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Abstract

Real-world studies based on electronic health records often require manual chart review to

derive patients’ clinical phenotypes, a labor-intensive task with limited scalability. Here, we

developed and compared computable phenotyping based on rules using the spaCy frame-

work and a Large Language Model (LLM), GPT-4, for disease behavior and age at diagnosis

of Crohn’s disease patients. We are the first to describe computable phenotyping algorithms

using clinical texts for these complex tasks with previously described inter-annotator agree-

ments between 0.54 and 0.98. The data comprised clinical notes and radiology reports from

584 Mount Sinai Health System patients. Overall, we observed similar or better perfor-

mance using GPT-4 compared to the rules. On a note-level, the F1 score was at least 0.90

for disease behavior and 0.82 for age at diagnosis. We could not find statistical evidence

for a difference to the performance of human experts on this task. Our findings underline

the potential of LLMs for computable phenotyping.
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1 Introduction

Computable clinical phenotyping, the automatic grouping of patients according to their

medical history captured in Electronic Health Records (EHR), has been the focus of nu-

merous studies in the past decades [1], [2]. For these approaches, manual chart review is

limited to developing and validating the algorithms, therefore enabling clinical research at

scale. Large consortia such as Electronic Medical Records and Genomics (eMERGE) have

invested in resources such as the Phenotype Knowledge Base, which focuses on developing,

sharing, and validating computable phenotyping algorithms [3].

These algorithms can broadly be divided into two main categories: rule-based and

Machine Learning (ML)-based approaches. The choice between these approaches relies on

factors like the availability of data and the complexity of the task at hand [4]. Rule-based

techniques utilize predefined rules or criteria, typically requiring expertise in the relevant

medical domain. In contrast, ML-based methods employ algorithms to recognize data

patterns corresponding to different phenotypes.

Often, phenotypes of patient subgroups are insufficiently captured in the structured

EHR, requiring analysis of clinical narrative text and the use of Natural Language Pro-

cessing (NLP) to derive these phenotypes [5]. In their benchmark paper, Moldwin et al.

demonstrated, amongst others, for digestive diseases, that the incorporation of unstructured

data outperforms models that are only based on structured EHR [6]. While ML-based ap-

proaches may be able to identify unknown patterns using vast amounts of data, a rule-based

approach provides increased transparency compared to ML approaches, particularly when

applying Large Language Models (LLMs).

As Ananthakrishnan et al. demonstrated, one example of phenotypes that cannot

be reliably extracted from solely structured EHR are clinical subgroups of Crohn’s Dis-

ease (CD) [7]. CD, one of the main types of Inflammatory Bowel Disease (IBD), is an

immune-mediated disease marked by recurrent episodes of chronic inflammation of the gas-

trointestinal (GI) tract. The disease is characterized by significant heterogeneity in disease

course and treatment response [8]. In a recent publication, an expert consensus of the

European Crohn’s and Colitis Organization (ECCO) discussed core outcomes and outcome

measures relevant to be reported in IBD studies based on real-world data, such as EHR

[9]. Even though randomized studies are considered gold-standard, studies based on real-

world data are of interest to derive complementary evidence. The data is essential as it

enables longitudinal analysis of rich clinical data beyond the time and patient population

constraints of clinical trials [10]. For instance, studies based on real-world data can mitigate

the fact that many patients with severe disease courses are not included in clinical trials [11].

According to the ECCO expert group, when reporting or studying disease complications,
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it is recommended to consider the disease phenotype, such as the presence of strictures or

fistulas, as core outcomes. The Montreal Classification was recommended as an outcome

measure [9] and is used to group CD patients considering three phenotype categories: age

at diagnosis, disease behavior, and disease location (Table 1) [12], [13].

Disease behavior comprises different disease complications of CD, for instance, strictures

(B2) or fistulas and abscesses (B3). Strictures are luminal narrowings in any part of the GI

tract. They are developed due to chronic inflammation of the mucosa, resulting in excessive

repairs of the area of inflammation and, eventually, the mixture of inflamed and scarred tis-

sue [14]. Fistulae are abnormal connections between different parts of the GI tract, between

the GI tract and other organs, or between the GI tract and the skin. They can develop due

to chronic inflammation and damage to the intestinal wall [8], [15]. In the context of CD, an

abscess is a localized accumulation of pus that can develop due to inflammation or infection,

due to complicated and active disease [16]. Perianal disease is regarded as a disease modifier

that can co-occur with any other disease phenotype (B1-B3): Any penetrating or stricturing

disease complication in the perianal region is considered perianal disease. Disease behavior

is not a static classification category since disease complications can be gained during the

course of the disease [17]. The nuanced and often complex descriptions of the behavioral

phenotype in clinical text include descriptions of symptoms and treatment responses, as

well as the progression of the disease (Figure 1). Since phenotype data are stored mainly

in clinical narrative text, a patient’s disease behavior is usually extracted by manual chart

review [18]–[20].

Age at diagnosis refers to the age at initial CD diagnosis, and disease location to the

intestinal region of inflammation. Next to disease behavior, age at diagnosis is an essential

clinical component for CD clinical care and study cohort characterization, as it allows the

deduction of disease duration, a prognostic factor for treatment response with biologics [21].

Automated phenotyping based on NLP techniques, including information from clinical

notes, could facilitate patient classification on a large scale with minimal manual labeling

required. For instance, Stidham et al. recently demonstrated the successful extraction of

extraintestinal manifestations in IBD patients using a rule-based NLP approach [22].

In this work, we describe the development of two novel, sentence-based labeled datasets,

including annotations of disease phenotype and age at diagnosis in clinical notes of CD

patients. We used these data to develop and evaluate rule-based phenotyping algorithms

and compare them with an in-context learning approach using a GPT-4 model from OpenAI.

The established pipeline facilitates the large-scale labeling of previously unannotated clinical

narrative text.
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2 Materials and Methods

2.1 Data Collection and Preprocessing

Clinical notes from the EHR of the Mount Sinai Data Warehouse (MSDW) [23] were ac-

quired via the Artificial Intelligence Ready Mount Sinai (AIR·MS) platform. This dataset

was further enriched with reports from the radiology department, allowing the inclusion of

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) reports. 792 CD pa-

tients from the Mount Sinai Crohn’s and Colitis Registry (MSCCR) were considered for this

study, as previously described [18]. This cohort was selected due to already existing annota-

tions on a patient-level. We preprocessed the available clinical notes and radiology reports

by removing irrelevant note types (e.g., telephone encounters and patient instructions) and

texts that did not contain a CD-related context (Figure 2). 584 of the 792 patients had at

least one non-empty clinical note available after filtering. The clinical text dates range from

February 1940 (first clinical text) to May 2023 (latest clinical text). For the annotation

and extraction of the age at diagnosis, we additionally filtered notes for regular expressions

containing key expressions such as ”diagnosed”, ”Crohn’s [...] since”, or ”age at”1. To allow

for further granularity, we split all clinical texts into sentences (Figure 2).

2.2 Annotation and Dataset Creation

For disease behavior, annotation guidelines were based on Montreal classification annotation

procedures from the COMPASS-IBD study and the Ocean State Crohn’s and Colitis Area

Registry (OSCCAR) data dictionaries [19], [20]. Two annotators, an internal medicine

resident, and an IBD researcher, labeled 200 notes on a sentence-level (Figure 3). An

agreement sample of 50 notes (5,543 sentences) was used to ascertain the Inter-Annotator

Agreement (IAA), which was measured using Cohen’s kappa statistics [24]. After resolving

disagreements, a curated dataset was created and used as a test set. We additionally

labeled a development set consisting of 200 clinical texts, labeled by non-experts. Rules

were exclusively developed using this development dataset and evaluated on previously

unseen test data. To allow an evaluation of the disease behavior on the patient level, we

used a labeled subset from MSCCR. The data comprised 134 labeled patients with available

1Included clinical texts needed to match at least one of the following patterns:
(D|d)iagnosed|DIAGNOSED,
((C|c)rohn|CROHN|cd|CD)[^a-zA-Z0-9]*(since|SINCE),
(D|d)isease[^a-zA-Z0-9]*(O|o)nset|DISEASE[^a-zA-Z0-9]*ONSET,
(A|a)ge[^a-zA-Z0-9]*(A|a)t[^a-zA-Z0-9]*(D|d)iagnosis,
AGE[^a-zA-Z0-9]*AT[^a-zA-Z0-9]*DIAGNOSIS
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clinical texts until their first endoscopy within the MSCCR study.

The annotation of the age at diagnosis was conducted by the IBD researcher, labeling

200 additional clinical texts on a sentence level based on three categories: age at diagno-

sis, diagnosis year, and disease duration. Notably, the ground-truth age at diagnosis was

calculated using patients’ birth years and the note dates. After curation, this dataset was

split into a testing and a development sets. The original labels from MSCCR patients with

available clinical texts were used for a patient-level evaluation.

2.3 Disease Behavior Phenotyping

Two primary methods for disease behavior phenotyping were adopted: a rule-based algo-

rithm and an in-context learning approach.

2.3.1 Rule-based Approach

The rule-based approach leverages spaCy [25](for syntactic analysis and pattern match-

ing), scispaCy [26] (for concept extraction), and medspaCy (for negation detection) [27]. A

custom spaCy component, BehavioralPhenoCategorizer, is constructed for phenotype ex-

traction. The en core sci md scispaCy model is the cornerstone for syntactic analyses and

named entity recognition. After preprocessing, abbreviation detection, and Unified Medical

Language System (UMLS) linking using a curated subset of UMLS Metathesaurus codes,

patterns were established to detect specific CD behavioral phenotypes. The development

process utilized spaCy’s Matcher class to design patterns that describe token sequences for

accurate disease phenotyping of CD. Multiple patterns were crafted: for specific phenotype

complications, direct string-level matches, UMLS linkages, and two additional patterns

addressing medical conjectures (uncertainty matcher) and explicit exclusions (exclusion

matcher). These patterns were refined to differentiate complications like B2/B3 from peri-

anal disease through UMLS linking and token-level regular expression-like patterns.

In clinical texts, the presence and absence of medical conditions are often described,

making effective negation detection crucial. For behavioral phenotyping in CD, two strate-

gies were adopted: one leveraging medspaCy, a rule-based approach that identifies negation

patterns and uses dependency parsing to determine negated entities, and the other utiliz-

ing a Transformer-based Clinical Assertion and Negation Classification BERT model [28].

For the latter, we deployed the pre-trained bvanaken/clinical-assertion-negation-bert model

from the Hugging Face Hub2 that detects entity absence with a probability score, consid-

ering spans as negated if they surpass a 0.5 threshold.

2https://huggingface.co/bvanaken/clinical-assertion-negation-bert
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The BehavioralPhenoCategorizer processes each document in stages: initial categoriza-

tion using UMLS matching, pattern application to detect matches, followed by exclusion

checks based on direct string matching of terms such as “no” or ”not” and the results of

the chosen negation detection method. In case of a CD complication match, a context

window of up to seven tokens is scanned for uncertainty or exclusion patterns. If the match

is not determined to be negated but still linked to B2 or B3 classifications, proximity to

mentioning the perianal region is checked, leading to potential phenotype reassignment.

Phenotypes are stored and aggregated at different levels (patient, note, or sentence), with

the most severe phenotype following the order B1<B2<B3. The phenotyping performance

is assessed if the input data contains labeled ground-truth information (Figure 4).

2.3.2 In-context Learning

We deployed the Azure OpenAI GPT-4 model (1106-Preview) to generate note-level struc-

tured output on disease behavior phenotypes [29]. For the prompt, we added the slightly

shortened annotation guidelines of the COMPASS-IBD study and three randomly selected

examples, including outputs from the development dataset, an approach considered as few-

shot prompting (Table A1). The model was used off-the-shelf without any fine-tuning. We

implemented a function call to pre-define and structure the output of the GPT-4 model. To

make the model results more deterministic, we set the temperature parameter of the model

to 0. Besides that, the OpenAI default parameters were used.

2.4 Age at Diagnosis Phenotyping

Similar to the disease behavior, a custom spaCy component, AgeAtDiagnosisClassifier, was

engineered to determine the age at diagnosis. Through a series of pattern matching, textual

spans indicating age at diagnosis (e.g., ”diagnosed with 8 years old”), disease duration (e.g.,

”CD since 10 years”), or diagnosis year (e.g., ”CD diagnosed in 2002”) were recognized.

Subsequent analysis determined the age at diagnosis based on these matches, the patient’s

year of birth, and the date of the clinical text. Of note, the identified year of birth includes

an error margin of ±1 year since exact dates are not frequently mentioned in clinical notes.

True Positives (TP) corresponded to accurately identified ages at diagnosis (within ±1-

year) for performance metrics. True Negatives (TN) were accurate identifications where

age information was absent, False Positives (FP) were defined as wrongly identified age at

diagnosis labels, and False Negatives (FN) represented overlooked labeled instances.

We used the same prompt and model parameters as for disease behavior phenotyping

for the in-context learning approach (Table A1, section 2.3.2).
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2.5 Algorithm Performance Evaluation

The phenotyping algorithms were evaluated on note- and patient-level using the annotated

test datasets. The evaluation was conducted based on recall, precision, specificity, and F1

score. During the development of the disease behavior rule-based phenotyping algorithm

using the separate development dataset, our primary metric of interest was recall, given the

importance of the sensitive identification of positive instances. For age at diagnosis, on the

other hand, we prioritized precision to focus on the accurate extraction of the information

for downstream tasks. Maintaining a balanced precision, F1 score, and specificity were set

as secondary aims.

3 Results

3.1 Curation of the Disease Behavior and Age at Diagnosis

Datasets

To evaluate the performance of the disease behavior phenotyping algorithms, we created

a newly annotated dataset comprising 150 clinical notes and 50 radiology reports, with a

total of 15,390 sentences (Table A2).

50 of these clinical notes were labeled by two different annotators. The quality of the

labeling process was determined through Cohen’s kappa agreement scores. On sentence-

level, we observed an overall IAA score of 0.85 (Not B2/B3: 0.83; B2/B3: 0.84; perianal

disease: 0.87; Table A3). Evaluation on note-level increased the overall IAA to 0.90. These

results indicate a good consensus among annotators [30], underlining the robustness and

appropriateness of the labeled data as ground truth for subsequent phenotyping algorithm

evaluations.

After the annotators found a consensus for all disagreement instances, in the finalized,

curated test set, approximately 1% of clinical note sentences and 3.6% of radiology report

sentences got a B2 or B3 label assigned. 0.8% of clinical note sentences and 2.1% of radiology

report sentences were annotated with perianal disease (Table A2).

For age at diagnosis, we labeled a total of 80 randomly selected clinical texts comprising

79 clinical notes and one radiology report, amounting to a total of 12,293 unique sentences

(Table A4). Most commonly, in 60 % of the texts, the year of diagnosis was given, followed

by the age of diagnosis (23 % of texts) and disease duration (10 % of texts).
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3.2 Effective Disease Behavior Extraction on Note-Level with

Rules and GPT-4

While we only used full note texts as input for GPT-4, we ran the rule-based approach

at sentence-level, further aggregating the results for note- or patient-level evaluation. To

optimize our spaCy pipeline, we conducted a series of experiments with varied settings re-

garding rule types and negation detection options on the development set at the sentence

level. Concerning the differentiation of rule types, we observed that a synergistic approach

combining UMLS matching rules with rules for direct string matching was superior in its

performance compared to applying either of the rule types alone. Notably, the exclusive em-

ployment of string matching exhibited superior results compared to relying solely on UMLS

matching across clinical notes and radiology reports (Figure A1). For negation detection, we

analyzed the number of false positives and false negative disease complications using either

the medspaCy negation detection component, the Large Language Model (LLM) Negation

Classifier, or no negation detection. The LLM Negation Classifier performed superior to

the other two options, manifesting the lowest incidence of false negatives while preserving

a substantial number of accurately identified instances (Figure A2, Figure A3).

Using either the rule-based or LLM-based approach, the automated behavioral pheno-

typing based on clinical notes yielded high recall values on note-level, ranging from 0.92 -

1.00, depending on the phenotype (Table 2). The identification of no existing disease com-

plications was particularly successful, with recall and precision values above 0.94 for both

the GPT-4 and rule-based approach. Overall, the two approaches performed very similarly

on note-level. Also, when extracting the disease complication categories individually, we

were able to identify all instances of perianal disease and B2 (Table A5). Nonetheless, we

improved the results by aggregating B2 and B3 into one joint disease complication category

compared to separately phenotyping B2 and B3. The calculated Cohen’s kappa agreement

scores between the labels from the annotated consensus dataset and the labels derived from

the rules or GPT-4 are on average between 0.83 and 0.86 (Table A3). These scores are com-

parable and statistically not inferior to the IAA between the human annotators (Table A6),

underlining the high performance of the computational approaches.

Using radiology reports, the model performance values dropped to 0.64 - 1.00, with less

sensitive identification, particularly of B3 and B2 (Table A7). The underlying reason may

be the incorrect identification of B2 or B3 as perianal disease. The precision values and F1

scores indicate over-classification, resulting in false positive disease complication labels.

We additionally tested the performance of combining outputs from the GPT-4 and rule-

based approaches (Table 2). When considering disease complications, if at least labeled

by one of the two approaches (Rules OR GPT-4), we improved recall for detection of

9
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disease complications (1.00). However, we lost precision (0.81 for perianal disease, 0.78 for

structuring or penetrating disease). Only considering instances with the same labels based

on the rules and GPT-4 yielded the highest performance metrics with balanced recall and

precision, with F1 scores between 0.97 and 1.00. The overlap between labels derived from

the GPT-4 model and the rules for perianal disease was at 95%, for Not B2/B3 and B2/B3

at 90%.

3.3 Joint Evaluation of Rules and GPT-4 Enables Chart-

Review Prioritization

For 134 patients in the MSCCR study, we extracted disease phenotype at study enroll-

ment through manual chart review, considering all clinical information up until this point.

Compared to the note-level analysis, using the rule-based approach, we achieved a recall

value of 0.71 and a precision of 0.48 for detecting any complication (B2 or B3). For the

detection of perianal disease, the recall was 0.85 and precision 0.56, decreased compared to

the note-level analysis (Table 3).

Also for the GPT-4 based approach, the performance dropped considerably compared

to note-level analysis. Similar to the note-level results, aggregating the data into one disease

complication category improved results (Table A8).

Similar to the note-level evaluation, we applied ensemble methods based on the com-

bined output from the two approaches, either by focusing only on patients with the same

labels (77% overlap for Not B2/B3 and B2/B3 and 89% overlap for perianal disease) or by

considering a disease complication if detected by either of the approaches. Only considering

overlapping labels yielded more balance between recall and precision, with F1 scores of 0.69

(B2/B3) and 0.75 (perianal disease).

The GPT-4 model alone performed well at identifying the non-existence of disease com-

plications (no B2/B3 and no perianal disease), with an F1 score of 0.85 and 0.90, respec-

tively. This reflects a reduction of false positives compared to the rule-based approach.

The F1 score was further improved for perianal disease by 0.02 using the overlap ensemble

approach.

We evaluated the count of the note-level labels for each patient sub-group to understand

better whether a count-based cut-off may help to further stratify patients for chart re-

view. Patients labeled as B2/B3 had a significantly higher number of notes in their records

classified as B2/B3 compared to patients without any labeled complication (Figure A4).

Similarly, patients diagnosed with perianal disease have a noticeably higher frequency of

notes relating to this condition (Figure A5). However, for a considerable number of pa-

tients (rules: 15, GPT-4: 12) with known disease complications, this information was not

10
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extracted from or noted in any of the clinical notes. Therefore, stratification based on note

count with extracted disease complication did not remain a suitable option.

Of note, for the annotation process of the patient-level ground-truth labels, as the

primary clinical information system was used, the basis of underlying data differed from

the information available for the automated phenotyping.

3.4 GPT-4 Outperforms Rule-based Approach in Age at Di-

agnosis Extraction

We evaluated the performance of the age at diagnosis extraction through the rules and

GPT-4 model on note- and patient-level (Table 4). Using the rule-based approach, we

observed balanced performance metrics on note-level, exemplified by a recall of 0.78 and a

precision of 0.87. The GPT-4 model outperformed the rule-based model with a recall of

1.00 and a precision value of 0.87. The correlation between the extracted ages at diagnosis

was very high with 0.98 for GPT-4 (Figure A6). While also showing a higher correlation

compared to the rule-based approach (R = 0.88), the GPT-4 model was also able to label

all notes that included information on the age at diagnosis (64 out of 80). In contrast, the

rules only recognized 79% of the notes. Aggregating the results from GPT-4 and the rule-

based approach by calculating the mean or only including instances where the extracted age

at diagnosis was the same between rules and GPT-4 did not considerably improve overall

results.

On patient-level, a similar balance of the performance measures was achieved using the

rule-based approach, with lower overall performance values compared to the note-level, with

F1 scores of 0.71 and 0.82, respectively. Conversely, the metrics from GPT-4 were not as

balanced, with a recall of 1.00 and a precision of 0.59, but overall a higher F1 score (0.74)

compared to the rule-based approach. The correlation of GPT-4 and the rule-based age at

diagnosis with the manually labeled values was high (GPT-4: R = 0.84; Rules: R = 0.81),

but reduced compared to the note-level (Figure A7). Only considering patients with the

same labels yielded an R value of 0.86, but compared to the GPT-4 based approach, a

reduction of extracted labels by 34%.

The underlying data of the 458 MSCCR patients for evaluation on patient-level was not

specifically scanned for availability of the information in scope within the written clinical

text. Therefore, the reduced performance of the model on patient-level may be explained

by the limited data availability.
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4 Discussion

In the current study, we demonstrate the feasibility of automatically extracting clinical in-

formation on CD disease behavior and age at diagnosis from EHR using a rule-based and

LLM-based approach. To our knowledge, we are the first to describe NLP-based phenotyp-

ing for the stated tasks and to conduct a comparison between rules and the GPT-4 model.

We observed that GPT-4 performed as well or better than the rule-based approaches, sug-

gesting that large general-purpose language models may provide a more efficient and better-

performing method to automated disease phenotyping in IBD.

The IAA of manual chart review of the described phenotypes differed between previous

studies, with Cohen’s kappa values between 0.54 and 0.79 for disease behavior and between

0.67 and 0.98 for age at diagnosis [31]–[33]. These findings underscore the complexity of

both tasks, in particular for the extraction of disease behavior. To evaluate our algorithms,

we created two datasets annotated on sentence-level. For disease behavior, we included two

annotators, and their IAA, on average 0.85 to 0.90, surpassed the kappa statistics stated in

previous studies. This may be due to differences in annotators training or abstraction rules

compared to other studies. Of note, the sentence- or note-level annotation agreements are

difficult to be compared with patient-level annotations.

Shrestha et al. described in their work the identifications of disease phenotypes by

using International Classification of Diseases (ICD)-codes of the Swedish National Patient

Register [34]. For our use case, working with ICD-codes was not a suitable option: Given

the fragmented nature of the US healthcare system [35], coded information in EHR data

is not sufficiently reliable to extract the complex clinical information [7]. Nevertheless, the

published study by Shrestha et al. provides a baseline for computable phenotyping with

which we can compare our patient-level results. Their reported recall values lie between

0.62 for B2/B3, 0.75 for B1, and 0.81 for perianal disease, and on average 0.94 for the

different phenotype groups of age at diagnosis. Our results are overall comparable when

only considering patients with identical labels using the rules and GPT-4, even exceeding the

results reported based on the ICD codes from the Swedish Patient register. Furthermore,

our reported performances are similar to those described for other tasks in the literature,

such as the extraction of extraintestinal manifestations [22].

The presented rule-based models offer systematic and transparent reasoning and are

thus potentially the preferred support for labeling tasks in a clinical setting, especially

when no baseline for the stated problem exists. The newer general-purpose LLM, GPT-

4, achieved very similar results as the rule-based approach when extracting the patients’

disease behavior. The model’s capacity to digest and consider the context of one clinical

note as a whole is of interest for context-dependent phenotyping tasks. In particular, for
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age at diagnosis, the recall of the GPT-4 model with 1.00 on note- and patient-level was

considerably higher than for the rule-based approach with 0.78 and 0.73, respectively. While

on patient-level this increased value is accompanied by a reduction of precision by 0.11,

the extraction of time or basic demographic information may be an easier task than the

extraction of medical domain-specific information for a general LLM such as GPT-4 [36].

In addition, an important consideration is the time effort required to develop the different

approaches: the estimated time effort to develop the rules for disease behavior, including

the development of the task-specific UMLS subset for matching, was about two months of

full-time work and for the rules for age at diagnosis extraction an additional 2 weeks. The

implementation and development of the prompt for GPT-4 took about a day. Our approach

to incorporating the annotation guidelines into the prompt, in addition to randomly selected

examples from the development set, provided a quick and successful solution for prompt

engineering.

Our models for disease behavior classification performed superior on clinical notes com-

pared to radiology reports (Table 2). Radiology reports were underrepresented in our test

and development sets, which may have influenced performance. Furthermore, they may

miss important elements of the patients’ clinical data, such as doctor office visit findings or

the patient history. Additionally, these reports typically feature longer sentences, intricate

language structures, fewer spelling errors, and frequent suggestions, exclusions, and nega-

tions, highlighting the need for broader representation and potentially different processing

strategies in future studies.

For a more in-depth understanding of false classifications on a patient level, we analyzed

five falsely positive and falsely negative classified patients for B2/B3 and perianal disease.

False positive instances for B2/B3 mainly came from describing similar complications in

other disease contexts (e.g., carotid stenosis), complex sentence structures leading to errors

in negation detection, and confusion with perianal disease labels. Instances misclassified as

perianal disease are suspected to be partly wrong-labeled. In one instance, the negation

detection was not sophisticated enough to catch the negation in the given sentence structure.

There was no clear description of the phenotype in the clinical texts for the patients with

false negative labels of B2/B3 and perianal disease. Challenges for the age at diagnosis

extraction were mainly caused by the varied representations of dates in the data, coupled

with the task of unambiguously linking a date occurrence to the diagnosis of CD.

While our study shows promising results, we acknowledge certain limitations. Foremost,

due to the fragmentation of clinical data into multiple IT systems, we did not have access

to endoscopy or pathology reports for our study. Addition of these data types may improve

future studies. Furthermore, our phenotyping pipeline is based only on information cap-

tured in clinical text and does not incorporate structured EHR data. With this underlying
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difference of utilized data for computable phenotyping compared to manual chart review,

and without checking whether the information we are looking for is, in fact, captured in

our underlying data, the patient-level evaluation has to be regarded with caution. Sec-

ond, our models were only evaluated on internal clinical texts from Mount Sinai Health

System (MSHS). This poses a potential limitation, as the rule-based algorithms might

be particularly tuned to language idiosyncrasies specific to physicians within the Mount

Sinai health system or the reporting conventions typical of this institution. Therefore,

future external validations efforts will be needed to finalize understanding of the models’

generalizability in other clinical settings, which may have different linguistic nuances or

documentation practices.

In conclusion, GPT-4 performed at least comparable and, in some cases, better than

the rule-based approach for CD disease phenotyping, with little effort involved. There-

fore, we anticipate that LLMs will be increasingly deployed for phenotyping tasks. Despite

the reduced performance of the described phenotyping algorithms on patient-level, we are

confident that our work can, in the future, contribute to studies based on large patient

cohorts. Prioritization of patients for chart review may be one future application in or-

der to accelerate the labeling process and improve patient quality. Here, patients labeled

as non-penetrating, non-stricturing and non-perianal disease by the two approaches may

be reviewed with less time spent, as the automated phenotyping performed very well in

these cases. Furthermore, for patients with automatically labeled disease complications,

the additional information on the date of the clinical note where the complication is spot-

ted may enable a more targeted chart review. Our approach can serve as a strong baseline

for such future developments. For future work, the comparison with domain-specific LLM

such as MEDITRON or BioMistral for complex domain-specific tasks such as extraction of

disease behavior, and for tasks requiring less domain-expertise, such as extraction of age at

diagnosis, may be of interest [37], [38].
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Tables

Table 1: Montreal Classification for Crohn’s Disease patients according to Silverberg,
Satsangi, Ahmad, et al. [12]. †“p” is added to B1–B3 when concomitant perianal
disease is present. ∗L4 is a modifier that can be added to L1–L3 when concomitant
upper gastrointestinal disease is present.

Category Classification Definition

Age at Diagnosis
A1 Below 16 years
A2 Between 17 and 40 years
A3 Above 40 years

Disease Behavior

B1 Non-stricturing and non-penetrating
B2 Stricturing
B3 Penetrating
p† Perianal disease modifier

Disease Location

L1 Ileal
L2 Colonic
L3 Ileocolonic
L4∗ Isolated upper disease
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Table 2: Performance of the rule-based phenotyping algorithms and in-context learn-
ing using a GPT-4 model to extract disease behavior on note-level using the newly
annotated test datasets comprised of 150 clinical notes. Stricturing and penetrating
complications were combined into one ”B2/B3” category. Rules AND GPT-4: Only
instances with same results from rules and GPT-4 are considered; Rules OR GPT-4:
disease complication was considered if labeled by either rules or GPT-4.

Phenotype Model Recall Precision F1 score Specificity

Not B2/B3

Rules 0.94 1.00 0.97 0.84
GPT-4 0.95 0.98 0.96 0.86
Rules AND GPT-4 0.98 1.00 0.99 0.94
Rule OR GPT-4 0.90 1.00 0.95 0.78

B2/B3

Rules 1.00 0.84 0.92 1.00
GPT-4 0.95 0.86 0.90 0.98
Rules AND GPT-4 1.00 0.94 0.97 1.00
Rule OR GPT-4 1.00 0.78 0.87 1.00

Perianal - yes

Rules 1.00 0.86 0.93 0.86
GPT-4 0.92 0.92 0.92 0.92
Rules AND GPT-4 1.00 1.00 1.00 1.00
Rule OR GPT-4 1.00 0.81 0.89 0.81

Perianal - no

Rules 0.97 1.00 0.98 1.00
GPT-4 0.98 0.98 0.98 0.98
Rules AND GPT-4 1.00 1.00 1.00 1.00
Rule OR GPT-4 0.95 1.00 0.98 1.00
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Table 3: Performance of rule-based phenotyping algorithms and in-context learning
using a GPT4-model to extract disease behavior on patient-level. 134 patients of
the MSCCR cohort had available information on the behavioral disease phenotype
through manual chart review. Stricturing and penetrating complications were com-
bined into one ”B2/B3” category. Rules AND GPT-4: Only instances with same
results from rules and GPT-4 are considered; Rules OR GPT-4: disease complication
was considered if labeled by either rules or GPT-4.

Phenotype Model Recall Precision F1 score Specificity

Not B2/B3

Rules 0.65 0.83 0.73 0.48
GPT-4 0.86 0.84 0.85 0.68
Rules AND GPT-4 0.87 0.83 0.85 0.72
Rule OR GPT-4 0.64 0.83 0.72 0.48

B2/B3

Rules 0.71 0.48 0.58 0.83
GPT-4 0.64 0.68 0.66 0.84
Rules AND GPT-4 0.66 0.72 0.69 0.83
Rule OR GPT-4 0.71 0.48 0.57 0.83

Perianal - yes

Rules 0.85 0.56 0.68 0.56
GPT-4 0.78 0.58 0.67 0.58
Rules AND GPT-4 0.84 0.68 0.75 0.68
Rule OR GPT-4 0.85 0.50 0.63 0.50

Perianal - no

Rules 0.83 0.96 0.89 0.96
GPT-4 0.86 0.94 0.90 0.94
Rules AND GPT-4 0.89 0.95 0.92 0.95
Rule OR GPT-4 0.79 0.95 0.86 0.95

Table 4: Performance of rule-based phenotyping algorithms and in-context learning
using a GPT4-model to extract age at diagnosis on note- and patient-level. 80 clinical
notes were newly annotated for evaluation of this task. Patient-level performance
evaluation was conducted using 458 MSCCR patients with available clinical narrative
texts and existing age at diagnosis labels of the cohort. NA values are based on the
fact, that all patients have an annotated age at diagnosis, resulting in 0 true negatives.

Phenotype Evalation Model Recall Precision F1 score Specificity

Age at
diagnosis

Note-level
Rule-based 0.78 0.87 0.82 0.68
GPT-4 1.00 0.87 0.93 0.53

Patient-level
Rule-based 0.73 0.70 0.71 NA
GPT-4 1.00 0.59 0.74 NA
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Figures

Date: 05/01/2017 - Progress Note

Patient diagnosed with CD in 2014 reports intermittent 
abdominal pain and diarrhea, which has been managed 
with mesalamine. No new symptoms or complications 
noted. Abdominal examination reveals mild tenderness 
in the right lower quadrant, no masses or organomegaly.

Date: 03/17/2018 - Progress Note

Patient with Crohn's presents with increased frequency 
of abdominal pain and diarrhea over the past two 
months. Reports occasional blood in stool. Abdominal 
tenderness increased, particularly in the right lower 
quadrant. No perianal disease noted.

Date: 04/14/2020 - MRI Enterography

Evidence of transmural inflammation with stricturing in 
the terminal ileum. No fistulae or abscesses identified. 
Clinical correlation advised, consider adjusting medical 
therapy.

Date: 08/19/2022 - Progress Note

CD patient reports persistent perianal pain and 
discharge. Increased bowel movements and occasional 
fecal incontinence. Examination reveals an abnormal 
tract with drainage in the perianal area. Increased 
tenderness in the right lower quadrant.

Sentence-
Level

Note-
Level

Patient-
Level

Year of
diagnosis:

2014

Year of 
diagnosis: 
2014
Not B2/B3
no perianal 
disease

Not B2/B3
no perianal 
disease

B2
no perianal 
disease

B2

perianal 
disease

Not B2/B3
perianal 
disease

Year of 
diagnosis: 
2014
B2
perianal 
disease

Patient-​ID: 1919

Patient-​ID: 1919

Patient-​ID: 1919

Patient-​ID: 1919

Figure 1: Sentence-, note-, and patient-level labeling for an example patient.
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Notes from CD Patients
               = 49,572

Notes with Relevant Title
               = 34,248

Notes Containing CD / IBD
               = 13,760

Removing notes without CD context based on 
Regex: "crohns|crohn\'s|cd|​

(?:inflammatory|inflamatory|inflam) bowel 
(?:disease|dis|dx|dz)|IBD"

n = 21,307

Notes Split into Sentences
                   = 1,198,159

Removing notes with irrelevant note title (18 
categories removed) e.g. "Telephone Encounter", 

"Patient Instructions", "Finance Note"
n = 15,324

Radiology Reports from CD Patients
               = 2,204

Reports Containing CD / IBD
 = 1,385

Reports Split into Sentences
                    = 39,273

Sentences of Notes and Radiology 
Reports from CD Patients

                   = 1,237,432

               = 819

              = 15,324

               = 20,488

Reportsn

Reportsn

Reportsn

Notesn

Notesn

Notesn

Notesn

Notesn

Sentencesn Sentencesn

Sentencesn

Figure 2: Data sources and preprocessing steps. After extracting all available clinical
notes from CD patients in MSCCR up until two weeks after the date of initial en-
doscopy and biopsy for sample collection for the study, all notes with irrelevant tiles
were removed. Subsequently, from the available clinical notes and radiology reports,
only disease-relevant texts were further processed by splitting them into sentences.

Define 
Annotation 
Guidelines

Distribution-​
based

Note Sampling
n = 100

Initial
Annotation

Annotation of
Random 
Samples
n = 150

Annotation of 
Agreement 

Sample
n = 50

Annotator
Briefing

Evaluation of 
Agreement:

Kappa Statistics

Refine
 Guidelines

Curation

Figure 3: Labeling process. The process from building annotation guidelines to a final
annotated and curated dataset for CD disease complications containing 150 clinical
notes and 50 radiology reports.
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Comparison

Named Entity Recognition

Syntactic Analysis

DataFrameLoader

Phenotype Extraction

Result Aggregation

Performance Analysis

Pipeline

CLIPPEHR BehavioralPhenoCategorizer

Clinical Text

Abbreviation Detection

Use Case Specific UMLS Linking

UMLS Matching to CUI Subset

Pattern Matching

Negation Detection

p <> B2/B3

Tokenizer Tagger Parser Lemmatizer> > >

"SBMA" "Spinal and bulbar muscular atrophy">

fistula

C0016169 C1550639 C0079943C0149889

C0267483
has_fistula

C0267482
C1559386

has_stricture
C0151924

Crohn's disease, history of stricture.

"stricturing disease, no fistula"

Preprocessing

"[first sentence].  [first part of sentence with 
more then 6 entities]     [second sentence part]."

_ _ _ _

_ _ _ _

Crohn's disease, history of stricture.

Pattern Matching

Crohn's disease, diagnosed at age 19.

AgeAtDiagnosisCategorizer

Comparison

diagnosed at age 19 < diagnosed at age 21

Figure 4: Rule-based phenotyping algorithm. The phenotyping process starts with
clinical texts from radiology and clinical notes as input. The spaCy pipeline con-
tains, on the one hand, elements defined by CLIPPEHR and, on the other hand,
the newly developed BehavioralPhenoCategorizer or the AgeAtDiagnosisCategorizer.
After the phenotype extraction, result aggregation and performance analysis are op-
tional. Evaluation is only conducted if ground-truth labels are available.
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Supplementary Tables

Table A1: Prompt for GPT4-based phenotyping of disease behavior and age at diag-
nosis. Examples were randomly drawn from the labeled development dataset.

1 Assistant is an expert gastroenterologist good at extracting

information from clinical notes.

2

3

4 Below is a clinical note of a Crohn ’s disease patient.

5 Classify the patient according to the Montreal classification (

guidelines added) and format output as json.

6

7 Inflammatory (NotB2/B3):

8 - Absence of any prior or current B2 and B3 complication

9

10 Stricturing (B2):

11 Any OR all prior or current of the following:

12 - Stricture , stenosis or narrowing in any part of colon or small

intestine

13 - Single or multiple luminal narrowings with pre -stenotic dilatation

14 - Surgical dilation because of Crohn or stricturoplasty

15 - Small bowel obstruction

16 - Dilated bowel with transition point or stricture

17

18 Penetrating (B3):

19 Any OR all prior or current of the following:

20 - Abdominal , abdominal wall , retroperitoneal or pelvic abscess

21 - Fistula in the small bowel , large bowel , or the enteroenteric ,

enterocolonic , enterovesicular , enterocutaneous , colocolonic ,

colovesicular , colovaginal , colocutaneous region

22 An anastomosis is not enough evidence for B3.

23

24 Perianal Disease (p):

25 Determined separately from B1/B2/B3 designation if any OR all prior

or current:

26 - Perianal fistula/abscess

27 - Perirectal or rectal fistula/abscess

28 - Anal or rectal stricture/stenosis
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29 - Any procedure/surgery for perianal/perirectal/rectal abscess , anal

/anorectal dilation or perianal fistula repair (fistulotomy ,

advancement flap)

30 - Seton placement

31 - Any B3 complication identified during rectal examination

32 Additionally extract the patients ’ age at Crohn ’s diagnosis in years

(no four -digit year number but age), the year of Crohn ’s

diagnosis or Crohn ’s disease duration in years (recalculate

months to years by deciving by 12).

33 Only report the number if you are certain it refers to the Crohn ’s

disease diagnosis of the patient , no other diseases or family

members.

34

35 Make sure the answer is correct and don ’t output false content. Only

extract the values requested.

36

37 Here are some examples:

38

39 Input: ‘‘‘Crohn ’s with history of perianal fistula presenting with

recurrent urinary tract symptoms. Assess for rectovaginal or

vesicular fistula.‘‘‘

40 JSON: ‘‘‘

41 {

42 "disease_behavior": "Not B2/B3",

43 "perianal_disease": "1",

44 "age_at_diagnosis": "Not specified",

45 "year_of_diagnosis": "Not specified",

46 "disease_duration": "Not specified"

47 }

48 ‘‘‘

49

50 Input: ‘‘‘Surgeries: Open ileocolic resection , laparatomy due to

bowel obstruction.‘‘‘

51 JSON: ‘‘‘

52 {

53 "disease_behavior": "B2",

54 "perianal_disease": "0",

55 "age_at_diagnosis": "Not specified",

56 "year_of_diagnosis": "Not specified",

57 "disease_duration": "Not specified"

58 }

59 ‘‘‘
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60

61 Input: ‘‘‘HPI: 20 y/o man with fistulizing chrohn ’s disease

diagnosed 11/2012.‘‘‘

62 JSON: ‘‘‘

63 {

64 "disease_behavior": "B3",

65 "perianal_disease": "0",

66 "age_at_diagnosis": "Not specified",

67 "year_of_diagnosis": "2012",

68 "disease_duration": "Not specified"

69 }

70

71

72 Here is the input:

73 ‘‘‘

74 {note}

75 ‘‘‘

Table A2: Overview of the annotation process of the test dataset for the behavioral
disease phenotype using clinical notes and radiology reports.

Clinical Notes Radiology Reports Total

Total number of notes 150 50 200
Total number of sentences 14,236 1,154 15,390
Mean sentences per note (SD) 95 (±87) 23 (±11) -

Not B2/B3
Notes 112 32 144
Sentences 14,094 1,113 15,207

B2
Notes 13 7 20
Sentences 62 24 86

B3
Notes 25 11 36
Sentences 80 17 97

Perianal disease
Notes 25 7 32
Sentences 113 24 137

30

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2023.10.16.23297099doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.16.23297099
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table A3: Cohen’s kappa agreement scores calculated as inter-annotator agreements
(IAA) between the two annotators on sentence- and note-level, as well as between the
consensus labels from the two annotators, and the labels derived using GPT-4 or the
rules on note-level, respectively.

Comparison Not B2/B3 B2/B3 Perianal Average

Sentence-level IAA 0.83 0.84 0.87 0.85
Note-level IAA 0.88 0.88 0.95 0.90
GPT-4/consensus IAA 0.80 0.80 0.89 0.83
Rules/consensus IAA 0.84 0.84 0.90 0.86

Table A4: Overview of the annotation process of the test dataset for the age at
diagnosis using clinical notes and radiology reports.

Clinical Notes Radiology Reports Total

Total number of notes 79 1 80
Total number of sentences 12,261 32 12,293
Mean sentences per note (SD) 155 (±116) 32 (NA) -

Age at diagnosis
Notes 18 0 18
Sentences 21 0 21

Year of diagnosis
Notes 47 1 48
Sentences 76 1 77

Disease duration
Notes 8 0 8
Sentences 10 0 10

Table A5: Performance of the rule-based phenotyping algorithm and GPT-4-based
results of disease behavior phenotyping on note level using the newly annotated test
dataset comprising in total 200 clinical notes and 50 radiology reports.

Model Phenotype Recall Precision F1 score Specificity

Rule-based Not B2/B3 0.94 1.00 0.97 1.00
Rule-based B2 0.92 0.75 0.83 0.97
Rule-based B3 1.00 0.86 0.93 0.97
GPT-4 Not B2/B3 0.95 0.98 0.96 0.95
GPT-4 B2 0.92 0.57 0.71 0.93
GPT-4 B3 0.80 0.95 0.87 0.99
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Table A6: Statistical differences between the Cohen’s kappa agreement scores from
the note-level inter-annotator agreement (IAA) of the two annotators, as well as
between the consensus labels from the two annotators, and the labels derived using
GPT-4 or the rules on note-level, respectively. Differences are reported in form of the
Z-statistic and the corresponding p-values and q-values (FDR-adjusted p-values).

GPT-4 vs note-level IAA Rules vs note-level IAA

Phenotype Z-score p-value q-value Z-score p-value q-value

Not B2/B3 -0.74 0.46 0.70 -0.39 0.70 0.70
B2/B3 -0.74 0.46 0.70 -0.39 0.70 0.70
Perianal -0.78 0.43 0.70 -0.67 0.50 0.70

Table A7: Performance of the rule-based phenotyping algorithm and GPT-4-based
results of disease behavior phenotyping on note level using the newly annotated test
dataset comprising 50 radiology reports.

Model Phenotype Recall Precision F1 score Specificity

Rule-based
Approach

Not B2/B3 0.91 0.94 0.92 0.89

B2 0.71 0.50 0.59 0.88

B3 0.64 0.78 0.70 0.95

p - Yes 1.00 0.80 0.89 0.80

p - No 0.95 1.00 0.98 1.00

GPT-4-
based
Approach

Not B2/B3 0.81 1.00 0.90 1.00

B2 1.00 0.47 0.64 0.81

B3 0.64 0.78 0.70 0.95

p - Yes 1.00 1.00 1.00 1.00

p - No 1.00 1.00 1.00 1.00
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Table A8: Performance of the rule-based phenotyping algorithm and GPT-4-based
results of disease behavior phenotyping on patient level. 134 patients of the MSCCR
cohort had available information on the behavioral disease phenotype through manual
chart review.

Model Phenotype Recall Precision F1 score Specificity

Rule-based Not B2/B3 0.65 0.83 0.73 0.71
Rule-based B2 0.54 0.41 0.46 0.83
Rule-based B3 0.61 0.37 0.46 0.84
GPT-4 Not B2/B3 0.86 0.84 0.85 0.64
GPT-4 B2 0.58 0.50 0.54 0.87
GPT-4 B3 0.50 0.75 0.60 0.97
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Supplementary Figures
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Figure A1: Correctly identified phenotypes by patterns. The count of correctly iden-
tified phenotypes by different usage of patterns versus the true count per phenotype
on sentence level in the annotated clinical notes and radiology reports. UMLS match-
ing refers to patterns using the matched UMLS codes, while string matching refers
to patterns manually created to match specific phenotypes.
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Figure A2: Incorrect identified phenotypes by negation detection methods. Differ-
ences in negation detection methods when analyzing the count of incorrectly identi-
fied phenotypes in the annotated clinical notes and radiology reports. ”None” means,
that no additional negation detection besides the manually defined rules for uncer-
tainty and exclusion is used. ”medspaCy” refers to negation detection based on
the medspaCy ConText component, and ”LLM” refers to negation detection via the
clinical-assertion-negation-bert classifier.
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Figure A3: False negative phenotypes by negation detection methods. Differences in
negation detection methods when analyzing the count of false negative phenotypes in
the annotated clinical notes and radiology reports. ”None” means, that no additional
negation detection besides the manually defined rules for uncertainty and exclusion is
used. ”medspaCy” refers to negation detection based on the medspaCy ConText com-
ponent, and ”LLM” refers to negation detection via the clinical-assertion-negation-
bert classifier.
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Figure A4: Counts of as penetrating disease classified notes per patient and phenotype
group. 24 of the 134 labeled patients had stricturing disease (B2) and 18 penetrating
disease (B3) at time point of study enrollment. Difference in note count between the
groups was calculated using the Wilcoxon rank-sum test. NS.: not significant; ”*”:
p-value < 0.05; ”**”: p-value < 0.01; ”***”: p-value < 0.001.
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Figure A5: Counts of as perianal disease classified notes per patient and phenotype
group. 27 of the 134 labeled patients had perianal disease at time point of study
enrollment. Difference in note count between the groups was calculated using the
Wilcoxon rank-sum test. NS.: not significant; ”*”: p-value < 0.05; ”**”: p-value <
0.01; ”***”: p-value < 0.001.
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Figure A6: Pearson correlation of ground-truth age at diagnosis derived manual anno-
tation and automatically extracted age at diagnosis values on note-level. Automatic
extraction of age at diagnosis included (A) a GPT-4-based approach, (B) a rule-based
approach, (C) a combination of the two, choosing the mean age at diagnosis value,
and (D) the subset of notes where the extracted age at diagnosis value through rules
and GPT-4 was identical. Fraction of notes that were annotated by each approach
given in the header title.
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Figure A7: Pearson correlation of ground-truth age at diagnosis derived manual an-
notation and automatically extracted age at diagnosis values on patient-level. Au-
tomatic extraction of age at diagnosis included (A) a GPT-4-based approach, (B) a
rule-based approach, (C) a combination of the two, choosing the mean age at diag-
nosis value, and (D) the subset of notes where the extracted age at diagnosis value
through rules and GPT-4 was identical. Fraction of patients that were annotated by
each approach given in the header title.
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