gene at population level. Statistical significance of a
gene is then evaluated by means of a differential analysis between the healthy
and ill portions of the population. Tests, performed on well-established data
sets regarding Alzheimer’s disease, show that DiGAS outperforms the state-
of-the-art in distinguishing between ill and healthy subjects.
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1. Introduction

Human beings share more than 99 percent of their DNA sequence how-
ever, that small percentage of variation in DNA can have significant im-
plications for human health. These variations can manifest as single nu-
cleotide polymorphisms (SNPs), insertions, deletions, or larger rearrange-
ments of DNA sequences, occurring both within and outside of genes. Single
nucleotide polymorphisms (SNPs) are the most abundant type of genetic
variation in the human genome, occurring approximately every 300 base
pairs [1]. The primary focus on SNPs in genetic analysis is justified by
their abundance, wide genomic coverage, heritability, functional impact, rel-
evance in population studies, and clinical applications. SNPs, characterized
by a single nucleotide substitution, follow Mendelian inheritance patterns
and contribute to the heritability of diseases and traits [2]. By studying and
analyzing the presence of one or more SNPs whether they occur within genes
(intragenic) or in non-coding regions (intergenic), researchers gain insights
into the underlying mechanisms of diseases. This understanding helps im-
prove the assessment of disease risk, develop targeted therapies, and advance
personalized medicine approaches [3, 4]. For instance, a specific single nu-
cleotide polymorphism in the APOE gene has been found to influence the
development of Alzheimer’s disease [5, 6], the deletion within the chemokine-
receptor gene CCR5 provides resistance to HIV and AIDS [7]. Variations in
genes related to immune responses can impact an individual’s susceptibility
to autoimmune disorders or infectious diseases. [3]. Additionally, the iden-
tification of rare DNA variations has enabled the development of targeted
therapies for cystic fibrosis [4].

GWAS (genome-wide association study) is a well-established methodol-
ogy for associating genetic variants to disease risk in population genetics
studies [8, 9]. This method identifies common variations that are present
in the DNA sequences of individuals affected by a specific condition, under
the hypothesis that common variants are present for the entire population.
GWAS testing of millions of variants is often constrained by multiple hypoth-
esis testing [10], as the analysis of a large number of hypotheses increases the
likelihood of obtaining false-positive results.
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Individual SNPs identified by GWAS platforms often show only modest
effects. One reason is that the true causal SNP is rarely recognized, but
there are SNPs that are in linkage disequilibrium (LD) with the causal SNP.
In this case, when individual SNP analysis is used, the LD SNPs with the
causal SNP will each show only moderate effects because each LD SNP acts
as an imperfect surrogate for the causal SNP. Therefore, it might be advan-
tageous to consider the joint effect of multiple SNPs in the analysis, because
it is likely that many of these markers are in LD with the causal SNP and
could capture the true effect more effectively than individual SNP analysis.
Hundreds of studies have demonstrated that genes and their proteins often
co-operate and interact together in functional pathways [11, 12]. Genes and
SNPs could often predispose to disease through their reciprocal interaction
in a specific biological pathway. Such a behaviour may produce a missing of
these associations when a single-marker GWAS is used because of the rela-
tively modest individual evidence of each gene/variant. Moreover, working at
gene or pathway level reduces the number of possible tests, improves the sta-
tistical power, and might identify novel loci without increasing sample sizes
or collecting new data. In addition, the probability that the result is true
positive increases when combining supporting biological evidence with sta-
tistical significance. This means that it is advisable to restrict the analysis to
candidate genomic regions (e.g. promoter regions, tissue-specific genes) or to
prioritize candidate genes (e.g. having significant roles in specific pathways).

In this perspective, SKAT [13] tests each SNP sets using a logistic kernel-
machine regression framework to model the joint effect of the SNPs in the
SNP sets. A SNP set can be any genomic region defined by users. SNPs
are grouped according to their location in genomic features such as genes
or haplotype blocks. The goal of SNP set analysis is to test the global null
hypothesis of whether any of the SNPs are related to the outcome while
adjusting for the additional covariates.

Similarly, other SNP sets analyses require the computation of gene-level
p-values or gene scores. In [14], the SNP with the smallest p-value is used as
representative of the entire gene. On the contrary, an empirical p-value for a
SNP set is determined by recomputing the p-values of individual SNPs using
a permuted dataset. The SNP set’s p-value is then calculated as the number
of times where the average p-value of the observed SNPs is lower than the
p-values obtained from the permuted data [15, 16, 17].

A similar empirical gene’s p-value is also computed in [18] but a multi-
variate normal distribution is used to correct for linkage disequilibrium (LD)
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Methods Description Limitations

minSNP
Computes a gene score based on Biases may occur as longer genes tend

the smallest SNP p-value observed to have lower gene scores.
within the gene in a GWAS.

permSNP

Involves permuting case-control labels Computationally expensive for
in genotype data,recalculating SNP p-values, genome-wide data sets; gene score precision

and computing empirical gene p-values depends on the number of permutations.
using the observed and permuted data.

VEGAS

takes into account the observed correlation Precision of gene scores depends on
between SNPs (LD) and simulates a specified the number of simulations; computationally
number of statistics from which the resulting inefficient due to simulations.

p-value is calculated.

Pegasus
Pegasus leverages pathway-based information Performance heavily influenced by the quality

to prioritize weak signals in GWAS. and the relevance of pathway databases.

SKAT

Employs mixed-model regression, considering May have limited power for small sample sizes
covariates and genotypes for variants and rare variant detection.

in a gene set to assess disease association. Assume linear relationships between
SNPs and the phenotype.

Table 1: A summary of the most commonly used SNP sets methods and limitations.

between SNPs. Alternatively, a null chi-square distribution is applied to
capture LD between SNPs in a gene [19]. However, all these methods in-
herit from GWAS all the issues of assigning a significance to each SNP in a
single-SNP analysing before grouping SNPs into sets. Table 1 summarizes
the characteristics of the above approaches along with their limitations.

In this context, we introduce DiGAS, a tool that implements an inno-
vative computational model for identifying genomic elements, ranging from
individual exons to entire genomic regions may be associated with a given
phenotype condition, such as a disease, and considered potential causal fac-
tors. The analysis involves the utilization of a novel genomic information
descriptor termed the ”generalized allele spectrum.” This descriptor is built
upon the allele frequency spectrum, which captures allele frequencies within
a defined group of loci (specifically, SNPs). The allele spectrum combines
the frequency of single alleles into a unique vector of allele frequencies. In
contrast to allele spectrum, the novel descriptor takes into account the com-
plete set of SNPs of a region at once. This allows it to compute frequency
at the region level rather than the SNP level. We define the the Differential
Generalized Allele Spectrum to capture the differences in frequency allele
spectra between healthy and ill sets (control and case respectively). The
proposed methodology i) recognizes genetic regions that are important for a
given pathology, and ii) builds a set of features for supervised classification
purposes.
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DiGAS represents a significant advancement over the state of the art,
offering distinct advantages compared to both methods that aggregate SNPs
individually and regression-based methods, such as SKAT (Sequence Kernel
Association Test). Unlike methods that aggregate SNPs individually, DiGAS
comprehensively analyzes the entire set of SNPs within genomic regions si-
multaneously. This approach allows DiGAS to capture potential joint effects
of multiple SNPs, providing increased statistical power to identify genomic
elements associated with the phenotype. In contrast, individual SNP aggre-
gation methods may overlook such joint effects, potentially leading to a loss
of relevant genetic associations. Moreover, DiGAS introduces the generalized
allele spectrum descriptor, capturing genetic variations at the region level,
thereby overcoming limitations of SNP-level analyses commonly employed
by methods that aggregate SNPs individually. The generalized allele spec-
trum descriptor enables a more comprehensive representation of genomic
variations, enhancing the accuracy of genetic signal attribution to specific
genomic regions. Additionally, DiGAS generates interpretable outputs by
identifying sets of features based on allele frequency differences. This feature
selection process facilitates a clearer understanding of the genetic elements
associated with the phenotype. In contrast, regression-based methods, such
as SKAT, may not provide such interpretable outputs, making it challenging
to interpret the specific genetic contributions to the phenotype. Furthermore,
DiGAS adopts a non-linear approach, allowing the detection of complex ge-
netic effects associated with the phenotype. This is in contrast to regression-
based methods like SKAT, which often assume linear relationships between
SNPs and the phenotype. The non-linear approach of DiGAS allows for the
identification of non-linear genetic associations that are common in complex
diseases, potentially providing valuable insights into the underlying genetic
mechanisms. In conclusion, DiGAS represents a significant advancement over
the state of the art by offering a more comprehensive, interpretable, and non-
linear approach to identify genomic elements associated with phenotypes. Its
simultaneous analysis of SNPs within genomic regions, utilization of the gen-
eralized allele spectrum descriptor, and non-linear approach contribute to its
effectiveness in capturing genetic variations and improving the understanding
of genetic contributions to complex diseases.

We tested DiGAS in the case of Alzheimer (AD) [20, 21], a progressive
disease, where dementia symptoms gradually worsen over a number of years.
AD’s has no cure, and it represents a challenge at the forefront of biomed-
ical research [22]. The exact cause of AD’s disease is not fully understood,
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but it is believed to be a complex interplay of genetic, environmental, and
lifestyle factors. Genetic factors play a significant role in the development
and progression of AD, with variations in certain genes increasing the risk
of developing the condition. Single nucleotide polymorphisms (SNPs) are
the most common type of genetic variation and are variations in a single
nucleotide base pair in the DNA sequence. In AD disease, it has been ob-
served that a specific SNP may be present and associated with the disease
in one affected individual but may not be present or associated with the dis-
ease in another affected individual. This means that the presence or absence
of a single specific SNP is not sufficient to determine the disease status or
predict its occurrence. Instead, AD disease is influenced by the combined
effect of multiple SNPs that can vary from one individual to another. Each
individual may have a unique combination of genetic variations, including
different SNPs, that contribute to their susceptibility or resilience to the
disease[23, 24].
The combined effect of multiple SNPs is thought to interact with other ge-
netic, environmental, and lifestyle factors, leading to the complex and hetero-
geneous nature of Alzheimer’s disease. These factors may include variations
in other genes, epigenetic modifications, interactions with environmental tox-
ins, lifestyle choices, and overall health status. Understanding this concept
highlights the need to investigate not only individual SNPs but also their
interactions and cumulative effects . By considering the collective influence
of multiple SNPs, researchers can gain a better understanding of the genetic
architecture underlying the disease and potentially identify more compre-
hensive sets of genetic markers associated with Alzheimer’s disease risk and
progression.

We compare DiGAS with SKAT since it allows to work with genotype
data and thus be tested on different genomic regions. Results show that Di-
GAS outperforms SKAT in distinguishing healthy from ill subjects by means
of their genomic features. Moreover, DiGAS remarkable reduces computa-
tional timing requirements compared to SKAT.

In what follows, Section 2.1 introduces the main methodological aspects
of the proposed approach. Section 2.2 describes the datasets used for the
evaluation of the proposed model. Finally, the results in the form of a super-
vised classification problem, are reported in Section 3. The DiGAS’s source
code is freely available at https://github.com/InfOmics/DiGAS.
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S = {s1, s2, . . . , sn} a population of n individuals
C = {c1, c2, . . . , cj} a set of j phenotype categories
Sc a subset of S containing individuals belonging to category c
γ : S− > C labelling of the individuals category
P = {p1, p2, . . . , pm} the set of m SNPs taken into account in the study
loc : P 7→ N+ the genomic location of a SNP

ψ : S× P 7→ {0, 1} the state (genetic variation present or absent)
of each SNP for each subject

G = {g1, g2, . . . , gl} the set of regions that are investigated in the study

ρ(g ∈ G) = {p1, p2, . . . , pk}
the set of SNPs whose genomic location reside
within the genomic location of the region G

ηc(g) ∈ [0, 1]
the generalized allele spectrum of g
with respect to phenotypc category c

FCc1,c2 (g)
the fold change of the generalized allele spectrum
of region g with respect to two categories c1 and c2

Table 2: A summary of the terminology and notation used in this article.

2. Material and Methods

In this section, we present the proposed methodology, DIGAS, along with
details about the data used for testing and the validation approach.
Section 2.1 provides a formal description of the DIGAS method. A summary
of the basic notions involved is reported in Table 2. The methodology in-
volves the computation of the generalized allele spectrum, which is a measure
related to the presence of SNPs in genomic regions for each phenotype con-
dition analyzed in the study. Significant regions are identified based on the
fold change of the generalized allele spectrum and the calculation of p-values
using permutation tests.
Section 2.2 describes the data used in the study and the preprocessing pro-
cedures applied to the data.
Finally, Section 2.3 provides a description of the classification algorithms and
evaluation metrics used to assess the performance of the proposed DIGAS
method.
DIGAS is implemented in Python. The method takes as input the coordi-
nates of the genomic regions to be analyzed and the genotyping data (SNPs
information). The DIGAS software is available for both Windows and Unix
systems at the following GitHub repository: https://github.com/InfOmics/DiGAS.

2.1. DIGAS

Individuals with different phenotypic states can be categorized based on
their conditions. For example, when studying a specific disease, we typically
classify individuals into two groups: healthy and sick. However, it is also
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possible to consider more than two categories while ensuring that each indi-
vidual belongs exclusively to one category.
In our model, the population of n individuals, referred to as subjects, is
represented by the set S = {s1, s2, . . . , sn}, where si represents the i-th
individual. To categorize these individuals, we have a set of categories
C = {c1, c2, . . . , cj}. We define a function γ : S− > C to assign a category
to each subject. A subset of S containing only the individuals belonging to
category c ∈ C is denoted as Sc.
For each individual, we examine the occurrence of genomic single nucleotide
variations, known as single nucleotide polymorphisms (SNPs), in relation
to a selected reference genome. We establish the function loc : P → N+

to determine the position of a SNP within the genome. We define P =
{p1, p2, . . . , pm} as the set of m SNPs that are being considered. It is impor-
tant to note that in diploid genomes, where two alleles are present for each
genomic locus, we do not differentiate between diploid variations at the same
locus.
The function ψ : S× P 7→ {0, 1} indicates the absence or presence of a SNP
for an individual.
For instance, given an individual si ∈ S and a SNP pj ∈ P, ψ(si, pj) is 0 if
no SNP is observed at loc(pj) in the genome of the individual si.

Experimental designs may necessitate the detection of SNPs throughout
the entire genome or in specific regions such as genes, exons, or intergenic
regions. The scope of SNP detection can be tailored based on the objectives
of the study and the specific genomic regions of interest.
Consider the set of regions to investigate as G = {g1, g2, . . . , gl}, where each
gi represents a contiguous region of nucleotides defined by start and end
coordinates with respect to the reference genome. We denote the subset of
SNPs residing in the region gi of the reference genome as ρ(gi ∈ G) = Pi ⊆ P.
This subset Pi consists of SNPs where the genomic location loc(pj) satisfies
the condition start(gi) ≤ loc(pj) ≤ end(gi) for each SNP pj ∈ Pi. In simpler
terms, Pi includes SNPs located within the boundaries of the region gi in the
reference genome.

For a genomic region g belonging to the set G, the overall allele spectrum
of g in relation to the specified phenotype category c represents the ratio
between the total count of SNPs observed in the region across all individuals
within that category and the maximum possible count of SNPs in that region
for the same category. This can be defined as:
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ηc(g) =

∑
si∈Sc

∑
pj∈ρ(g) ψ(si, pj)

|ρ(g)| × |Sc|
∈ [0, 1]

with ηc(g) is in [0, 1], because ψ(si, pj) can be 0 or 1 and the summation can
not exceed |ρ(g)| × |Sc|. The value is 1 when all subjects belonging to the
given category present all SNPs in the considered region.

We aim to find genomic regions having statistically significant different
values of allele spectrum among categories. For such propose, we define the
fold change FC of a genomic region g with respect to two categories c1 and
c2 as:

FCc1,c2(g) = |log(ηc1(g) + 1

ηc2(g) + 1
)| = |log(ηc1(g) + 1)− log(ηc2(g) + 1)|.

Our model computes the fold change of each region across each pair of
phenotype categories. The selection of regions that are considered significant
is obtained by calculating an empirical p-value using a permutation test [25].
To achieve this, we initiate the process by randomly permuting the original
category assignments of the subjects. This results in the creation of 1000 dif-
ferent random labelings of subject categories, denoted as {γ0, γ1, . . . , γ1000}.
To determine the significance of the observed fold change in the real data, we
calculate the proportion of random labelings where the fold change is equal
to or greater than the observed value. This proportion represents the p-value
of the region. A lower p-value indicates that the observed fold change is less
likely to occur by random chance alone, suggesting that the region may have
a significant association with the categories being studied.
More precisely, we modify the original category assignment γ to a new func-
tion γi, where the assignments in γi are a permutation of the assignments in
γ. Thus, the total number of subjects assigned to each category, given two
categories c1 and c2, is maintained from γ to γi.
Let Sc1 and Sc2 be the subsets obtained according to the category assign-
ments in γ. To obtain γi, we iteratively modify γ for a total of |Sc1∪Sc2|

2

iterations. We refer to γti as the version of γi at iteration t, where γ
0
i is an

exact equal to γ. For each iteration t > 0, we select two subjects s1 and s2
such that γt−1

i (s1) ̸= γt−1
i (s2). We create γti by swapping the assignments of

s1 and s2, i.e., γ
t
i(s1) = γt−1

i (s2), γ
t
i(s2) = γt−1

i (s1), and γ
t
i(si) = γt−1

i (si) for
si ∈ S \ s1, s2.
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The p-value of a region g is then determined by calculating the percentage
of random labelings for which the fold change of the region equals or exceeds
FCc1,c2(g). Regions that have a p-value less than 0.05 are considered relevant
for discriminating between subjects who belong to category c1 from subjects
who belong to category c2.

2.2. Test Dataset

The data used in this manuscript was obtained from The Alzheimer’s
Disease Neuroimaging Initiative (ADNI) project (http://adni.loni.usc.edu).
The ADNI researchers collect, validate, and utilize various types of data in-
cluding MRI and PET images, genetics, cognitive tests, CSF (cerebrospinal
fluid), and blood biomarkers to study and predict the disease. Our focus is
on identifying regions of genomes which sets of SNPs collectively may con-
tribute to the disease. Coordinates of the regions to take into account are
provided by the GENCODE project1 (v36lift37 ). We considered the com-
plete set of ADNI cohorts, which includes ADNI1, ADNI2/GO, and ADNI3.
The individuals in these cohorts are classified into three categories: affected
(AD), not affected (CN), and mild cognitive impairment (MCI). The MCI
category encompasses individuals who exhibit symptoms similar to those of
Alzheimer’s disease but do not exhibit a strong hallmark phenotype. In some
cases, individuals with MCI may revert to normal conditions [26].
We filtered out all the individuals with no European ancestry. Statistics
regarding the subjects extracted from ADNI are reported in Table 3. Qual-
ity control (QC) procedures were conducted on the data from each ADNI
cohort using PLINK 1.9 format[27], which is a comprehensive toolset for
whole-genome association analysis. These QC procedures involved filtering
SNPs and subjects based on the following specific criteria. (i) Missing Data
Filter (geno > 0.2): SNPs with a high proportion of missing data, where
more than 20% of the data was missing, were excluded from the analysis.
(ii)Individual Missingness Filter (mind > 0.1): SNPs were filtered based
on individual missingness, where SNPs with more than 10% of individu-
als having missing genotype data were excluded.(iii) Minor Allele Frequency
Filter (MAF > 0.05): SNPs with a minor allele frequency below 5% were
removed. This filter helps to ensure that the analysis focuses on common
genetic variations. (iv) Hardy-Weinberg Equilibrium Filter (hwe > 1e−06):

1https://www.gencodegenes.org
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SNPs showing significant deviations from the Hardy-Weinberg equilibrium
were excluded. Hardy-Weinberg equilibrium represents the expected fre-
quencies of genotypes in a population, and deviations from this equilibrium
may indicate potential genotyping errors or other issues.
Table 4 provides information on the SNPs that were filtered out after apply-
ing these QC procedures. Regarding subjects, no individuals were filtered
out based on QC measures. This means that all individuals in the ADNI
cohorts were retained for further analysis after the QC procedures.

CN MCI AD European subjects Total subjects

ADNI1 197 339 168 704 757
ADNI2/GO 233 385 118 736 793
ADNI3 226 59 17 302 327

Table 3: Number of European subjects (divided by categories) used as input for each ADNI
cohort. Total number of subjects, independently from their ancestry, is also reported.

original data after QC

ADNI1 620.668 525.216
ADNI2/GO 730.525 591.481
ADNI3 759.993 303.150

Table 4: Total number of SNPs for each cohort and number of SNPs filtered by Quality
Control (QC) procedures.

2.3. Evaluation methodology

We used a set of classification algorithms, such as linear discriminant
analysis (LDA) [28], support-vector machine (SVM) [29] (linear and poly-
nomial), decision tree [30] and k-nearest neighbors (k-NN) [31] in order to
evaluate the ability of the proposed methodology in selecting regions that are
useful for distinguishing subject’s categories. The goal of the classification is
to build a model that, after a learning phase, correctly assigns a category to
a given subject.

Given an input dataset, we applied a 2-fold cross-validation [32] which
splits the original cohort into two subsets. One of the two subsets is used for
training the classification model, and the other subset is used for validating
the trained model. The split is done via a random selection of the subjects.
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The selection ensures that the initial proportions among categories of the
subjects are preserved.

More precisely, after the training phase, the resultant model is queried by
using records belonging to the test set. A test set individual that is correctly
recognized as belonging to a given category C by the model is considered
a true positive (TP) for such a category. On the contrary, a false positive
(FP) record is labelled as C by the model but in reality it does not belong
to C. Similarly, true negative (TN) are records that are correctly classified
as non-C, and false negative (FN) are records that are wrongly classified as
not belonging to C.

Accuracy is defined as the fraction of records that are correctly classified
with respect to the entire test set. The F1 score combines precision and
recall statistics into a single metric via harmonic mean. Precision informs
about the fraction of records that are correctly classified as belonging to C
with respect to the total number of records that are classified as C by the
model. Recall gives the fraction of records belonging to C that are correctly
classified with respect to the total size of C.

All the given metrics are in the range of [0, 1] such that the higher the
value, the better the performance of the given model is. Moreover, for binary
classification, precision and recall are related to the given category that is
taken into account. On the contrary, the value of accuracy is the same
independently for the investigated category.

3. Results

We evaluated the efficacy of the DiGAS methodology in classifying Alzheimer’s
disease subjects also with respect to SKAT [13].

Given an ADNI cohort (see Section 2.2 for details regarding the compo-
sition of the ADNI data set), we split the input data set using two different
partition percentages, 90-10 and 70-30. This means that, if the ADNI1 cohort
has 197/704 = 28% CN subjects, 48% MCI and 23% AD, such percentages
are preserved in both the training and the validation sets. The partition 90-
10 is intended to boost the efficacy of the approach at better performance,
but it may incur over-fitting problems. For this reason, we decided to show
here only the results on the partition 70-30. However, the evaluation per-
formed by using 90-10 of the data set reflects the results obtained with the
split at 70-30.
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SNP sets are the features of our classification model. Thus, the goal is to
recognize the SNP sets which make a distinction between the categories. To
do so, we group SNPs by the following genomic regions:

• Exons: each exon is intended to be a single specific region, not linked
to the exons of the same gene. Exon may belong to any type of gene,
protein-coding or not.

• Protein-coding exons: namely exons that belong to genes which are
known to code for proteins.

• Upstream exon regions: for each exon we extract 5k nucleotides that
precede the exon. The exon is excluded from the extracted region.

• Exons+upstream: for each exon, we take into account the exon itself
plus the upstream 5K nucleotides region.

• Genes: the complete genomic sequence of each gene, exons plus introns,
is taken into account.

• Genes+upstream+downstream: we extract the upstream and the down-
stream, for 20Kb each, and the sequence of the gene itself. Such a setup
equals the one used in [13].

The coordinates of such genomic elements are extracted from public databases
described in Section 2.2. The belonging of a SNP to a given region is cal-
culated via the loc function described in Section 2.1. All the experiments
are performed over the GrCh38 version of the human genome. Since ADNI1
is originally defined over previous versions of the human genome, we used
the tool UCSC LiftOver [33, 34] to convert such coordinates into coordinates
over the GrCh38 genome.

We applied the methodology described in Section 2.1 for identifying sig-
nificant regions. In particular, we applied a cut-off for the p-value (evaluated
by means of the fold-change) of 0.05. In this process, the three categories,
CN , AD and MCI, were evaluated separately. Then, we merged the re-
gions that resulted significant for AD and MCI into a single set of regions.
For this reason, in what follows, ill subjects are also referred to as the joint
category AD/MCI.

For each cross-validation, the resultant performance metrics were cal-
culated by running 1,000 iterations, and by computing the mean and the
standard deviation of the results.
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Figure 1 shows the accuracy values of DiGAS and SKAT on the ADNI1
cohort varying the genomic regions and the type of classifier. For each type of
region, DiGAS always outperforms SKAT in particular using SVM classifiers.
Independently from the type of genomic region, the classifier implemented
by means of a decision tree shows the worst accuracy for both compared
approaches. SKAT reaches a maximum of 0.78 when exons are used as the
basis for training an SVM linear classifier, but in general SKAT accuracy
is almost always below 0.75. On the contrary, DiGAS is able to break the
barrier of 0.75 in multiple configurations. The best accuracy value of 0.94
is obtained when upstream exon regions are taken into account alone or in
combination with exons and by using an SVM classifier.

Similar results are shown for the F1 score for the ADNI1 cohort in Figure
2, with only one exception given by the kNN classifier on genes where SKAT
outperforms DiGAS. SKAT reaches a maximum of 0.66 via exons, while
DiGAS obtains up to a 0.92 of F1 score on both upstream exon regions and
exon+upstream.

Figures 3 and 4 report accuracy and F1 score values, respectively, on the
ADNI2 cohort. These results reflect the performance obtained for the ADNI1
cohort. Maximum values of accuracy are 0.92 (exons+upstream) and 0.77
(exons) for DiGAS and SKAT, respectively. Maximum F1 scores are 0.90
(exons+upstream) and 0.70 (exons) for DiGAS and SKAT, respectively.

Figures 5 and 6 show results obtained on the ADNI3 cohort. Accuracy
values follow similar trends obtained by testing the methodologies on ADNI1
and ADNI2. On the contrary, DiGAS and SKAT reduce their performance
on the F1 score. The difference with previous cohorts is due to the limited
number of AD/MCI subjects that are in the data set. ADNI3 cohort is an
ongoing project for which fewer ill subjects are yet reported. F1 scores for
the AD/MCI group suffer such a lack of data that does not affect accuracy
because such a measure takes into account both CN and AD/MCI groups.
However, it has to be noticed that DiGAS is still able to reach an F1 score
of 0.91 when exons regions are combined with the SVM linear classifier, and
exons+upstream regions still produce a maximum value of 0.85 and 0.87 when
SVM linear and kNN classifiers are employed. Moreover, DiGAS crosses the
barrier of 0.70 in several configurations. On the contrary, SKAT reaches
an F1 score greater the 0.70 only in three configurations, being the best one
equal to 0.71 by combining exon regions with the SVM linear classifier. Thus,
such results show that DiGAS, in contrast to SKAT, is more robust when
a limited amount of information is available. In general, the SVM linear
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Figure 1: Accuracy metrics on ADNI1 by using 70% of the data as training set for each
evaluated classification algorithm and each genomic region.
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Figure 2: F1 score metrics on ADNI1 by using 70% of the data as training set for each
evaluated classification algorithm and each genomic region.
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Figure 3: Accuracy metrics on ADNI2 by using 70% of the data as training set for each
evaluated classification algorithm and each genomic region.
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Figure 4: F1 score metrics on ADNI2 by using 70% of the data as training set for each
evaluated classification algorithm and each genomic region.
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classifier is the best choice to work with the DiGAS methodology, but the
kNN approach can be taken into account in the presence of data set with a
category containing a limited number of subjects.

Considering the required computing time resources, DiGAS is 5 orders of
magnitude faster than SKAT.

In general, we note that exons, and in particular not only protein-coding
exons, combined with upstream regions produce the best classification re-
sults. Alzheimer’s disease is a considered complex disease which involves
many genes and, presumably, their regulatory elements [35, 36]. Such reg-
ulatory elements are often placed in upstream gene regions. However, our
analysis shows that regulatory regions of genes are important as well as up-
stream exon regions. It is known that too much information may reduce
classifiers performance, especially when such overabundant data does not
relate with the recognition problem that is taken into account. The low per-
formance on genes and their combination with upstream and downstream
regions may reflect the importance of upstream exon regions, and thus inter-
and intra-genic regulatory elements in Alzheimer’s disease, rather than the
entire genetic sequence. In fact, upstream regions of exons alone produce
comparable results when combined with exon sequences. Such upstream re-
gions may overlap with exon regions, thus information contained in exons is
taken into account in both cases. However, pure exon regions are outper-
formed by their combination with upstream regions.

4. Conclusions

In conclusion, we presented a methodology, DiGAS, for diagnosing com-
plex genetic diseases, such as the Alzheimer’s disease, by means of phenotype
data. Existing approaches are based on the results of GWAS analysis to as-
sign a p-value to each SNP, then they aggregate SNP p-values at SNP set
level. Differently from such approaches, DiGAS computes a SNP set p-value,
according to the SNPs present in each set directly from genotype data. Tests,
performed on well-established data sets regarding the Alzheimer’s disease,
show that DiGAS outperforms the state-of-the-art method named SKAT in
classification power and computational timing required.
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