

- ⁹Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative
30 Therapies (BCRT), Berlin, Germany.
31
- 30 Therapies (BCRT), Berlin, Germany.
31
32
33
-
-
- 32
33
34 --
33
34
35
- 34
- 35
- 34
35
36
- 35
35
36
37 36
- --
36
37
38 37
- --
37
38
39 --
38
39
40 38
- 39
- --
39
40
41 40
- --
40
41
42 --
41
42
43 41
- 42
- 42
43
44 43
- --
43
44
45 44
45
46 44
- --
45
46
47 45
- 46
- 46
47
48 --
47
48
49 47
- --
48
49
50 48
- 49
- --
49
50
51 --
50
51
52 50 51
- 51
52
53 52
- --
52
53 53
|
| 53

54 **Abstract**
55 The develo
56 melanoma p
57 involved in The development of brain metastases hallmarks disease progression in 20-40% of
56 melanoma patients and is a serious obstacle to therapy. Understanding the processes
57 involved in the development and maintenance of melano melanoma patients and is a serious obstacle to therapy. Understanding the processes
involved in the development and maintenance of melanoma brain metastases (MBM) is
critical for the discovery of novel therapeutic strategi involved in the development and maintenance of melanoma brain metastases (MBM) is
critical for the discovery of novel therapeutic strategies. Here, we generated transcriptome
and methylome profiles of MBM showing high or l critical for the discovery of novel therapeutic strategies. Here, we generated transcriptome
and methylome profiles of MBM showing high or low abundance of infiltrated Iba1^{high} tumor-
associated microglia and macrophages and methylome profiles of MBM showing high or low abundance of infiltrated Iba1^{high} and methylome profiles of MBM showing high or low abundance of infiltrated lba1^{nigh} tumor-
50 associated microglia and macrophages (TAMs). Our survey identified potential prognostic
51 markers of favorable disease course associated microglia and macrophages (TAMs). Our survey identified potential prognostic
61 markers of favorable disease course and response to immune checkpoint inhibitor (ICi)
62 therapy, among them *APBB1IP* and the inte markers of favorable disease course and response to immune checkpoint inhibitor (ICi)
for therapy, among them *APBB1IP* and the interferon-responsive gene *ITGB7*. In MBM with high
ITGB7/APBB1IP levels, the accumulation of therapy, among them *APBB1IP* and the interferon-responsive gene *ITGB7*. In MBM with high
ITGB7/APBB1IP levels, the accumulation of TAMs correlated significantly with the immune
score. Signature-based deconvolution of MBM ITGB7/APBB1IP levels, the accumulation of TAMs correlated significantly with the immune
score. Signature-based deconvolution of MBM via single sample GSEA revealed enrichment
of interferon-response and immune signatures an score. Signature-based deconvolution of MBM via single sample GSEA revealed enrichment
of interferon-response and immune signatures and revealed inflammation, stress and MET
receptor signaling. MET receptor phosphorylation of interferon-response and immune signatures and revealed inflammation, stress and MET
receptor signaling. MET receptor phosphorylation/activation maybe elicited by inflammatory
processes in brain metastatic melanoma cells receptor signaling. MET receptor phosphorylation/activation maybe elicited by inflammatory
processes in brain metastatic melanoma cells via stroma cell-released HGF. We observed
phospho-MET^{Y1234/1235} in a subset of MBM a processes in brain metastatic melanoma cells via stroma cell-released HGF. We observed
phospho-MET^{Y1234/1235} in a subset of MBM and observed marked response of brain
metastasis-derived cell lines (BMCs) that lacked drug phospho-MET^{Y1234/1235} phospho-MET^{Y1234/1235} in a subset of MBM and observed marked response of brain
metastasis-derived cell lines (BMCs) that lacked druggable BRAF mutations or developed
resistance to BRAF inhibitors (BRAFi) *in vivo* to MET metastasis-derived cell lines (BMCs) that lacked druggable BRAF mutations or developed
resistance to BRAF inhibitors (BRAFi) *in vivo* to MET inhibitors PHA-665752 and ARQ197
(tivantinib). In summary, the activation of MET resistance to BRAF inhibitors (BRAFi) *in vivo* to MET inhibitors PHA-665752 and ARQ197
(tivantinib). In summary, the activation of MET receptor in brain colonizing melanoma cells by
stromal cell-released HGF may promote t (tivantinib). In summary, the activation of MET receptor in brain colonizing melanoma cells by
stromal cell-released HGF may promote tumor cells self-maintenance and expansion might
counteract ICi therapy. Therefore, thera stromal cell-released HGF may promote tumor cells self-maintenance and expansion might
counteract ICi therapy. Therefore, therapeutic targeting of MET possibly serves as promising
strategy to control intracranial progressi counteract ICi therapy. Therefore, therapeutic targeting of MET possibly serves as promising
strategy to control intracranial progressive disease and improve patient survival.
Key words: Melanoma, brain metastasis, TAMs, 574 strategy to control intracranial progressive disease and improve patient survival.

75 **Key words:** Melanoma, brain metastasis, TAMs, interferon signaling, MET recep

76

75 Key words: Melanoma, brain metastasis, TAMs, interferon signaling, MET receptor
76
77

-
-
-

77
78
79 78
79 . .
79

79

 $\overline{3}$

80 **Introduction**
81 The interaction of
82 mainly comprising
83 oligodendrocytes The interaction of brain colonizing tumor cells with the tumor microenvironment (TME),
mainly comprising innate and adaptive immune cells, microglia, astrocytes, neurons and
oligodendrocytes crucially determines the develo mainly comprising innate and adaptive immune cells, microglia, astrocytes, neurons and

83 oligodendrocytes crucially determines the developmental stages of brain metastases (BM).

84 Brain metastases are observed in 20 – 83 oligodendrocytes crucially determines the developmental stages of brain metastases (BM).
84 Brain metastases are observed in $20 - 40\%$ of melanoma patients during the course of
85 disease and micrometastases are evide Brain metastases are observed in $20 - 40\%$ of melanoma patients during the course of
disease and micrometastases are evident in more than 75% of autopsied brains¹. Hence,
only a subset of melanoma cells that entered th disease and micrometastases are evident in more than 75% of autopsied brains¹. Hence, disease and micrometastases are evident in more than 75% of autopsied brains¹. Hence,
86 only a subset of melanoma cells that entered the brain develop symptomatic and detectable
87 BM during the lifetime of melanoma pat only a subset of melanoma cells that entered the brain develop symptomatic and detectable
BM during the lifetime of melanoma patients. Unlike peripheral metastases, the emergence
of BM depends on a plethora of environmenta 87 BM during the lifetime of melanoma patients. Unlike peripheral metastases, the emergence
88 of BM depends on a plethora of environmental cues such as the spatiotemporal availability of
89 factors that are provided by ce of BM depends on a plethora of environmental cues such as the spatiotemporal availability of
factors that are provided by cells of the TME, supporting or repressing tumor cell growth².
Moreover, single-cell RNA sequencin factors that are provided by cells of the TME, supporting or repressing tumor cell growth². factors that are provided by cells of the TME, supporting or repressing tumor cell growth².

90 Moreover, single-cell RNA sequencing (scRNAseq) studies have confirmed regional

91 heterogeneity of astrocytes³, oligode Moreover, single-cell RNA sequencing (scRNAseq) studies have confirmed regional
11 heterogeneity of astrocytes³, oligodendrocytes⁴ and microglia^{5,6} in healthy human brains.
12 Particularly, astrocytes and microglia heterogeneity of astrocytes³, oligodendrocytes⁴ and microglia^{5,6} heterogeneity of astrocytes³, oligodendrocytes⁴ and microglia^{5,6} in healthy human brains.

Particularly, astrocytes and microglia adopt a reactive cell state^{7,8} that accompanies

secretion of pro- and anti-inflamma Particularly, astrocytes and microglia adopt a reactive cell state^{7,8} Particularly, astrocytes and microglia adopt a reactive cell state^{7,8} that accompanies
secretion of pro- and anti-inflammatory factors under pathological conditions^{9,10}. It is
therefore possible that subfractions of as secretion of pro- and anti-inflammatory factors under pathological conditions^{9,10} secretion of pro- and anti-inflammatory factors under pathological conditions^{9,10}. It is
therefore possible that subfractions of astrocytes and microglia communicate and react with
tumor cells in different ways. Probably therefore possible that subfractions of astrocytes and microglia communicate and react with
tumor cells in different ways. Probably, neuroinflammation precedes colonization of the brain
by tumor cells. However, tumor cells tumor cells in different ways. Probably, neuroinflammation precedes colonization of the brain
by tumor cells. However, tumor cells invading the brain amplify inflammatory processes
mediated by astrocytes and infiltrating t by tumor cells. However, tumor cells invading the brain amplify inflammatory processes
mediated by astrocytes and infiltrating tumor-associated microglia and macrophages
(TAMs)^{11,12}. Recently, signaling mediated by hepat mediated by astrocytes and infiltrating tumor-associated microglia and macrophages

(TAMs)^{11,12}. Recently, signaling mediated by hepatocyte growth factor (HGF) and the related

receptor MET (c-MET, HGFR) was identified a $(TAMs)^{11,12}$. Recently, signaling mediated by hepatocyte growth factor (HGF) and the related (TAMs)^{11,12}. Recently, signaling mediated by hepatocyte growth factor (HGF) and the related
receptor MET (c-MET, HGFR) was identified as the trigger of reactive microglia¹³. HGF is
thereby secreted by microglia in the receptor MET (c-MET, HGFR) was identified as the trigger of reactive microglia¹³ receptor MET (c-MET, HGFR) was identified as the trigger of reactive microglia¹³. HGF is
thereby secreted by microglia in the context of trauma but also under normal conditions and
seems to play a special role in the gr thereby secreted by microglia in the context of trauma but also under normal conditions and
101 seems to play a special role in the growth and self-renewal of neural stem cells in the
102 subventricular zone (SVZ) of rat b seems to play a special role in the growth and self-renewal of neural stem cells in the
102 subventricular zone (SVZ) of rat brains^{14,15}. Therefore, metastatic melanoma cells expressing
103 MET might scavenge HGF from th subventricular zone (SVZ) of rat brains 14,15 subventricular zone (SVZ) of rat brains^{14,15}. Therefore, metastatic melanoma cells expressing
103 MET might scavenge HGF from the brain for activation of processes downstream of MET
104 mediating survival and proliferati MET might scavenge HGF from the brain for activation of processes downstream of MET
104 mediating survival and proliferation.
105 Here, we used transcriptome and methylome profiling to unravel the epigenetic and
106 transc

104 mediating survival and proliferation.
105 Here, we used transcriptome and
106 transcriptomic landscapes of MBM 105 Here, we used transcriptome and methylome profiling to unravel the epigenetic and
106 transcriptomic landscapes of MBM that featured infiltration of TAMs with emphasis on the
4 106 transcriptomic landscapes of MBM that featured infiltration of TAMs with emphasis on the
4

potential role of microglia in the activation of the HGF/MET receptor signaling pathway. The
108 MET receptor inhibitors PHA-665752 and tivantinib (ARQ197) effectively blocked the growth
109 of brain metastases derived cel 108 MET receptor inhibitors PHA-665752 and tivantinib (ARQ197) effectively blocked the growth
109 of brain metastases derived cells (BMCs). Hence, targeting MET receptor signaling might
110 serve as a potent therapeutic ta 109 of brain metastases derived cells (BMCs). Hence, targeting MET receptor signaling might
110 serve as a potent therapeutic target for brain metastases lacking druggable BRAF^{V600}
111 mutations.
112 **Results** serve as a potent therapeutic target for brain metastases lacking druggable BRAF V600 110
111
112
113 111 mutations.
112 **Results**
113 **A microgli**
114 Microglia a

112 **Results**
113 **A microgli**
114 Microglia a
115 (CNS) tha **A microglia-specific gene cluster discriminates MBM**
114 Microglia are a unique population of antigen-presenting cells in the central nervous system
115 (CNS) that are capable of clearing the brain of microbes, dead cells Microglia are a unique population of antigen-presenting cells in the central nervous system
115 (CNS) that are capable of clearing the brain of microbes, dead cells and protein
116 aggregates¹⁶. Besides, microglia play a (CNS) that are capable of clearing the brain of microbes, dead cells and protein
116 aggregates¹⁶. Besides, microglia play a crucial role during injury repair and display an
117 exceptional role in immune surveillance an aggregates¹⁶. Besides, microglia play a crucial role during injury repair and display an aggregates¹⁶. Besides, microglia play a crucial role during injury repair and display an
117 exceptional role in immune surveillance and tumor clearance^{17,18}. Although the role of tumor-
118 associated microglia and ma exceptional role in immune surveillance and tumor clearance^{17,18} Exceptional role in immune surveillance and tumor clearance^{17,18}. Although the role of tumor-
associated microglia and macrophages (TAMs) in primary brain tumors such as
glioblastoma¹⁹⁻²² has been intensively studied, associated microglia and macrophages (TAMs) in primary brain tumors such as
119 glioblastoma¹⁹⁻²² has been intensively studied, their role in the progression of brain
120 metastases remains poorly understood.
121 We perf glioblastoma¹⁹⁻²²

qlioblastoma¹⁹⁻²² has been intensively studied, their role in the progression of brain
120 metastases remains poorly understood.
121 We performed immunohistochemistry (IHC) of our MBM cohort (Supplementary table 1
122 a metastases remains poorly understood.
121 We performed immunohistochemistry
122 and²³) to determine the levels of activa
123 well-established marker, reactive micro 121 We performed immunohistochemistry (IHC) of our MBM cohort (Supplementary table 1
122 and²³) to determine the levels of activated, Iba1^{high} TAMs. Although Iba1/AIF1 serves as a
123 well-established marker, reactive and²³) to determine the levels of activated, Iba1^{high} and²³) to determine the levels of activated, $Iba1ⁿyn$ TAMs. Although $Iba1/AlF1$ serves as a
123 well-established marker, reactive microglia cannot be distinguished from brain infiltrated
124 macrophages²⁴. Initial well-established marker, reactive microglia cannot be distinguished from brain infiltrated
124 macrophages²⁴. Initial studies of MBM revealed that lba1/AIF1 levels classified tumors into
125 highly and lowly TAM infiltra macrophages $^{\mathsf{24}}$ macrophages²⁴. Initial studies of MBM revealed that $\frac{1}{A}$ levels classified tumors into

highly and lowly TAM infiltrated (Figure 1a, Supplementary figure 1a). Moreover, we

observed overlapping patterns of infiltra highly and lowly TAM infiltrated (Figure 1a, Supplementary figure 1a). Moreover, we
126 observed overlapping patterns of infiltration of Iba1^{high} TAMs and CD3⁺ T cells (Figure 1b). As
127 CD3 only provided information observed overlapping patterns of infiltration of $Iba1^{high} TAMs$ and $CD3⁺ T$ cells (Figure 1b). As the observed overlapping patterns of infiltration of lba1^{ngh} TAMs and CD3⁺ T cells (Figure 1b). As
127 CD3 only provided information about levels of T cell infiltration, we used the ESTIMATE
128 algorithm²⁵ t 127 CD3 only provided information about levels of T cell infiltration, we used the ESTIMATE
128 algorithm²⁵ to gain insight into the overall degree of immune cell infiltration of MBM. In line
129 with our previous obser algorithm²⁵ algorithm²⁵ to gain insight into the overall degree of immune cell infiltration of MBM. In line
129 with our previous observation, tumors with intensive TAM and T cell infiltration exhibited a
130 high immune score (Pts with our previous observation, tumors with intensive TAM and T cell infiltration exhibited a
130 high immune score (Pts 3, 4, 10, 12) whereas MBM with low levels of Iba1^{high}/ CD3⁺ cell
131 infiltration (Pts 1, 2) or lo high immune score (Pts 3, 4, 10, 12) whereas MBM with low levels of Iba1^{high}/ CD3⁺ high immune score (Pts 3, 4, 10, 12) whereas MBM with low levels of Iba1^{nign}/ CD3⁺ cell
131 infiltration (Pts 1, 2) or low expression of Iba1/AIF1 (Supplementary figures 1b, c) showed
132 low immune scores (Figure 1c). 131 infiltration (Pts 1, 2) or low expression of Iba1/AIF1 (Supplementary figures 1b, c) showed
132 low immune scores (Figure 1c). As expected, brain metastases derived cell lines (BMCs)
133 with absence of immune cells fe 132 low immune scores (Figure 1c). As expected, brain metastases derived cell lines (BMCs)
133 with absence of immune cells featured lowest scores (Supplementary figures 1b, c). The
133 states of immune cells featured lowe 133 with absence of immune cells featured lowest scores (Supplementary figures 1b, c). The
5

brain has long been considered a sanctuary where tumor cells can grow undisturbed and
protected from attack by immune cells. Therefore, we next investigated expression levels of
lba1/AIF1 in brain (MBM) and extracranial me protected from attack by immune cells. Therefore, we next investigated expression levels of
136 Iba1/AIF1 in brain (MBM) and extracranial metastases (EM). We observed AIF1 expression
137 in both as well as a high correlati Iba1/AIF1 in brain (MBM) and extracranial metastases (EM). We observed AIF1 expression
in both as well as a high correlation with immune score (Figure 1d), suggesting a relationship
between levels of infiltration of TAMs a 137 in both as well as a high correlation with immune score (Figure 1d), suggesting a relationship

138 between levels of infiltration of TAMs and immune cells not only in the brain. As high levels of

139 immune cell/T c between levels of infiltration of TAMs and immune cells not only in the brain. As high levels of

immune cell/T cell infiltration are generally associated with good prognosis²⁶, we determined

the probability of survival immune cell/T cell infiltration are generally associated with good prognosis²⁶ 139 immune cell/T cell infiltration are generally associated with good prognosis²⁶, we determined
140 the probability of survival related to Iba1/AIF1 expression of patient's with (study
141 EGAS00001003672) and without 140 the probability of survival related to Iba1/AIF1 expression of patient's with (study
141 EGAS00001003672) and without (TCGA-SKCM) MBM. We observed beneficial effects of
142 high Iba1/AIF1 levels in the TCGA cohort (HR= 141 EGAS00001003672) and without (TCGA-SKCM) MBM. We observed beneficial effects of

142 high Iba1/AIF1 levels in the TCGA cohort (HR=0.46 (0.35 – 0.62), logrank p=1.3e-07)

143 (Figures 1e, f), however, Iba1/AIF1 level ha 142 high Iba1/AIF1 levels in the TCGA cohort (HR=0.46 (0.35 – 0.62), logrank p=1.3e-07)

143 (Figures 1e, f), however, Iba1/AIF1 level had no beneficial effects on the survival of MBM

144 patients. Since no data on TAM-i 143 (Figures 1e, f), however, Iba1/AIF1 level had no beneficial effects on the survival of MBM
144 patients. Since no data on TAM-infiltrated MBM are available, we performed comparative
145 methylome and transcriptome pro patients. Since no data on TAM-infiltrated MBM are available, we performed comparative

145 methylome and transcriptome profiling of $Iba1^{high}$ (n=5-10) and $Iba1^{low}$ (n=2-6) tumors and

146 identified a set of 417 different methylome and transcriptome profiling of Iba1^{high} (n=5-10) and Iba1^{low} methylome and transcriptome profiling of $\text{lba1}^{\text{hign}}$ (n=5-10) and lba1^{low} (n=2-6) tumors and
146 identified a set of 417 differentially methylated genomic regions (DMRs) that corresponded to
147 294 MBM expre identified a set of 417 differentially methylated genomic regions (DMRs) that corresponded to
147 294 MBM expressed genes (Figure 1g) a core set of markers (n=31) sufficient to split tumors
148 (Figure 1h; Supplementary ta 294 MBM expressed genes (Figure 1g) a core set of markers (n=31) sufficient to split tumors
148 (Figure 1h; Supplementary tables 2, 3). Among them, we identified the integrin family
149 member and gut-homing receptor ITGB7 148 (Figure 1h; Supplementary tables 2, 3). Among them, we identified the integrin family
149 member and gut-homing receptor ITGB7 -which we described in our previous study as a
150 distinguishing mark between BRAF and NRA member and gut-homing receptor ITGB7 -which we described in our previous study as a
150 distinguishing mark between BRAF and NRAS mutant MBM²³ - and *APBB1IP* (amyloid b
151 precursor protein-binding family b member 1 in distinguishing mark between BRAF and NRAS mutant MBM 23 distinguishing mark between BRAF and NRAS mutant MBM²³ - and *APBB1IP* (amyloid b
151 precursor protein-binding family b member 1 interacting protein). Both are associated with
152 better prognosis in patients with color precursor protein-binding family b member 1 interacting protein). Both are associated with
152 better prognosis in patients with colorectal cancer^{27,28} and clustered with known TAM-
153 associated genes such as *P2RY12* better prognosis in patients with colorectal cancer^{27,28} better prognosis in patients with colorectal cancer^{27,28} and clustered with known TAM-
153 associated genes such as *P2RY12* and *AIF1* (Figure 1h). Remarkably, all clustered tumors
154 were associated with a high immune associated genes such as *P2RY12* and *AIF1* (Figure 1h). Remarkably, all clustered tumors
154 were associated with a high immune score. A correlation analysis of clustered genes
155 revealed a high degree of correlation a were associated with a high immune score. A correlation analysis of clustered genes
155 revealed a high degree of correlation among each other (Figure 1i) and association with
156 hepatocyte growth factor (HGF) that was re revealed a high degree of correlation among each other (Figure 1i) and association with
156 hepatocyte growth factor (HGF) that was recently connected with microglia activation¹³.
157 However, only some of the identified hepatocyte growth factor (HGF) that was recently connected with microglia activation¹³ hepatocyte growth factor (HGF) that was recently connected with microglia activation¹³.
157 However, only some of the identified markers within the gene cluster were specifically
158 expressed in microglia but not in bra However, only some of the identified markers within the gene cluster were specifically
158 expressed in microglia but not in brain infiltrating macrophages or other brain cells such as
159 *APBB1IP* (Figure 1j). The latter expressed in microglia but not in brain infiltrating macrophages or other brain cells such as

159 APBB1IP (Figure 1j). The latter gene which has been identified as a conserved microglial

160 gene²⁹ and binding partner *APBB1IP* (Figure 1j). The latter gene which has been identified as a conserved microglial
160 gene²⁹ and binding partner of amyloid precursor protein (APP), Tau, 14-3-3g, and glycogen
161 synthase kinase 3 b (GSK3 b) wa gene²⁹ qene²⁹ and binding partner of amyloid precursor protein (APP), Tau, 14-3-3g, and glycogen
161 synthase kinase 3 b (GSK3 b) was associated with actin dynamics and retinoic acid
6 161 synthase kinase 3 b (GSK3 b) was associated with actin dynamics and retinoic acid

signaling^{30,31}. Expression of APBB1IP was significantly (MBM: R=0.86, p<2.2e-16) correlated signaling^{30,31}. Expression of APBB1IP was significantly (MBM: R=0.86, p<2.2e-16) correlated
163 with immune score (Figure 1k) and survival of melanoma patients (Supplementary figures
164 1d-e). Moreover, our survey ident with immune score (Figure 1k) and survival of melanoma patients (Supplementary figures
164 1d-e). Moreover, our survey identified a differentially methylated side (Supplementary table
165 4) within the promoter of PD-L2 (P 164 1d-e). Moreover, our survey identified a differentially methylated side (Supplementary table
165 4) within the promoter of PD-L2 (PDCD1LG2) that may predict progression-free survival in
166 melanoma patients receiving 4) within the promoter of PD-L2 (PDCD1LG2) that may predict progression-free survival in
166 melanoma patients receiving anti-PD-1 immunotherapy³². PD-L2 expression was associated
167 with favorable survival (p=0.020) of melanoma patients receiving anti-PD-1 immunotherapy 32 melanoma patients receiving anti-PD-1 immunotherapy³². PD-L2 expression was associated
with favorable survival (p=0.020) of patients with MBM (Supplementary figure 1f). We found
additional genes among our cluster that we with favorable survival (p=0.020) of patients with MBM (Supplementary figure 1f). We found
additional genes among our cluster that were expressed in TAMs and significantly
associated with immune score (Supplementary figure additional genes among our cluster that were expressed in TAMs and significantly
169 associated with immune score (Supplementary figures 1g-n).
170 Expression of ITGB7 serves as indicator of immune cell infiltration

associated with immune score (Supplementary figures 1g-n).
170
171 Expression of ITGB7 serves as indicator of immune cell in
172 Recent studies have shown that ITGB7 plays a critical role in 170
171
172
173 **Expression of ITGB7 serves as indicator of immune cell infiltration**
172 Recent studies have shown that ITGB7 plays a critical role in the recruit
173 intestine and that downregulation of ITGB7 is important in protecting 172 Recent studies have shown that ITGB7 plays a critical role in the recruitment of T cells to the
173 intestine and that downregulation of ITGB7 is important in protecting intestinal tumors from
174 attack by activated intestine and that downregulation of ITGB7 is important in protecting intestinal tumors from
174 attack by activated T cells^{27,33}. Hence, we sought to investigate *ITGB7* in more detail. Mining
175 of publicly available attack by activated T cells 27,33 attack by activated T cells^{27,33}. Hence, we sought to investigate *ITGB7* in more detail. Mining
175 of publicly available immune cell data (studies GSE146771³⁴, DICE database³⁵) revealed
176 expression of *ITGB7* ac of publicly available immune cell data (studies GSE146771 34 , DICE database 35 of publicly available immune cell data (studies GSE146771³⁴, DICE database³⁵) revealed
expression of *ITGB7* across different immune cell stages including naïve and memory
subsets of T cells, B cells and NK cells (Figu 176 expression of *ITGB7* across different immune cell stages including naïve and memory
177 subsets of T cells, B cells and NK cells (Figure 2a and Supplementary figure 2a). We found
178 that *ITGB7* was rather expressed subsets of T cells, B cells and NK cells (Figure 2a and Supplementary figure 2a). We found
that *ITGB7* was rather expressed in MBM with infiltration of immune cells and particularly
within immune cell dense areas (Supplem that *ITGB7* was rather expressed in MBM with infiltration of immune cells and particularly

179 within immune cell dense areas (Supplementary figure 2b). Co-staining revealed

180 accumulation of CD3⁺ T cells as well as within immune cell dense areas (Supplementary figure 2b). Co-staining revealed
accumulation of CD3⁺ T cells as well as of Iba1^{high} TAMs (Figure 2b). Ranking of MBM
regarding levels of *ITGB7* expression showed co-occur accumulation of CD3⁺ T cells as well as of Iba1^{high} accumulation of CD3⁺ T cells as well as of Iba1^{nigh} TAMs (Figure 2b). Ranking of MBM
181 regarding levels of *ITGB7* expression showed co-occurrence in the expression of CD4,
182 CD274, Sushi Domain Containing 3 (SUSD3 181 regarding levels of *ITGB7* expression showed co-occurrence in the expression of CD4,

182 CD274, Sushi Domain Containing 3 (SUSD3) and *ITGB7* level (Figure 2c) and validated a

183 possible, previously observed²³ c 182 CD274, Sushi Domain Containing 3 (SUSD3) and *ITGB7* level (Figure 2c) and validated a
183 possible, previously observed²³ correlation of *ITGB7* and SUSD3. Moreover *ITGB7*, SUSD3
184 and *APBB1IP* showed expression possible, previously observed²³ possible, previously observed²³ correlation of *ITGB7* and SUSD3. Moreover *ITGB7*, SUSD3
and *APBB1IP* showed expression across different immune cell types except for monocytes
and NK cells (Supplementary figures 2c-f). and *APBB1IP* showed expression across different immune cell types except for monocytes

and NK cells (Supplementary figures 2c-f). Global (850k) methylome profiling uncovered four

propertic regulation sites of *ITGB7* (S and NK cells (Supplementary figures 2c-f). Global (850k) methylome profiling uncovered four
186 epigenetic regulation sites of *ITGB7* (Supplementary table 4) with two sites that were
187 associated with expression levels epigenetic regulation sites of *ITGB7* (Supplementary table 4) with two sites that were
associated with expression levels and immune score (Figures 2d, left and center panel,
Supplementary figure 3a), located in a proximal associated with expression levels and immune score (Figures 2d, left and center panel,
188 Supplementary figure 3a), located in a proximal enhancer-like region (probe cg26689077) or
189 near by the promotor of ITGB7 (probe 188 Supplementary figure 3a), located in a proximal enhancer-like region (probe cg26689077) or
189 near by the promotor of ITGB7 (probe cg01033299). The latter site was also identified in the
189 189 near by the promotor of ITGB7 (probe cg01033299). The latter site was also identified in the

190 TCGA-SKCM cohort. The sites did not correlate with the BRAF mutation status of MBM
191 (Figures 2d, right panel) in contrast to additional two sides that were found within intergenic
192 regions including an CpG island 191 (Figures 2d, right panel) in contrast to additional two sides that were found within intergenic
192 regions including an CpG island located between exons 4 and 5 (probes cg11510999 and
193 cg18320160; Supplementary fig

regions including an CpG island located between exons 4 and 5 (probes cg11510999 and
cg18320160; Supplementary figures 3b-e).
Hence, methylome profiling of MBM identified two DMRs within the *ITGB7* gene that might
serve a cg18320160; Supplementary figures 3b-e).
194 Hence, methylome profiling of MBM identit
195 serve as indicators of the degree of immune

194 Hence, methylome profiling of MBM identified two DMRs within the *ITGB7* gene that might
195 serve as indicators of the degree of immune cell infiltration.
196 A recent study demonstrated that MBM feature a lower T cel serve as indicators of the degree of immune cell infiltration.
196 A recent study demonstrated that MBM feature a lowe
197 extracranial metastases, however response rates to Ip
198 Assuming that ITGB7 expression might be c 206 A recent study demonstrated that MBM feature a lower T cell content than matched
2197 extracranial metastases, however response rates to ICi of both were comparable³⁶.
2198 Assuming that ITGB7 expression might be cru extracranial metastases, however response rates to ICi of both were comparable³⁶ extracranial metastases, however response rates to ICi of both were comparable³⁶.
198 Assuming that ITGB7 expression might be crucial for T cell recruitment, we ascertained
199 *ITGB7* levels in MBM (n=79) and EM (n=59; 198 Assuming that ITGB7 expression might be crucial for T cell recruitment, we ascertained

199 ITGB7 levels in MBM (n=79) and EM (n=59; study EGAS00001003672). We observed that

17GB7 was expressed in both metastatic subt *ITGB7* levels in MBM (n=79) and EM (n=59; study EGAS00001003672). We observed that

17GB7 was expressed in both metastatic subtypes and was significantly correlated (MBM:

17GB7 was expressed in both metastatic subtypes a *ITGB7* was expressed in both metastatic subtypes and was significantly correlated (MBM:
201 R=0.51, p=1.8e-06; EM: R=0.69, p=1.1e-09) with the tumor's immune scores (Figure 2e). As
202 we suggest that *ITGB7* expression m 201 R=0.51, p=1.8e-06; EM: R=0.69, p=1.1e-09) with the tumor's immune scores (Figure 2e). As
202 we suggest that *ITGB7* expression might indicate the degree of immune cell infiltration and
203 possibly serve as indicator we suggest that *ITGB7* expression might indicate the degree of immune cell infiltration and

203 possibly serve as indicator of response to ICi, we next performed correlation analysis of

204 *ITGB7* and known markers of 203 possibly serve as indicator of response to ICi, we next performed correlation analysis of
204 *ITGB7* and known markers of T cells and B cells. We observed a high concordance with
205 immune cell-related but not tumor *ITGB7* and known markers of T cells and B cells. We observed a high concordance with

205 immune cell-related but not tumor cell-related genes (*NGFR, MITF, MLANA, SLC45A2*) and

206 correlation with expression of *PDCD1L* 205 immune cell-related but not tumor cell-related genes (*NGFR, MITF, MLANA, SLC45A2*) and
206 correlation with expression of *PDCD1LG2* (PD-L2) and *SUSD3*, irrespective of the side of
207 metastasis (Figures 2f, g). In 206 correlation with expression of *PDCD1LG2* (PD-L2) and *SUSD3*, irrespective of the side of
207 metastasis (Figures 2f, g). In line with previous observations, *ITGB7* was expressed in
208 primary and metastatic tumors 207 metastasis (Figures 2f, g). In line with previous observations, *ITGB7* was expressed in
208 primary and metastatic tumors (TCGA-SKCM) and like SUSD3 was associated with favored
209 survival (Figure 2i). In summary, ou 208 primary and metastatic tumors (TCGA-SKCM) and like SUSD3 was associated with favored
209 survival (Figure 2i). In summary, our survey identified a set of markers that are potentially
210 associated with the level of TA 209 survival (Figure 2i). In summary, our survey identified a set of markers that are potentially
210 associated with the level of TAM/immune cell infiltration, particularly *ITGB7* might serve as a
211 marker for a favora 210 associated with the level of TAM/immune cell infiltration, particularly *ITGB7* might serve as a
211 marker for a favorable course of the disease.
212

211 marker for a favorable course of the disease.
212
213 **A signature-based deconvolution revea** 212
213
214 213 **A signature-based deconvolution revealed MET receptor signaling in microglia-**214 **enriched MBM**

215 Our previous survey identified a set of markers that potentially characterize a molecular
216 subset of MBM, likely showing a favorable course and response to ICi therapy^{37,38}. To further
217 characterize this set of subset of MBM, likely showing a favorable course and response to ICi therapy 37,38 subset of MBM, likely showing a favorable course and response to ICi therapy^{37,38}. To further
217 characterize this set of tumors, we performed single-sample Gene set Enrichment-Analysis
218 (SSGSEA) using defined immune characterize this set of tumors, we performed single-sample Gene set Enrichment-Analysis
218 (ssGSEA) using defined immune-related and gene signatures specifying signaling processes
219 such as MET receptor or STAT3 signal 218 (ssGSEA) using defined immune-related and gene signatures specifying signaling processes
219 such as MET receptor or STAT3 signaling among others that are reported to be involved in
220 immune-response mechanisms (Supp such as MET receptor or STAT3 signaling among others that are reported to be involved in

220 immune-response mechanisms (Supplementary table 5). We observed that MBM featuring a

221 high immune score showed activation of 220 immune-response mechanisms (Supplementary table 5). We observed that MBM featuring a
221 high immune score showed activation of MET and STAT3 signaling, increased tumor
222 inflammation, stress and senescence (SenMayo high immune score showed activation of MET and STAT3 signaling, increased tumor
222 inflammation, stress and senescence (SenMayo³⁹) (Figure 3a). Moreover, deconvolution
223 revealed the presence of reactive microglia, as inflammation, stress and senescence (SenMayo³⁹) (Figure 3a). Moreover, deconvolution inflammation, stress and senescence (SenMayo³⁹) (Figure 3a). Moreover, deconvolution

223 revealed the presence of reactive microglia, astrocytes and immune cell subsets, among

224 them stem cell-like CD8⁺ T cells (T 223 revealed the presence of reactive microglia, astrocytes and immune cell subsets, among
224 them stem cell-like CD8⁺ T cells (TCF7)⁴⁰ in tumors, absent in BMCs. CD8⁺ (TCF7) T cells
225 are necessary for long-term them stem cell-like CD8⁺ T cells (TCF7)⁴⁰ in tumors, absent in BMCs. CD8⁺ 224 them stem cell-like CD8⁺ T cells (TCF7)⁴⁰ in tumors, absent in BMCs. CD8⁺ (TCF7) T cells

225 are necessary for long-term maintenance of T cell responses and predicted positive clinical

226 outcome^{41,42}. Sign 225 are necessary for long-term maintenance of T cell responses and predicted positive clinical
226 outcome^{41,42}. Signatures clearly discriminated MBM and BMCs and reinforced the differences
227 of Iba1^{high} (Pts 3, 4) outcome^{41,42}. Signatures clearly discriminated MBM and BMCs and reinforced the differences outcome^{41,42}. Signatures clearly discriminated MBM and BMCs and reinforced the differences
227 of Iba1^{high} (Pts 3, 4) and Iba1^{low/neg} (Pts 1, 2) tumors. We therefore suggest that the activation
228 of MET- or STAT3-m of Iba1^{high} (Pts 3, 4) and Iba1^{low/neg} of Iba1^{nigh} (Pts 3, 4) and Iba1^{16w/neg} (Pts 1, 2) tumors. We therefore suggest that the activation
228 of MET- or STAT3-mediated signaling processes or those related to stress/senescence or
229 inflammation strongly de 228 of MET- or STAT3-mediated signaling processes or those related to stress/senescence or

229 inflammation strongly depend on the composition of the tumor microenvironment, likely

230 determining the response to therape inflammation strongly depend on the composition of the tumor microenvironment, likely
230 determining the response to therapeutic interventions. Although infiltration of TAMs is not
231 evident in all MBM, microglia infilt 230 determining the response to therapeutic interventions. Although infiltration of TAMs is not
231 evident in all MBM, microglia infiltration seems to be an early occurring process observed
232 ~21d after intracranial in evident in all MBM, microglia infiltration seems to be an early occurring process observed

232 ~21d after intracranial injection of BMCs into brains of immune compromised Crl:CD1-

233 Foxn1^{nu} mice²³ (Figure 3b). More \sim 21d after intracranial injection of BMCs into brains of immune compromised Crl:CD1-

233 Foxn1^{nu} mice²³ (Figure 3b). Moreover, we observed activation of Stat3 signaling in tumor

234 adjacent cells (Figure 3b), su Foxn1^{nu} mice²³ Foxn1^{nu} mice²³ (Figure 3b). Moreover, we observed activation of Stat3 signaling in tumor

adjacent cells (Figure 3b), suggesting that brain microenvironmental cells are activated after

a short time of tumor-stroma in 234 adjacent cells (Figure 3b), suggesting that brain microenvironmental cells are activated after
235 a short time of tumor-stroma interaction and establish an inflammatory environment. We
236 performed ssGSEA and applied 235 a short time of tumor-stroma interaction and establish an inflammatory environment. We
236 performed ssGSEA and applied the above mentioned signatures and observed a
237 comparable pattern of enrichment in a more compr performed ssGSEA and applied the above mentioned signatures and observed a
237 comparable pattern of enrichment in a more comprehensive and independent set of MBM
238 (study EGAS00001003672⁴³, n=79 MBM) (Supplementary fi (study EGAS00001003672 43 , n=79 MBM) (Supplementary figure 4a).

comparable pattern of enrichment in a more comprehensive and independent set of MBM

(study EGAS00001003672⁴³, n=79 MBM) (Supplementary figure 4a).

HGF or scatter factor (SF) is the only identified ligand of MET, plays 238 (study EGAS00001003672⁴³, n=79 MBM) (Supplementary figure 4a).

239 HGF or scatter factor (SF) is the only identified ligand of MET, pla

240 neural development, regulating growth and survival of neurons^{15,4}

241 239 HGF or scatter factor (SF) is the only identified ligand of MET, plays a pivotal role during
240 neural development, regulating growth and survival of neurons^{15,44} and likely serves as
241 inducer of reactive microgl neural development, regulating growth and survival of neurons^{15,44} neural development, regulating growth and survival of neurons^{15,44} and likely serves as
241 inducer of reactive microglia by an autocrine loop in response to trauma or
242 neurodegenerative disorders¹³. Therefore, MET 241 inducer of reactive microglia by an autocrine loop in response to trauma or
242 neurodegenerative-disorders¹³. Therefore, MET-expressing, brain-colonizing-melanoma-cells
9 neurodegenerative disorders¹³ neurodegenerative disorders¹³. Therefore, MET expressing, brain colonizing melanoma cells
9
9

may benefit and take advantage of the HGF-controlled systems naturally occurring in the
244 brain. We observed HGF expression among tumors of different data sets comprising MBM,
245 EM and primary tumors (studies EGAS00001 244 brain. We observed HGF expression among tumors of different data sets comprising MBM,
245 EM and primary tumors (studies EGAS00001005976; TCGA-SKCM; EGAS00001003672)
246 with no significant difference of HGF levels in 245 EM and primary tumors (studies EGAS00001005976; TCGA-SKCM; EGAS00001003672)
246 with no significant difference of HGF levels in tumor subsets (Figures 3d, e). Investigation of
247 immune cell and brain cell data (DICE with no significant difference of HGF levels in tumor subsets (Figures 3d, e). Investigation of

247 immune cell and brain cell data (DICE database³⁵ and study GSE73721⁴⁵) revealed high

248 expression of HGF in monocy immune cell and brain cell data (DICE database 35 and study GSE73721 45 247 immune cell and brain cell data (DICE database³⁵ and study GSE73721⁴⁵) revealed high
248 expression of HGF in monocytes and astrocytes (Figures 3f, g), suggesting a potential role of
249 different stroma cell popul expression of HGF in monocytes and astrocytes (Figures 3f, g), suggesting a potential role of
249 different stroma cell populations for activating HGF/MET signaling in brain-infiltrating tumor
250 cells. Assuming that the different stroma cell populations for activating HGF/MET signaling in brain-infiltrating tumor

250 cells. Assuming that the degree of microglia infiltration determines signaling processes in

251 MBM cells, we explored ex cells. Assuming that the degree of microglia infiltration determines signaling processes in
251 MBM cells, we explored expression levels of MET signaling-associated genes in tumors with
252 high and low level of infiltrate 251 MBM cells, we explored expression levels of MET signaling-associated genes in tumors with

252 high and low level of infiltrated TAMs and found levels of HGF, PIK3CG, PTK2B, STAT3 and

253 MAP4K1 significantly correl 252 high and low level of infiltrated TAMs and found levels of HGF, PIK3CG, PTK2B, STAT3 and
253 MAP4K1 significantly correlated with microglia score (Supplementary figure 4c-e) that was
254 defined as average expression 253 MAP4K1 significantly correlated with microglia score (Supplementary figure 4c-e) that was
254 defined as average expression level or β-value of microglia markers *APBB1IP, SYK, HCK*
255 and *P2RY12* (Supplementary tab

254 defined as average expression level or β-value of microglia markers *APBB1IP, SYK, HCK*
255 and *P2RY12* (Supplementary table 6).
256 HGF might be released by immune cells as well as homeostatic and reactive microglia 255 and *P2RY12* (Supplementary table 6).
256 HGF might be released by immune c
257 astrocytes. We surveyed the Seattle A
258 in the Allen brain atlas database (http 256 HGF might be released by immune cells as well as homeostatic and reactive microglia or
257 astrocytes. We surveyed the Seattle Alzheimer's Disease Brain Atlas which is implemented
258 in the Allen brain atlas database astrocytes. We surveyed the Seattle Alzheimer's Disease Brain Atlas which is implemented
258 in the Allen brain atlas database (https://portal.brain-map.org/) and observed that dementia
259 fostered expansion of microglia in the Allen brain atlas database (https://portal.brain-map.org/) and observed that dementia

259 fostered expansion of microglia with increased expression of HGF (Figure 3h, center and

260 right panels). Reactive microgl 259 fostered expansion of microglia with increased expression of HGF (Figure 3h, center and
260 right panels). Reactive microglia and immune cell released HGF might hence be responsible
261 for activation of growth factor/ right panels). Reactive microglia and immune cell released HGF might hence be responsible
261 for activation of growth factor/survival signaling in adjacent tumor cells. In line with previous
262 studies, we observed a sig 261 for activation of growth factor/survival signaling in adjacent tumor cells. In line with previous
262 studies, we observed a significant correlation of HGF expression with immune score in brain
263 (BM, R=0.49, p=5.3e-262 studies, we observed a significant correlation of HGF expression with immune score in brain
263 (BM, R=0.49, p=5.3e-06) and extracranial metastases (EM, R=0.41, p=1.5e-03), (Figure 3i).
264 Expression and activation of

263 (BM, R=0.49, p=5.3e-06) and extracranial metastases (EM, R=0.41, p=1.5e-03), (Figure 3i).
264
265 Expression and activation of MET receptor classifies a molecular subset of MBM
266 Understanding the molecular mechanism 264
265
266
267 **Expression and activation of MET receptor classifies a molecular subset of MBM**
266 Understanding the molecular mechanisms that establish cellular dependencies and
267 control the development and maintenance of brain meta Understanding the molecular mechanisms that establish cellular dependencies and thus

control the development and maintenance of brain metastases is critical for their therapeutic

manipulation. Recently, we identified tha control the development and maintenance of brain metastases is critical for their therapeutic

268 manipulation. Recently, we identified that the expression of Ecad and NGFR sufficiently

269 discriminated molecular subset manipulation. Recently, we identified that the expression of Ecad and NGFR sufficiently

269 discriminated molecular subsets of MBM²³. These subsets likely distinctly interact with

270 microenvironmental cells and respo discriminated molecular subsets of MBM²³ discriminated molecular subsets of MBM²³. These subsets likely distinctly interact with
270 microenvironmental cells and respond to therapeutics (Figure 4a). To identify potential
10 270 microenvironmental cells and respond to therapeutics (Figure 4a). To identify potential

druggable targets, we surveyed the pan-MBM, NGFR and Ecad-specific gene sets for cell
272 surface receptors that may serve as crucial key factors that control tumor cell maintenance
273 and expansion and identified 24 rece 272 surface receptors that may serve as crucial key factors that control tumor cell maintenance
273 and expansion and identified 24 receptors that distinguished Ecad⁺ and NGFR⁺ tumors
274 (Figure 4b). Particularly ADIP and expansion and identified 24 receptors that distinguished Ecad⁺ and NGFR⁺ and expansion and identified 24 receptors that distinguished Ecad⁺ and NGFR⁺ tumors
274 (Figure 4b). Particularly ADIPOR1 (adiponectin receptor 1, p=1.9e-02), SIRPA (signal
275 regulatory protein alpha, p=1.1e-05) and 274 (Figure 4b). Particularly ADIPOR1 (adiponectin receptor 1, p=1.9e-02), SIRPA (signal
275 regulatory protein alpha, p=1.1e-05) and PLXNC1 (plexin C1) showed significantly increased
276 expression in Ecad⁺ MBM and EM b expression in Ecad⁺ MBM and EM but comparable levels among MBM and EM (Figure 4c).

276 expression in Ecad⁺ MBM and EM but comparable levels among MBM and EM (Figure 4c).

277 In addition, Ecad⁺ MBM featured increase expression in Ecad⁺ MBM and EM but comparable levels among MBM and EM (Figure 4c). expression in Ecad⁺ MBM and EM but comparable levels among MBM and EM (Figure 4c).

277 In addition, Ecad⁺ MBM featured increased levels of MET receptor in (p=1.4e-04). MET was

278 significantly (p=2.7e-05) higher exp In addition, $Ecad^+$ MBM featured increased levels of MET receptor in $(p=1.4e-04)$. MET was 277 In addition, Ecad⁺ MBM featured increased levels of MET receptor in (p=1.4e-04). MET was
278 significantly (p=2.7e-05) higher expressed in MBM than EM (Figure 4d, left and center
279 panels). The MET tyrosine kinase 278 significantly (p=2.7e-05) higher expressed in MBM than EM (Figure 4d, left and center
279 panels). The MET tyrosine kinase receptor pathway serves as a potent survival and
280 maintenance factor for MBM and might be a panels). The MET tyrosine kinase receptor pathway serves as a potent survival and
280 maintenance factor for MBM and might be a promising therapeutic target⁴⁶. MET expression
281 was associated with increased cell cycle maintenance factor for MBM and might be a promising therapeutic target⁴⁶ maintenance factor for MBM and might be a promising therapeutic target⁴⁶. MET expression
281 was associated with increased cell cycle progression and proliferation (Figure 4d, right panel)
282 and defined yet another sub was associated with increased cell cycle progression and proliferation (Figure 4d, right panel)
282 and defined yet another subset of MBM (Figure 4e). Next we assessed whether expressed
283 MET indeed participated in activ 282 and defined yet another subset of MBM (Figure 4e). Next we assessed whether expressed
283 MET indeed participated in active signaling processes. Phosphorylation of MET at tyrosine
284 residues 1234/1235 (pMET^{Y1234/123} 283 MET indeed participated in active signaling processes. Phosphorylation of MET at tyrosine
284 residues 1234/1235 (pMET^{Y1234/1235}) is critical for kinase activation and initiation of
285 downstream processes and was e residues 1234/1235 (pMET^{Y1234/1235} residues 1234/1235 (pMET^{$Y1234/1235$}) is critical for kinase activation and initiation of
285 downstream processes and was evident in nearly all MET^{high} MBM investigated, independent
286 of the BRAF mutation status (F downstream processes and was evident in nearly all MET^{high} downstream processes and was evident in nearly all MET^{nigh} MBM investigated, independent

286 of the BRAF mutation status (Figures 4f, g). MET receptor alterations are evident in 9 % of all

287 SKCM melanoma cases, inc 286 of the BRAF mutation status (Figures 4f, g). MET receptor alterations are evident in 9 % of all
287 SKCM melanoma cases, including amplification as observed in 1.13 – 17.2% or 11% of
288 melanoma (TCGA-SKCM, study by R 287 SKCM melanoma cases, including amplification as observed in 1.13 – 17.2% or 11% of
288 melanoma (TCGA-SKCM, study by Ramani et al.⁴⁷). However, targeted DNA sequencing
289 (TargetSeq) and fluorescence in-situ hybridi melanoma (TCGA-SKCM, study by Ramani et al.⁴⁷ melanoma (TCGA-SKCM, study by Ramani et al.⁴⁷). However, targeted DNA sequencing
289 (TargetSeq) and fluorescence in-situ hybridization (FISH) revealed absence of MET
290 activating mutations and a tendential MET amplifi 289 (TargetSeq) and fluorescence in-situ hybridization (FISH) revealed absence of MET activating mutations and a tendential MET amplification in only one case (Pat 5, Supplementary figure 5a, b). However, all but one tumor activating mutations and a tendential MET amplification in only one case (Pat 5,
291 Supplementary figure 5a, b). However, all but one tumor (Pat 14) showed high polysomy. As
292 we assume that environmental cells foster a 291 Supplementary figure 5a, b). However, all but one tumor (Pat 14) showed high polysomy. As
292 we assume that environmental cells foster activation of MET receptor signaling in a subset of
293 tumor cells, we performed we assume that environmental cells foster activation of MET receptor signaling in a subset of

293 tumor cells, we performed co-IHC for pMET^{Y1234/1235} and Iba1. We observed pMET^{Y1234/1235}

294 positive tumor cells in c tumor cells, we performed co-IHC for pMET^{Y1234/1235} and Iba1. We observed pMET^{Y1234/1235} 293
294
295
296 positive tumor cells in close proximity to Iba1^{high} TAMs (Figure 4h), though MET receptor was positive tumor cells in close proximity to Iba1^{nigh} TAMs (Figure 4h), though MET receptor was

295 not activated in Iba1^{high} microglia that resided in adjacent normal tissue (Supplementary

296 figure 5c, upper panel) not activated in Iba1^{high} microglia that resided in adjacent normal tissue (Supplementary not activated in Iba1^{nigh} microglia that resided in adjacent normal tissue (Supplementary
196 figure 5c, upper panel). However, MET receptor activation was also evident in scattered
197 tumor cells in the absence of adja figure 5c, upper panel). However, MET receptor activation was also evident in scattered
tumor cells in the absence of adjacent Iba1^{high} TAMs (Supplementary figure 5c, lower panel)
suggesting paracrine mechanisms or addit tumor cells in the absence of adjacent Iba1^{high} tumor cells in the absence of adjacent Iba1^{nigh} TAMs (Supplementary figure 5c, lower panel)
298 suggesting paracrine mechanisms or additional sources of HGF such as immune cells or
11 298 suggesting paracrine mechanisms or additional sources of HGF such as immune cells or
11

astrocytes. Considering that HGF levels, like those of other growth factors provided by
300 stromal cells, might depend on spatial factors, we examined the Allan Brain Atlas database
301 and found that HGF is comparably ex 300 stromal cells, might depend on spatial factors, we examined the Allan Brain Atlas database
301 and found that HGF is comparably expressed in different brain sections (frontal lobe (FL),
302 parietal lobe (PL), temporal 301 and found that HGF is comparably expressed in different brain sections (frontal lobe (FL),
302 parietal lobe (PL), temporal lobe (TL), occipital lobe (OL)) but is lowly abundant in the
303 brainstem (pons) (supplementa 302 parietal lobe (PL), temporal lobe (TL), occipital lobe (OL)) but is lowly abundant in the
303 brainstem (pons) (supplemental Figure 5d). The spatially dependent expression of growth
304 factors in the brain may therefo 303 brainstem (pons) (supplemental Figure 5d). The spatially dependent expression of growth
304 factors in the brain may therefore determine the dependencies of the tumor cells.
305 **Interferon signaling determines respons**

304 factors in the brain may therefore determine the dependencies of the tumor cells.
305
Interferon signaling determines response of MBM to immune checkpoir
307 **therapy** 305
306
307
308

306 **Interferon signaling determines response of MBM to immune checkpoint inhibitor**
307 **therapy**
308 Interferon-gamma signaling has been identified as an important mechanism for upregulation
309 of PD-L1 on melanoma cell 307 **therapy**
308 Interferor
309 of PD-L1
310 recent s Interferon-gamma signaling has been identified as an important mechanism for upregulation
309 of PD-L1 on melanoma cells and escape from immune recognition. On the other hand,
310 recent studies uncovered that high interf 309 of PD-L1 on melanoma cells and escape from immune recognition. On the other hand,
310 recent studies uncovered that high interferon-gamma-related gene expression signature
311 scores (IFN-y score) were associated with Frecent studies uncovered that high interferon-gamma-related gene expression signature
311 scores (IFN-γ score) were associated with low risk of melanoma relapse from neoadjuvant
312 ipilimumab plus nivolumab therapy^{48,} ipilimumab plus nivolumab therapy $48,49$.

scores (IFN-γ score) were associated with low risk of melanoma relapse from neoadjuvant
ipilimumab plus nivolumab therapy^{48,49}.
313 In our recent study, we observed significant enrichment of interferon and inflammatory
 ipilimumab plus nivolumab therapy^{48,49}.
313 In our recent study, we observed sign
314 response ("Hallmark", MsigDB⁵⁰) sign
315 lymphocytes (TIL^{high})²³ that have bee 313 In our recent study, we observed significant enrichment of interferon and inflammatory
314 response ("Hallmark", MsigDB⁵⁰) signatures in MBM with high level of tumor infiltrating
315 lymphocytes (TIL^{high})²³ that response ("Hallmark", MsigDB⁵⁰ 314 response ("Hallmark", MsigDB⁵⁰) signatures in MBM with high level of tumor infiltrating
315 lymphocytes (TIL^{high})²³ that have been attributed with favored survival in a pre-clinical
316 melanoma model⁴⁹. We fou lymphocytes (TIL^{high})²³ 315 lymphocytes $(TIL^{ngn})^{23}$ that have been attributed with favored survival in a pre-clinical
316 melanoma model⁴⁹. We found overlapping expression of *ITGB7*, *SUSD3* and *HGF* and
317 Hallmark interferon-response gen melanoma model⁴⁹. We found overlapping expression of *ITGB7*, SUSD3 and HGF and melanoma model⁴⁹. We found overlapping expression of *ITGB7*, *SUSD3* and *HGF* and
317 Hallmark interferon-response genes, separating MBM of our cohort and MBM of study
518 EGAS00001003672 (Figure 4i, Supplementary figu 317 Hallmark interferon-response genes, separating MBM of our cohort and MBM of study
318 EGAS00001003672 (Figure 4i, Supplementary figure 6a). Expression of *ITGB7* significantly
319 correlated with levels of interferon r 318 EGAS00001003672 (Figure 4i, Supplementary figure 6a). Expression of *ITGB7* significantly
319 correlated with levels of interferon regulatory factor 1 (IRF1) and IRF8 in MBM (BM) and
320 extracranial metastases (EM) of 319 correlated with levels of interferon regulatory factor 1 (IRF1) and IRF8 in MBM (BM) and
320 extracranial metastases (EM) of study EGAS00001003672 (Supplementary figure 6b-d).
321 Moreover, we observed high correlation extracranial metastases (EM) of study EGAS00001003672 (Supplementary figure 6b-d).
321 Moreover, we observed high correlation of levels of *HGF*, *IRF1* and *IRF8* in MBM
322 (Supplementary figure 6e). As microglia serve a 321 Moreover, we observed high correlation of levels of *HGF*, *IRF1* and *IRF8* in MBM
322 (Supplementary figure 6e). As microglia serve as a source of soluble receptor ligands such
323 as Hgf, we next surveyed data of in 322 (Supplementary figure 6e). As microglia serve as a source of soluble receptor ligands such
323 as Hgf, we next surveyed data of interferon-gamma treated (1 U/mL IFNy, 24h) murine
324 microglia cells (BV2, GSE132739). 323 as Hgf, we next surveyed data of interferon-gamma treated (1 U/mL IFNy, 24h) murine
324 microglia cells (BV2, GSE132739). Indeed, we found significant upregulation of *Itgb7* (p =
325 2.9e-03) and *Hgf* (p=4.4e-02) bu 324 microglia cells (BV2, GSE132739). Indeed, we found significant upregulation of *Itgb7* (p =
325 2.9e-03) and *Hgf* (p=4.4e-02) but downregulation of *Susd3* (p=4.0e-02) in BV2 cells
326 (Supplementary figure 6f). For c 325 2.9e-03) and *Hgf* (p=4.4e-02) but downregulation of *Susd3* (p=4.0e-02) in BV2 cells 326 (Supplementary figure 6f). For control, we investigated levels of known interferon-responsive
12
12

genes that were significantly increased 24h after interferon treatment, *Mx1* (p=1.2e-02), PD-
328 L1/Cd274 (p=3.6e-02), *Irf1* (p=3.1e-02) Cxcl9 (p=4.0e-03) and *Aif1* (p=3.9e-04)
329 (Supplementary figure 6g). In order t 11/*Cd274* (p=3.6e-02), *Irf1* (p=3.1e-02) *Cxcl9* (p=4.0e-03) and *Aif1* (p=3.9e-04)
329 (Supplementary figure 6g). In order to classify MBM of our study into anti-PD-L1 responsible
330 and non-responsible and for linking (Supplementary figure 6g). In order to classify MBM of our study into anti-PD-L1 responsible
and non-responsible and for linking *ITGB7*, *SUSD3* and *HGF* with therapy response, we
performed ssGSEA and applied interferon and non-responsible and for linking *ITGB7*, *SUSD3* and *HGF* with therapy response, we
performed ssGSEA and applied interferon responsive and additional immune response gene
signatures (of study GSE186344⁵¹). Our surve 331 performed ssGSEA and applied interferon responsive and additional immune response gene
332 signatures (of study GSE186344⁵¹). Our survey validated that *ITGB7*, *SUSD3* and *HGF* were
333 highly expressed in MBM that signatures (of study GSE186344⁵¹ signatures (of study GSE186344⁵¹). Our survey validated that *ITGB7*, *SUSD3* and *HGF* were
highly expressed in MBM that featured enrichment of interferon responsive genes/signatures
(Pts. 3-6, 12; Supplementary figure highly expressed in MBM that featured enrichment of interferon responsive genes/signatures
334 (Pts. 3-6, 12; Supplementary figure 6h).
335 Hence, we suggest that *ITGB7*, SUSD3 and HGF like PD-L1 are among the interferon-

934 (Pts. 3-6, 12; Supplementary figure 6h).
335
336 Hence, we suggest that *ITGB7*, SUSL
337 regulated genes triggered by immune ce 335
336
337
338 336 Hence, we suggest that *ITGB7*, *SUSD3* and *HGF* like *PD-L1* are among the interferon-
regulated genes triggered by immune cell-released interferon-gamma and may be involved in
immune response mechanisms of MBM.
339 337 regulated genes triggered by immune cell-released interferon-gamma and may be involved in
338 immune response mechanisms of MBM.
339 The targeting of MET receptor serves as a promising strategy to control MBM growth

338 immune response mechanisms of MBM.
339
340 **The targeting of MET receptor serves** :
341 Although a subset of MBM exhibit immu 339
340
341
342 **The targeting of MET receptor serves as a promising strategy to control MBM growth**
341 Although a subset of MBM exhibit immune cell subset enrichment and interferon respons
342 signatures and respond to ICi therapy, MET-341 Although a subset of MBM exhibit immune cell subset enrichment and interferon response
342 signatures and respond to ICi therapy, MET-expressing brain metastatic melanoma cells
343 may benefit from HGF released by stro signatures and respond to ICi therapy, MET-expressing brain metastatic melanoma cells
343 may benefit from HGF released by stromal cells to drive progression. Hence, activation of
344 MET signaling may depend on the degree 343 may benefit from HGF released by stromal cells to drive progression. Hence, activation of
344 MET signaling may depend on the degree of tumor-stroma interaction, possibly
345 counteracting the beneficial impact of immu 344 MET signaling may depend on the degree of tumor-stroma interaction, possibly
345 counteracting the beneficial impact of immune checkpoint inhibition (ICi). Resistance-
346 mediating processes include the phosphorylatio counteracting the beneficial impact of immune checkpoint inhibition (ICi). Resistance-
mediating processes include the phosphorylation of ribosomal protein S6 (pS6), which is
downstream of MET and mTOR signaling⁵² and wa mediating processes include the phosphorylation of ribosomal protein S6 (pS6), which is
347 downstream of MET and mTOR signaling⁵² and was observed in progressive BRAFi-resistant
348 melanomas^{53,54}.
349 We assessed pS6 downstream of MET and mTOR signaling 52 melanomas $53,54$.

downstream of MET and mTOR signaling⁵² and was observed in progressive BRAFi-resistant
348 melanomas^{53,54}.
349 We assessed pS6 phosphorylation of serine residues 235/236 and found co-occurrence of
350 activated MET rec 348 melanomas^{53,54}.
349 We assessed p^o
350 activated MET
351 Supplementary We assessed pS6 phosphorylation of serine residues 235/236 and found co-occurrence of
activated MET receptor and of pS6^{235/236} in MITF positive tumors (Figure 5a and
351 Supplementary figures 7a, b). Moreover, pS6 phosph activated MET receptor and of $pS6^{235/236}$ activated MET receptor and of $pS6^{235/236}$ in MITF positive tumors (Figure 5a and
351 Supplementary figures 7a, b). Moreover, pS6 phosphorylation was evident in a BRAF^{wt}
352 (T2002) and mutated (V600E, BMC53) cell lin Supplementary figures 7a, b). Moreover, pS6 phosphorylation was evident in a BRAF^{wt} 351
352
353
354 352 (T2002) and mutated (V600E, BMC53) cell lines probably suggesting a general activation of
353 pS6 signaling irrespective of the presence of mutated BRAF (Figure 5b). As MET signaling
354 might serve as mediator of a re 953 pS6 signaling irrespective of the presence of mutated BRAF (Figure 5b). As MET signaling
354 might serve as mediator of a resistance-mediating program, we assessed the efficacies of
354 might serve as mediator of a res 354 might serve as mediator of a resistance-mediating program, we assessed the efficacies of
13

the ATP-competitive inhibitor PHA-665752 and the non-ATP-competitive, clinical phase I/II
356 MET receptor inhibitor (METi) tivantinib (ARQ197) in BMCs that showed variable levels of
357 MET expression (Figure 5c and Suppl 356 MET receptor inhibitor (METi) tivantinib (ARQ197) in BMCs that showed variable levels of
357 MET expression (Figure 5c and Supplementary figure 7c). ARQ197 failed to improve the
358 outcome and overall survival of pati 357 MET expression (Figure 5c and Supplementary figure 7c). ARQ197 failed to improve the
358 outcome and overall survival of patients with hepatocellular carcinoma⁵⁵ but may potentially
359 be effective in melanoma patie outcome and overall survival of patients with hepatocellular carcinoma⁵⁵ outcome and overall survival of patients with hepatocellular carcinoma⁵⁵ but may potentially
359 be effective in melanoma patients. The initial testing revealed a general response of BMCs
360 (BMC1-M1, BMC53), T2002 cell 359 be effective in melanoma patients. The initial testing revealed a general response of BMCs
360 (BMC1-M1, BMC53), T2002 cells and conventional cell lines (A375, A2058, MeWo) to both
361 inhibitors irrespective of the BR 360 (BMC1-M1, BMC53), T2002 cells and conventional cell lines (A375, A2058, MeWo) to both
361 inhibitors irrespective of the BRAF mutation status (Figures 5d, e). As we observed a
362 mutually exclusive rather than co-expr inhibitors irrespective of the BRAF mutation status (Figures 5d, e). As we observed a
362 mutually exclusive rather than co-expression of MET receptor and NGFR (nerve growth
363 factor receptor), we tested whether the mani mutually exclusive rather than co-expression of MET receptor and NGFR (nerve growth
363 factor receptor), we tested whether the manipulation of NGFR levels might affect the
364 response to PHA-665752 (PHA). We observed tha 363 factor receptor), we tested whether the manipulation of NGFR levels might affect the
364 response to PHA-665752 (PHA). We observed that overexpression of NGFR in A375 cells
365 (A375^{NGFR}) sensitized to METi compared response to PHA-665752 (PHA). We observed that overexpression of NGFR in A375 cells
365 (A375^{NGFR}) sensitized to METi compared to RFP expressing control (A375^{RFP}) or MeWo cells
366 (Figure 5f). Next, we asked whether M (A375^{NGFR}) sensitized to METi compared to RFP expressing control (A375^{RFP} $(A375^{NGFK})$ sensitized to METi compared to RFP expressing control $(A375^{KFF})$ or MeWo cells
366 (Figure 5f). Next, we asked whether METi targeting may serve as alternative therapeutic
367 strategy for BRAFi resistant (BMC 366 (Figure 5f). Next, we asked whether METi targeting may serve as alternative therapeutic
367 strategy for BRAFi resistant (BMC4) or cells with non-BRAF^{V600} mutations (BMC2) showing
368 only moderate or no response to strategy for BRAFi resistant (BMC4) or cells with non-BRAF^{V600} 367 strategy for BRAFi resistant (BMC4) or cells with non-BRAF^{V600} mutations (BMC2) showing
368 only moderate or no response to dabrafenib (Figure 5g) as indicated by IC_{50} values (BMC4,
369 $IC_{50} = 226.4$ nM and BMC2 368 only moderate or no response to dabrafenib (Figure 5g) as indicated by IC_{50} values (BMC4,
369 $IC_{50} = 226.4$ nM and BMC2, $IC_{50} = 3029.5$ nM). The broad range (1nM – 10µM) testing of
370 tivantinib in BMCs, T2002 a $IC_{50} = 226.4$ nM and BMC2, $IC_{50} = 3029.5$ nM). The broad range (1nM – 10µM) testing of
370 tivantinib in BMCs, T2002 and conventional melanoma cells and PHA in BMCs revealed that
371 all cell lines responded to both MET ivantinib in BMCs, T2002 and conventional melanoma cells and PHA in BMCs revealed that
371 all cell lines responded to both METi, irrespective of the mutation status. However, we
372 observed that the non-(brain) metastati 371 all cell lines responded to both METi, irrespective of the mutation status. However, we
372 observed that the non-(brain) metastatic cell lines A375, A2058, and T2002 were more
373 sensitive to treatment with tivantin 372 observed that the non-(brain) metastatic cell lines A375, A2058, and T2002 were more

sensitive to treatment with tivantinib than BMCs (Figures h-j, Supplementary figure 7d). The

median IC₅₀ value of BMCs was ~600 373 sensitive to treatment with tivantinib than BMCs (Figures h-j, Supplementary figure 7d). The
374 median IC₅₀ value of BMCs was ~600 nM (range: 406.5 – 800.1). Cell lines lacking BRAF
375 and NRAS mutations (MeWo, T2 374 median IC₅₀ value of BMCs was ~600 nM (range: 406.5 – 800.1). Cell lines lacking BRAF
375 and NRAS mutations (MeWo, T2002) showed highest responses to tivantinib (Figure 5k).
376 In summary, brain metastatic as conv

and NRAS mutations (MeWo, T2002) showed highest responses to tivantinib (Figure 5k).
376
In summary, brain metastatic as conventional melanoma cell lines responded to MI
378 suggesting that targeting of MET signaling might 376
377
378
379 377 In summary, brain metastatic as conventional melanoma cell lines responded to METi,
378 suggesting that targeting of MET signaling might be a promising tool for the treatment of non-
379 BRAF^{V600} and BRAF^{V600} muta suggesting that targeting of MET signaling might be a promising tool for the treatment of non-
BRAF^{V600} and BRAF^{V600} mutated MBM that acquired resistance to BRAFi or for combinatorial
of METi and ICi in NRAS mutated tu $\mathsf{BRAF}^{\mathsf{V600}}$ and $\mathsf{BRAF}^{\mathsf{V600}}$ 379 BRAF^{V600} and BRAF^{V600} mutated MBM that acquired resistance to BRAFi or for combinatorial
380 of METi and ICi in NRAS mutated tumors.
381
382 380 of METi and ICi in NRAS mutated tumors.
381
382

-
- 381
382

14

383 **Discussion**
384 The spatiotemp
385 determined by
386 macrophages, a The spatiotemporal development of primary and secondary brain tumors is strongly
385 determined by the crosstalk of tumor and brain micronenvironmental cells, particularly
386 macrophages, astrocytes and microglia⁵⁶ and determined by the crosstalk of tumor and brain micronenvironmental cells, particularly

macrophages, astrocytes and microglia⁵⁶ and the consequential activation of inflammatory

processes⁵⁷. Although the neuro-inflamma macrophages, astrocytes and microglia⁵⁶ macrophages, astrocytes and microglia⁵⁶ and the consequential activation of inflammatory
387 processes⁵⁷. Although the neuro-inflammatory processes that are activated alongside
388 development and progression of primar processes⁵⁷ processes⁵⁷. Although the neuro-inflammatory processes that are activated alongside
388 development and progression of primary brain tumors such as glioblastoma have been
389 intensively studied, the mechanisms that acco development and progression of primary brain tumors such as glioblastoma have been
intensively studied, the mechanisms that accompany emergence of brain metastases on the
other side are not well investigated.
391 Here, we

intensively studied, the mechanisms that accompany emergence of brain metastases on the
390 other side are not well investigated.
391 Here, we used combined transcriptome and methylome profiling to unravel the molecular
39 390 other side are not well investigated.
391 Here, we used combined transcrip
392 features of MBM of different prog
393 associated macrophages/microglia 391 Here, we used combined transcriptome and methylome profiling to unravel the molecular
392 features of MBM of different progression stages showing high and low level of tumor-
393 associated macrophages/microglia (TAMs) features of MBM of different progression stages showing high and low level of tumor-
associated macrophages/microglia (TAMs) infiltration, irrespective of the phenotype (Ecad,
NGFR). Generally, TAMs foster development and associated macrophages/microglia (TAMs) infiltration, irrespective of the phenotype (Ecad,
394 NGFR). Generally, TAMs foster development and progression of primary brain tumors^{58,59},
395 however their functional role in NGFR). Generally, TAMs foster development and progression of primary brain tumors^{58,59} NGFR). Generally, TAMs foster development and progression of primary brain tumors^{58,99},
395 however their functional role in MBM may be different. We observed that MBM containing a
396 high proportion of TAMs were assoc 395 however their functional role in MBM may be different. We observed that MBM containing a
396 high proportion of TAMs were associated with a high immune score and infiltration of CD3⁺ T
397 cells. The profiling of Iba high proportion of TAMs were associated with a high immune score and infiltration of $CD3⁺$ high proportion of TAMs were associated with a high immune score and infiltration of CD3⁺ T
cells. The profiling of Iba1/AIF1^{high} tumors revealed a cluster of genes, among them *ITGB7*,
APBB1IP as *SUSD3* and *PD-L2* cells. The profiling of Iba1/AIF1^{high} cells. The profiling of Iba1/AIF1^{nigh} tumors revealed a cluster of genes, among them *ITGB7*,
398 APBB1IP as SUSD3 and PD-L2, that were widely expressed among immune cell subtypes
399 and previously associated with incre *APBB1IP* as *SUSD3* and *PD-L2*, that were widely expressed among immune cell subtypes
and previously associated with increased immune T cell infiltration^{23,27,28,33} and favored
400 outcome. Previous mouse studies demon and previously associated with increased immune T cell infiltration 23,27,28,33 and previously associated with increased immune T cell infiltration^{23,27,28,33} and favored
399 outcome. Previous mouse studies demonstrated a pivotal role of ITGB7 for intestinal T cell
301 recruitment and correlated lo outcome. Previous mouse studies demonstrated a pivotal role of ITGB7 for intestinal T cell
401 recruitment and correlated low levels of Itgb7 with colorectal cancer progression and
402 maintenance of intestinal stem cells recruitment and correlated low levels of Itgb7 with colorectal cancer progression and

402 maintenance of intestinal stem cells via Ecad-mediated interaction^{27,33}. However, we

403 observed strong protein expression of I maintenance of intestinal stem cells via Ecad-mediated interaction 27,33 maintenance of intestinal stem cells via Ecad-mediated interaction^{27,33}. However, we
observed strong protein expression of ITGB7 in immune cells adjacent to tumor cells of
Ecad⁺ and NGFR⁺ tumors, suggesting a broader dos deserved strong protein expression of ITGB7 in immune cells adjacent to tumor cells of
404 Ecad⁺ and NGFR⁺ tumors, suggesting a broader function of ITGB7 in different subtypes of
405 metastases and cancers. Enhance Ecad⁺ and NGFR⁺ Ecad⁺ and NGFR⁺ tumors, suggesting a broader function of ITGB7 in different subtypes of
405 metastases and cancers. Enhanced expression of ITGB7 might be a prerequisite for immune
406 cell invasion. Therefore, epigenet metastases and cancers. Enhanced expression of ITGB7 might be a prerequisite for immune
cell invasion. Therefore, epigenetic marks that correlate with the expression of ITGB7 and
other genes mentioned above may be of progn cell invasion. Therefore, epigenetic marks that correlate with the expression of ITGB7 and
407 other genes mentioned above may be of prognostic importance, and the expression of these
408 markers could determine the pathwa other genes mentioned above may be of prognostic importance, and the expression of these

markers could determine the pathways of intracranial progression.

15 408 markers could determine the pathways of intracranial progression.

The pathways of intracranial progression.

The pathways of intracranial progression.

As previously described for the Ecad⁺ and NGFR⁺ As previously described for the Ecad⁺ and NGFR⁺ subtypes of MBM, whether tumors are
410 enriched or depleted in TAMs and immune cell subsets is critical and may determine
411 response to therapeutic intervention. The s enriched or depleted in TAMs and immune cell subsets is critical and may determine
411 response to therapeutic intervention. The subsequent ssGSEA-based characterization of
412 MBM of studies performed by us and others rev 411 response to therapeutic intervention. The subsequent ssGSEA-based characterization of
412 MBM of studies performed by us and others revealed molecular programs fostering or
413 accompanying the TAM⁺/TIL⁺ tumor subt MBM of studies performed by us and others revealed molecular programs fostering or
accompanying the TAM⁺/TIL⁺ tumor subtype. TAM⁺/TIL⁺ tumors featured activation of MET
and STAT3 signaling, increased stress respons accompanying the TAM⁺/TIL⁺ tumor subtype. TAM⁺/TIL⁺ accompanying the TAM⁺/TIL⁺ tumor subtype. TAM⁺/TIL⁺ tumors featured activation of MET
and STAT3 signaling, increased stress response, tumor inflammation, senescence and
activation of microglia and astrocytes but al and STAT3 signaling, increased stress response, tumor inflammation, senescence and
activation of microglia and astrocytes but also activated interferon signaling. STAT3
activation in tumor-adjacent astrocytes in response t activation of microglia and astrocytes but also activated interferon signaling. STAT3
activation in tumor-adjacent astrocytes in response to brain damage or tumor cells is well-
investigated process^{60,61} and was rapidly activation in tumor-adjacent astrocytes in response to brain damage or tumor cells is well-
investigated process^{60,61} and was rapidly induced in response to brain infiltrating BMCs.
Hence, enrichment of STAT3 signature investigated process^{60,61} investigated process^{60,61} and was rapidly induced in response to brain infiltrating BMCs.
418 Hence, enrichment of STAT3 signature genes was likely attributed to tumor-adjacent
419 astrocytes and infiltrated immune cell Hence, enrichment of STAT3 signature genes was likely attributed to tumor-adjacent
astrocytes and infiltrated immune cells⁶².
420
The HGF/MET receptor signaling plays a pivotal role during brain development and neuroastrocytes and infiltrated immune cells⁶².

astrocytes and infiltrated immune cells⁶².
420
421 The HGF/MET receptor signaling plays a pivotal role dur
422 regeneration, homeostasis of microglia and neurons^{14,44} 422
423 The HGF/MET receptor signaling plays a pivotal role during brain development and neuro-
regeneration, homeostasis of microglia and neurons^{14,44} but is also involved in microglia
activation in response to trauma^{13,44,63} regeneration, homeostasis of microglia and neurons^{14,44} but is also involved in microglia
activation in response to trauma^{13,44,63}. Brain infiltrating melanoma cells hence may engage
the HGF/MET signaling of brain cel activation in response to trauma 13,44,63 the HGF/MET signaling of brain cells and utilize for regulation of survival and proliferation.
425 We observed expression of MET receptor in the subset of E-cadherin (Ecad) expressing
426 tumors²³, suggesting that Ecad⁺ the HGF/MET signaling of brain cells and utilize for regulation of survival and proliferation.
425 We observed expression of MET receptor in the subset of E-cadherin (Ecad) expressing
426 tumors²³, suggesting that Ecad⁺ We observed expression of MET receptor in the subset of E-cadherin (Ecad) expressing

426 tumors²³, suggesting that Ecad⁺ but not NGFR⁺ cells may depend on HGF/MET signaling. As

427 we observed that HGF is expressed tumors 23 , suggesting that Ecad * but not NGFR * tumors²³, suggesting that Ecad⁺ but not NGFR⁺ cells may depend on HGF/MET signaling. As

427 we observed that HGF is expressed by immune cell subsets and homeostatic or reactive

428 astrocytes and microglia, we inve we observed that HGF is expressed by immune cell subsets and homeostatic or reactive
astrocytes and microglia, we investigated the level of activated/phosphorylated MET receptor
in TAM-adjacent tumor cells. We found that t astrocytes and microglia, we investigated the level of activated/phosphorylated MET receptor
in TAM-adjacent tumor cells. We found that tumor cells but not Iba1^{high} TAMs that resided in
tumor cell-free adjacent stroma sh in TAM-adjacent tumor cells. We found that tumor cells but not Iba1^{high} in TAM-adjacent tumor cells. We found that tumor cells but not $\text{Iba1}^{\text{high}}$ TAMs that resided in
tumor cell-free adjacent stroma showed activation of MET, however MET was also activated
in the absence of adjacent micro tumor cell-free adjacent stroma showed activation of MET, however MET was also activated
in the absence of adjacent microglia in some tumor cells, suggesting a paracrine effect of
HGF. In line with our previous study²³, 431 in the absence of adjacent microglia in some tumor cells, suggesting a paracrine effect of
432 HGF. In line with our previous study²³, we observed enrichment of interferon-response
433 signatures in the subset of TI HGF. In line with our previous study²³, we observed enrichment of interferon-response $\text{HGF. In line with our previous study}^{\text{23}}$, we observed enrichment of interferon-response
signatures in the subset of TIL^{high}/immune score (IS)^{high} tumors. We observed enrichment of
interferon-response genes in MBM with high levels of IT signatures in the subset of TIL^{high}/immune score (IS)^{high} signatures in the subset of TIL^{nigh}/immune score (IS)^{nigh} tumors. We observed enrichment of
interferon-response genes in MBM with high levels of ITGB7 expression and observed
significant response of Itgb7 and Hgf amon interferon-response genes in MBM with high levels of ITGB7 expression and observed
significant response of Itgb7 and Hgf among known interferon-inducible genes such as
 $Cd274^{64}$ and Mx1⁶⁵ in interferon-gamma treated B 435 significant response of Itgb7 and Hgf among known interferon-inducible genes such as
436 Cd274^{64} and Mx1⁶⁵ in interferon-gamma treated BV2 murine microglia cells (unpublished
 16 Cd274 64 and Mx1 65 436 Cd274 64 and Mx1 65 in interferon-gamma treated BV2 murine microglia cells (unpublished
16

study GSE132739). Hence, T cell-provided interferon-gamma might not only induce
438 expression of Cd274/PD-L1 but may also activate expression of HGF and ITGB7. Therefore,
439 autocrine MET receptor signaling might be trig expression of Cd274/PD-L1 but may also activate expression of HGF and ITGB7. Therefore,
autocrine MET receptor signaling might be triggered in response to immune cell released
interferon-gamma and/or paracrine activation o autocrine MET receptor signaling might be triggered in response to immune cell released
interferon-gamma and/or paracrine activation of MET signaling may occur via (INFG-
activated) reactive glia-released HGF.
Qur study br

interferon-gamma and/or paracrine activation of MET signaling may occur via (INFG-
activated) reactive glia-released HGF.
Qur study bridges the gap between the immune cell phenotype of MBM and the activation of
potentially activated) reactive glia-released HGF.
442 Our study bridges the gap between the
443 potentially therapeutic counteracting
444 immune cells thus represents a double Our study bridges the gap between the immune cell phenotype of MBM and the activation of
potentially therapeutic counteracting signaling pathways. The infiltration of TAMs and
immune cells thus represents a double-sided sw potentially therapeutic counteracting signaling pathways. The infiltration of TAMs and

immune cells thus represents a double-sided sword and on the one hand is associated with

an effective response to immune checkpoint i immune cells thus represents a double-sided sword and on the one hand is associated with
an effective response to immune checkpoint inhibitors, but on the other hand can support the
growth of MET expressing tumor cells via

an effective response to immune checkpoint inhibitors, but on the other hand can support the
growth of MET expressing tumor cells via secreted factors such as HGF.
Therefore, we finally assessed the potential role of small growth of MET expressing tumor cells via secreted factors such as HGF.
447 Therefore, we finally assessed the potential role of small molecule inhibit
448 (METi) for targeting of MBM that lack druggable BRAF^{V600} mutation Therefore, we finally assessed the potential role of small molecule inhibitors of MET receptor

(METi) for targeting of MBM that lack druggable BRAF^{V600} mutations or developed refractory

disease. To this end, we took ad (METi) for targeting of MBM that lack druggable BRAF $V600$ (METi) for targeting of MBM that lack druggable BRAF^{v600} mutations or developed refractory
disease. To this end, we took advantage of well-characterized BMCs serving as *in vitro*
model systems. We observed that the ATPdisease. To this end, we took advantage of well-characterized BMCs serving as *in vitro*
model systems. We observed that the ATP-competitive inhibitor PHA-665752 and the non-
ATP-competitive, clinical phase II inhibitor AR model systems. We observed that the ATP-competitive inhibitor PHA-665752 and the non-
451 ATP-competitive, clinical phase II inhibitor ARQ197 (tivantinib) elicited response in BMCs
452 and conventional melanoma cell lines ATP-competitive, clinical phase II inhibitor ARQ197 (tivantinib) elicited response in BMCs
and conventional melanoma cell lines irrespective of the BRAF/NRAS mutation status.
However, although being effective at doses of and conventional melanoma cell lines irrespective of the BRAF/NRAS mutation status.
453 However, although being effective at doses of 100 – 200 nM in MeWo and A375 cells,
454 ARQ197 showed a median IC₅₀ value of ~1 μ However, although being effective at doses of 100 – 200 nM in MeWo and A375 cells,
454 ARQ197 showed a median IC_{50} value of ~1 µM in BMCs, suggesting a general difference
455 among brain metastatic and long-term mainta ARQ197 showed a median IC_{50} value of ~1 $µM$ in BMCs, suggesting a general difference
455 among brain metastatic and long-term maintained conventional cell lines established from
456 either non metastatic (A375) or loc

among brain metastatic and long-term maintained conventional cell lines established from
456 either non metastatic (A375) or locally metastatic (MeWo) cells.
457 In summary, we have shown that MET receptor signaling is act either non metastatic (A375) or locally metastatic (MeWo) cells.
457 In summary, we have shown that MET receptor signaling is
458 conferring a survival/growth benefit independent of BRAF/N
459 activation may occu In summary, we have shown that MET receptor signaling is active in a subset of MBM,
conferring a survival/growth benefit independent of BRAF/NRAS mutation status. MET
activation may occur in response to HGF released by TAM conferring a survival/growth benefit independent of BRAF/NRAS mutation status. MET
activation may occur in response to HGF released by TAM/immune cells and could
counteract therapeutic interventions. Furthermore, we sugges activation may occur in response to HGF released by TAM/immune cells and could
460 counteract therapeutic interventions. Furthermore, we suggest interferon-induced expression
461 of HGF in tumor cells triggered by interfer counteract therapeutic interventions. Furthermore, we suggest interferon-induced expression
461 of HGF in tumor cells triggered by interferon-gamma provided by stromal cells mediates
462 autocrine activation of MET-signali 461 of HGF in tumor cells triggered by interferon-gamma provided by stromal cells mediates
462 autocrine activation of MET-signaling tumor cells (Figure 6). In addition, we demonstrated
463 that methylome profiling of MBM autocrine activation of MET-signaling tumor cells (Figure 6). In addition, we demonstrated
that methylome profiling of MBM has high potential to identify gene regulatory sites that may
17 that methylome profiling of MBM has high potential to identify gene regulatory sites that may
17
17

predict favorable progression of intracranial disease. In the present study, we identified
epigenetic regulatory sites in a group of genes comprising ITGB7, APBB1IP, SUSD3 and
PD-L2 (PDCD1LG2). epigenetic regulatory sites in a group of genes comprising *ITGB7*, *APBB1IP*, *SUSD3* and
466 PD-L2 (*PDCD1LG2*).
467

466 PD-L2 (*PDCD1LG2*).
467
468 **Limitations of the st**

467
468
469
470 **Limitations of the study**
469 The present study is not v
470 is activated in tumor cells
471 evidence that growth of e The present study is not without limitations. Although we suggested that HGF/MET signaling
is activated in tumor cells in close proximity to infiltrated microglia, we have not provided
evidence that growth of established b 470 is activated in tumor cells in close proximity to infiltrated microglia, we have not provided
471 evidence that growth of established brain tumors and phosphorylation of MET decreases in
472 response to METi. Moreover, evidence that growth of established brain tumors and phosphorylation of MET decreases in

1472 response to METi. Moreover, whether METi are capable of passing the blood-brain barrier

1473 and not affect normal homeostatic 472 response to METi. Moreover, whether METi are capable of passing the blood-brain barrier
and not affect normal homeostatic processes e.g. those crucial for neuron survival needs to
be investigated.
475 and not affect normal homeostatic processes e.g. those crucial for neuron survival needs to

474 be investigated.

475
 Mathada 474 be investigated.
475
476 **Methods**

475
476
477

476 **Methods**
477 **Patient coheral**
478 All procedure
479 **respective** in **Patient cohorts**

478 All procedures po

479 respective institu

480 later amendmen All procedures performed in this study were in accordance with the ethical standards of the

479 respective institutional research committees and with the 1964 Helsinki declaration and its

480 later amendments or comparab respective institutional research committees and with the 1964 Helsinki declaration and its
480 later amendments or comparable ethical standards. All patients gave written informed
481 consent for the collection and scient 480 later amendments or comparable ethical standards. All patients gave written informed
481 consent for the collection and scientific use of tumor material which was collected at the
482 Biobank of the Charité – Comprehen consent for the collection and scientific use of tumor material which was collected at the
482 Biobank of the Charité – Comprehensive Cancer Center (CCCC). The study was approved
483 by the Ethics Committee of the Charité 482 Biobank of the Charité – Comprehensive Cancer Center (CCCC). The study was approved
by the Ethics Committee of the Charité (EA1/152/10; EA1/107/17; EA4/028/18 and
484 EA1/107/17 and EA1/075/19) and Universitätsmedizin 483 by the Ethics Committee of the Charité (EA1/152/10; EA1/107/17; EA4/028/18 and
484 EA1/107/17 and EA1/075/19) and Universitätsmedizin Greifswald (BB 001/23).
485 **Cultivation of MBM-derived and conventional melanoma ce**

484 EA1/107/17 and EA1/075/19) and Universitätsmedizin Greifswald (BB 001/23).
485 **Cultivation of MBM-derived and conventional melanoma cell lines**
487 All cell lines were cultured as previously reported²³. Briefly, all 485
486
487
488 **Cultivation of MBM-derived and conventional melanoma cell lines**
487 All cell lines were cultured as previously reported²³. Briefly, all brain m
488 lines (BMCs) and conventional melanoma cell lines were kept at 37^c
4 All cell lines were cultured as previously reported²³ All cell lines were cultured as previously reported²³. Briefly, all brain metastases-derived cell

1488 lines (BMCs) and conventional melanoma cell lines were kept at 37° C/ 5% CO₂ and 95%

1489 humidity in cell c 488 lines (BMCs) and conventional melanoma cell lines were kept at 37° C/ 5% CO₂ and 95%
humidity in cell culture medium (DMEM, 4.5 g/L glucose, stabilized glutamine/GlutaMax,
18 489 humidity in cell culture medium (DMEM, 4.5 g/L glucose, stabilized glutamine/GlutaMax,
18
18

490 pyruvate, Gibco/ThermoFisher) supplemented with 10% fetal bovine (FBS, Gibco) serum and
491 1% penicillin/streptomycin (P/S) (Gibco/ThermoFisher) and routinely passaged. BMCs were
492 established from intraoperative tu 1% penicillin/streptomycin (P/S) (Gibco/ThermoFisher) and routinely passaged. BMCs were
established from intraoperative tumors as previously reported²³.
493
Live cell imaging-based drug sensitivity assays established from intraoperative tumors as previously reported 23 .

established from intraoperative tumors as previously reported²³.
493
Live cell imaging-based drug sensitivity assays
Drug treatments were performed 24 h after seeding of 2,500-493
494
495
496 **Live cell imaging-based drug sensitivity assays**
495 Drug treatments were performed 24 h after seedin
496 medium. The response of BMCs and conventional
497 665752 or ARQ197 (all purchased from Selleckc Drug treatments were performed 24 h after seeding of 2,500-5,000 cells/96-well in 100 µl

496 medium. The response of BMCs and conventional melanoma cell lines to dabrafenib, PHA-

497 665752 or ARQ197 (all purchased from medium. The response of BMCs and conventional melanoma cell lines to dabrafenib, PHA-
497 665752 or ARQ197 (all purchased from Selleckchem) in a range of 1nM-10µM of eight
498 technical replicates was determined by live ce 665752 or ARQ197 (all purchased from Selleckchem) in a range of 1nM-10μM of eight
technical replicates was determined by live cell imaging. Images were taken every three
hours using a 10x objective and the general label-f technical replicates was determined by live cell imaging. Images were taken every three
hours using a 10x objective and the general label-free mode, two pictures of eight technical
replicates per condition were taken. Drug hours using a 10x objective and the general label-free mode, two pictures of eight technical

soo replicates per condition were taken. Drug response was assessed by changes in the cellular

density over time. The cell dens replicates per condition were taken. Drug response was assessed by changes in the cellular
501 density over time. The cell density was determined by a confluence mask tool as part of the
502 Incucyte S3 software. IC50 valu density over time. The cell density was determined by a confluence mask tool as part of the
502 Incucyte S3 software. IC50 values were calculated by curve-fitting (https://search.r-
503 project.org/CRAN/refmans/REAT/html/c 502 IncucyteS3 software. IC50 values were calculated by curve-fitting (https://search.r-
503 project.org/CRAN/refmans/REAT/html/curvefit.html) based on confluence measurements at
504 day 3.
In vivo experiments project.org/CRAN/refmans/REAT/html/curvefit.html) based on confluence measurements at
504 day 3.
In vivo experiments
506 All animal experiments were performed in accordance with the German Animal Protection

504 day 3.
505 **In viv**
506 All an
507 Law u 505 **In vivo experiments**
506 All animal experimen
507 Law under the permis
508 Social Affairs (LaGes 506 All animal experiments were performed in accordance with the German Animal Protection
507 Law under the permission number G0130/20 obtained via the Berlin Ministry of Health and
508 Social Affairs (LaGeSo). ARRIVE 2.0 507 Law under the permission number G0130/20 obtained via the Berlin Ministry of Health and
508 Social Affairs (LaGeSo). ARRIVE 2.0 Guidelines were strictly followed and performed as
509 previously reported²³. Briefly, 2 Social Affairs (LaGeSo). ARRIVE 2.0 Guidelines were strictly followed and performed as

previously reported²³. Briefly, 2.5x10⁴ BMC1-M4 and BMC2 cells were stereotactically

inoculated into brains of female Crl:CD1-Fox previously reported²³. Briefly, $2.5x10^4$ BMC1-M4 and BMC2 cells were stereotactically previously reported²³. Briefly, 2.5x10⁴ BMC1-M4 and BMC2 cells were stereotactically
510 inoculated into brains of female Crl:CD1-Foxn1^{nu} nude mice (8-9 weeks of age, 24-26g,
511 Charles River Laboratories) were wit inoculated into brains of female Crl:CD1-Foxn1^{nu} 510 inoculated into brains of female Crl:CD1-Foxn1^{nu} nude mice (8-9 weeks of age, 24-26g,
511 Charles River Laboratories) were with using a 1µl Hamilton syringe and a stereotactic frame
512 as described previously⁶⁶. S11 Charles River Laboratories) were with using a 1µl Hamilton syringe and a stereotactic frame

512 as described previously⁶⁶. Tumor growth was tracked by MRI and animals were sacrificed by

513 perfusion with 4% PFA i as described previously⁶⁶ 512 as described previously⁶⁶. Tumor growth was tracked by MRI and animals were sacrificed by
513 perfusion with 4% PFA in deep anesthesia after tumors reached a volume of 20 mm³.
514 Following, whole brains were remo 513 perfusion with 4% PFA in deep anesthesia after tumors reached a volume of 20 mm³.
514 Following, whole brains were removed, dehydrated, paraffin embedded and sections of 2 μm
515 were used for downstream analyses.
5 514 Following, whole brains were removed, dehydrated, paraffin embedded and sections of 2 µm
515 were used for downstream analyses.
516
517 515 were used for downstream analyses.
516
517

516
517

RNA isolation and sequencing
519 **Isolation of total RNA from snaplical previously reported²³. Briefly, 10
521 TruSeq Stranded total RNA Sa** 519 Isolation of total RNA from snap frozen tumors and RNA sequencing was performed as
520 previously reported²³. Briefly, 100 ng of total RNA was used for library preparation with
521 TruSeq Stranded total RNA Sample previously reported²³ previously reported²³. Briefly, 100 ng of total RNA was used for library preparation with
521 TruSeq Stranded total RNA Sample Preparation-Kit and Ribo-Zero Gold Kit (Illumina).
522 Paired-end (2x100 bp) sequencing of R 521 TruSeq Stranded total RNA Sample Preparation-Kit and Ribo-Zero Gold Kit (Illumina).
522 Paired-end (2x100 bp) sequencing of RNA libraries with integrity numbers (RIN) ≥7 was
523 performed on NovaSeq6000 platform at Ce 522 Paired-end (2x100 bp) sequencing of RNA libraries with integrity numbers (RIN) ≥7 was
523 performed on NovaSeq6000 platform at Cegat GmbH, Tuebingen (Germany). Following
524 demultiplexing of sequenced reads and adap performed on NovaSeq6000 platform at Cegat GmbH, Tuebingen (Germany). Following
524 demultiplexing of sequenced reads and adapter trimming⁶⁷, FASTQ files were obtained. Raw
525 counts of protein-coding genes were normali demultiplexing of sequenced reads and adapter trimming 67 demultiplexing of sequenced reads and adapter trimming^o', FASTQ files were obtained. Raw

s25 counts of protein-coding genes were normalized using the DESeq2

(https://bioconductor.org/packages/ release/bioc/html/DESeq2. 525 counts of protein-coding genes were normalized using the DESeq2
526 (https://bioconductor.org/packages/ release/bioc/html/DESeq2.html) package⁶⁸. Differential
527 expression of genes between groups was determined aft (https://bioconductor.org/packages/ release/bioc/html/DESeq2.html) package⁶⁸. Differential (https://bioconductor.org/packages/ release/bioc/html/DESeq2.html) package⁶⁸. Differential
527 expression of genes between groups was determined after fitting models of negative
528 binomial distributions to the raw coun expression of genes between groups was determined after fitting models of negative
528 binomial distributions to the raw counts. Raw p-values were FDR (false discovery rate)-
529 adjusted for multiple testing and a value b 528 binomial distributions to the raw counts. Raw p-values were FDR (false discovery rate)-
529 adjusted for multiple testing and a value below 0.05 for the adjusted p-values were used to
530 determine significant differen 529 adjusted for multiple testing and a value below 0.05 for the adjusted p-values were used to
530 determine significant differentially expressed genes.
531 **Gene-set enrichment GSEA/Single-sample GSEA/Scores**

determine significant differentially expressed genes.
531 **Gene-set enrichment GSEA/Single-sample GSEA**
533 **GSEA** was performed using the most current B 531
532
533
534 Gene-set enrichment GSEA/Single-sample GSEA/Scores
533 GSEA was performed using the most current BROAD
634 (http://www.broadinstitute.org/gsea/downloads.jsp) and gene
535 signature database MsigDB^{50,69}, v7.4. In addition GSEA was performed using the most current BROAD javaGSEA standalone version
534 (http://www.broadinstitute.org/gsea/downloads.jsp) and gene signatures of the molecular
535 signature database MsigDB^{50,69}, v7.4. In additio (http://www.broadinstitute.org/gsea/downloads.jsp) and gene signatures of the molecular
signature database MsigDB^{50,69}, v7.4. In addition, we performed GSVA/ssGSEA using R
packages GSVA⁷⁰, GSRI, GSVAdata and org.Hs.eg. signature database MsigDB^{50,69} signature database MsigDB^{50,69}, v7.4. In addition, we performed GSVA/ssGSEA using R
packages GSVA⁷⁰, GSRI, GSVAdata and org.Hs.eg.db and a customized collection of gene
signatures including the signatures provided by packages GSVA⁷⁰ packages GSVA⁷⁰, GSRI, GSVAdata and org.Hs.eg.db and a customized collection of gene
signatures including the signatures provided by Biermann et al.⁷¹ and own signatures as
defined by selected Ecad²³, NGFR²³, micro signatures including the signatures provided by Biermann et al.⁷¹ and own signatures as signatures including the signatures provided by Biermann et al.⁷¹ and own signatures as

defined by selected Ecad²³, NGFR²³, microglia or TME core genes (this study). All gene

signatures are shown in Supplementary defined by selected Ecad²³, NGFR²³ defined by selected Ecad²³, NGFR²³, microglia or TME core genes (this study). All gene
signatures are shown in Supplementary table 5. Microglia scores were defined as the mean
 β -value of probes cg24400465 (APBB1IP), signatures are shown in Supplementary table 5. Microglia scores were defined as the mean
540 β-value of probes cg24400465 (APBB1IP), cg05128364 (SYK), cg21704050 (P2RY12) and
541 cg03498995 (HCK) or expression levels (log 540 β-value of probes cg24400465 (APBB1IP), cg05128364 (SYK), cg21704050 (P2RY12) and
541 cg03498995 (HCK) or expression levels (log2 FPKM) of these markers. The proliferation
542 index in Figure 4d was defined as mean ex 541 cg03498995 (HCK) or expression levels (log2 FPKM) of these markers. The proliferation
index in Figure 4d was defined as mean expression level of the cell cycle regulators PCNA,
MKI67, CCNB1 and CCNB2.
544 542 index in Figure 4d was defined as mean expression level of the cell cycle regulators PCNA,
543 MKI67, CCNB1 and CCNB2.
544
545 543 MKI67, CCNB1 and CCNB2.
544
545
-

544
545

20

Fluorescence in situ hybridization (FISH)
547 FISH analysis was performed on 4 µm secti
548 dehydrated and incubated in pre-treatment s
549 Samples were treated with pepsin solution f FISH analysis was performed on 4 µm sections of FFPE blocks. Slides were deparaffinized,
548 dehydrated and incubated in pre-treatment solution (Dako, Denmark) for 10 min at 95–99°C.
549 Samples were treated with pepsin so 549 Samples were treated with pepsin solution for 6 min at 37°C. For hybridization, a Vysis MET
550 SpectrumRed/ Vysis CEP 7 (D7Z1) SpectrumGreen Probe (Abbott, Chicago, USA) was
551 used. Incubation took place overnight a Samples were treated with pepsin solution for 6 min at 37°C. For hybridization, a Vysis MET
550 SpectrumRed/ Vysis CEP 7 (D7Z1) SpectrumGreen Probe (Abbott, Chicago, USA) was
551 used. Incubation took place overnight at 37 SpectrumRed/ Vysis CEP 7 (D7Z1) SpectrumGreen Probe (Abbott, Chicago, USA) was
551 used. Incubation took place overnight at 37°C, followed by counterstaining with 4,6-
552 diamidino-2-phenylindole (DAPI). For each case, si used. Incubation took place overnight at 37°C, followed by counterstaining with 4,6-
552 diamidino-2-phenylindole (DAPI). For each case, signals were counted in 50 non-overlapping
553 tumor cells using a fluorescence micro diamidino-2-phenylindole (DAPI). For each case, signals were counted in 50 non-overlapping
553 tumor cells using a fluorescence microscope (BX63 Automated Fluorescence Microscope,
554 Olympus Corporation, Tokyo, Japan). Co tumor cells using a fluorescence microscope (BX63 Automated Fluorescence Microscope,
554 Olympus Corporation, Tokyo, Japan). Computer-based documentation and image analysis
555 was performed with the SoloWeb imaging system S54 Olympus Corporation, Tokyo, Japan). Computer-based documentation and image analysis

555 was performed with the SoloWeb imaging system (BioView Ltd, Israel). MET high-level

556 amplification (MET FISH+) was defined a ss5 was performed with the SoloWeb imaging system (BioView Ltd, Israel). MET high-level
556 amplification (MET FISH+) was defined as (a) MET/CEN7 ratio ≥2.0, (b) average MET copy
557 number/cell ≥ 6 or (c) ≥10% of tumor c 556 amplification (MET FISH+) was defined as (a) MET/CEN7 ratio ≥2.0, (b) average MET copy
557 number/cell ≥ 6 or (c) ≥10% of tumor cells with ≥15 MET copies/cell as described in
558 Schildhaus et al⁷².
559 557 number/cell ≥ 6 or (c) ≥10% of tumor cells with ≥15 MET copies/cell as described in
558 Schildhaus et al⁷².
559 Schildhaus et al⁷². 558 Schildhaus et al⁷².
559
560 **Quantitative real-t**

559
560
561
562 **Quantitative real-time RT-PCR**
561 RNA isolation from frozen cell
562 Germany) and, following the ma
563 carried out on a Step one plus P RNA isolation from frozen cell pellets was performed with the RNeasy Mini Kit (Qiagen,
562 Germany) and, following the manufacturers protocol as previously reported²³.qRT-PCR was
563 carried out on a Step one plus PCR cy Germany) and, following the manufacturers protocol as previously reported²³ 562 Germany) and, following the manufacturers protocol as previously reported²³.qRT-PCR was
563 carried out on a Step one plus PCR cycler (Applied Biosystems, Germany) for 30–40 cycles.
564 Primers were designed for 55 563 carried out on a Step one plus PCR cycler (Applied Biosystems, Germany) for 30–40 cycles.
564 Primers were designed for 55–60°C annealing temperatures. Relative expression levels were
565 calculated with the ΔΔCT met 564 Primers were designed for 55–60°C annealing temperatures. Relative expression levels were
565 calculated with the ΔΔCT method⁷³, normalized to β-actin. Primer sequences are shown in
566 Supplementary table 7.
567 calculated with the $\Delta\Delta\text{CT}$ method⁷³ 565 calculated with the ΔΔCT method⁷³, normalized to β-actin. Primer sequences are shown in
566 Supplementary table 7.
567 **Immunohistochemistry (IHC)/Immunofluorescence (IF)**

566 Supplementary table 7.
567
568 **Immunohistochemistr**
569 Automated immunohis 567
568
569
570 Immunohistochemistry (IHC)/Immunofluorescence (IF)
569 Automated immunohistochemical staining was performed on formalin-fixed, paraffin-
570 embedded (FFPE) tissue sections using the BenchMark Ultra (Ventana) autostainer. Automated immunohistochemical staining was performed on formalin-fixed, paraffin-
570 embedded (FFPE) tissue sections using the BenchMark Ultra (Ventana) autostainer. The
571 following primary antibodies were used: CD3 (a embedded (FFPE) tissue sections using the BenchMark Ultra (Ventana) autostainer. The
571 following primary antibodies were used: CD3 (anti-CD3ε, Agilent, catalog number:
572 #A045201-2, rabbit, dilution: 1:100), pMET (pho 571 following primary antibodies were used: CD3 (anti-CD3ε, Agilent, catalog number:
572 #A045201-2, rabbit, dilution: 1:100), pMET (phospho-MET, Tyr1234/1235, Cell signaling,
21 572 #A045201-2, rabbit, dilution: 1:100), pMET (phospho-MET, Tyr1234/1235, Cell signaling,

catalog number: #3077, rabbit, dilution: 1:100), pS6 (phospho-S6 ribosomal protein
574 Ser235/236, Cell signaling, catalog number: #2211, rabbit, dilution: 1:100), IBA1 (IBA1/AIF-1,
575 ionized calcium-binding adaptor mole Ser235/236, Cell signaling, catalog number: #2211, rabbit, dilution: 1:100), IBA1 (IBA1/AIF-1,

ionized calcium-binding adaptor molecule 1, Cell signaling, catalog number: #17198, rabbit,

dilution: 1:100), ITGB7 (Integrin ionized calcium-binding adaptor molecule 1, Cell signaling, catalog number: #17198, rabbit,
576 dilution: 1:100), ITGB7 (Integrin beta 7, Thermo Fisher, catalog number: #BS-1051R, rabbit,
577 dilution: 1:100) and pSTAT3 (p dilution: 1:100), ITGB7 (Integrin beta 7, Thermo Fisher, catalog number: #BS-1051R, rabbit,
dilution: 1:100) and pSTAT3 (phospho-STAT3, Tyr705, Cell signaling, catalog number:
#9145, rabbit, dilution: 1:100) and MITF (clon dilution: 1:100) and pSTAT3 (phospho-STAT3, Tyr705, Cell signaling, catalog number:

#9145, rabbit, dilution: 1:100) and MITF (clones C5 \square + \square D5, Zytomed, catalog number:

Z2161MP, mouse, dilution: 1:100). Primary antib #9145, rabbit, dilution: 1:100) and MITF (clones C5□+□D5, Zytomed, catalog number:
579 Z2161MP, mouse, dilution: 1:100). Primary antibodies were applied and developed using the
580 iVIEW DAB Detection Kit (Ventana Medical Z2161MP, mouse, dilution: 1:100). Primary antibodies were applied and developed using the
580 iVIEW DAB Detection Kit (Ventana Medical Systems) or the ultraView Universal Alkaline
581 Phosphatase Red Detection Kit (Ventana iVIEW DAB Detection Kit (Ventana Medical Systems) or the ultraView Universal Alkaline
581 Phosphatase Red Detection Kit (Ventana Medical Systems). All slides were counterstained
582 with hematoxylin for 8 minutes. IF of mo 581 Phosphatase Red Detection Kit (Ventana Medical Systems). All slides were counterstained
582 with hematoxylin for 8 minutes. IF of mouse brain sections was performed with IBA1
583 (IBA1/AIF-1, ionized calcium-binding ad with hematoxylin for 8 minutes. IF of mouse brain sections was performed with IBA1
583 (IBA1/AIF-1, ionized calcium-binding adaptor molecule 1, Cell signaling, catalog number:
584 #17198, rabbit, dilution: 1:100), KBA.62, 583 (IBA1/AIF-1, ionized calcium-binding adaptor molecule 1, Cell signaling, catalog number:
584 #17198, rabbit, dilution: 1:100), KBA.62, NovusBiologicals, catalog number: NBP2-45285,
585 mAb mouse, 1:100; GFAP-AlexaFluor 584 #17198, rabbit, dilution: 1:100), KBA.62, NovusBiologicals, catalog number: NBP2-45285,
585 mAb mouse, 1:100; GFAP-AlexaFluor594, BioLegend, catalog number: 644708, mAb
586 mouse.
587 585 mAb mouse, 1:100; GFAP-AlexaFluor594, BioLegend, catalog number: 644708, mAb
586 mouse.
587
588 **Data availability**

586 mouse.
587
588 **Data a**
589 Whole

587
588
589
590 588 **Data availability**
589 Whole transcriptome
590 Phenome Archive
591 EGAS00001005976 Whole transcriptome and methylome data were deposited in the European Genome-
590 Phenome Archive (EGA), under accession numbers EGAS00001005975,
591 EGAS00001005976 (https://ega-archive.org/studies/). The data are availab 590 Phenome Archive (EGA), under accession numbers EGAS00001005975,
591 EGAS00001005976 (https://ega-archive.org/studies/). The data are available under
592 controlled access. Supplementary tables of our recent study have 591 EGAS00001005976 (https://ega-archive.org/studies/). The data are available under
592 controlled access. Supplementary tables of our recent study have been deposited at Zenodo
593 (https://doi.org/10.5281/zenodo.1000688 controlled access. Supplementary tables of our recent study have been deposited at Zenodo

(https://doi.org/10.5281/zenodo.10006881). Supplementary tables of our previous study

containing a full list of patient's characte 593 (https://doi.org/10.5281/zenodo.10006881). Supplementary tables of our previous study
594 containing a full list of patient s characteristics (Supplementary table 1) have been deposited
595 at Zenodo (https://zenodo.or 594 containing a full list of patient´s characteristics (Supplementary table 1) have been deposited
at Zenodo (https://zenodo.org/record/7013097 and https://doi.org/10.5281/zenodo.7249214).
596 595 at Zenodo (https://zenodo.org/record/7013097 and https://doi.org/10.5281/zenodo.7249214).
596
596

 $22₂$

606
607
608 606 **Competing interests**
607 The authors declare no confl
608 **Funding**

607 The authors declare no conflicting interests.
608
610 JR is an alumnus of the BIH-Charité Clini 609
610
611 609 **Funding**
610 JR is an al
611 Universitäts
612 Consortium Fiame JR is an alumnus of the BIH-Charité Clinical Scientist Program funded by the Charité –
611 Universitätsmedizin Berlin and the Berlin Institute of Health. We thank the German Cancer
612 Consortium (DKTK), Partner site 611 Universitätsmedizin Berlin and the Berlin Institute of Health. We thank the German Cancer
612 Consortium (DKTK), Partner site Berlin for technical support. AV received funding by the
613 ÖAW (DOC Fellowship: DOC/26523) 612 Consortium (DKTK), Partner site Berlin for technical support. AV received funding by the
613 ÖAW (DOC Fellowship: DOC/26523).
614 **Acknowledgments** 613 OAW (DOC Fellowship: DOC/26523).
614
615 **Acknowledgments**
616 We gratefully thank Cathrin Müller for (

614
615
616
617 615 **Acknowledgments**
616 We gratefully thank Cathri
617
618 616 We gratefully thank Cathrin Müller for excellent technical assistance.
617
618
619

- 618
619
-
-
- 619
620
621 ---
620
621
622 621
- 622

-
- **623 References**
 624 1 Redmer, 1
 625 matter. M
 626 2 Srinivasan
 627 of brair
 628 doi:10.109
 620 2 Helt M For the gist of the matter. Mol Cancer 17, 106, doi:10.1186/s12943-018-0854-5 (2018).

625 matter. Mol Cancer 17, 106, doi:10.1186/s12943-018-0854-5 (2018).

626 2 Srinivasan, E. S., Deshpande, K., Neman, J., Winkler, F. & 626 2 Srinivasan, E. S., Deshpande, K., Neman, J., Winkler, F. & Khasraw, M
627 of brain metastases from solid tumors. Neurooncol
628 doi:10.1093/noajnl/vdab121 (2021).
629 3 Holt, M. G. Astrocyte heterogeneity and intera 627 of brain metastases from solid tumors. Neurooncol Adv 3, v121-v132,
628 doi:10.1093/noajnl/vdab121 (2021).
629 3 Holt, M. G. Astrocyte heterogeneity and interactions with local neural circuits. *Essays*
630 *Biochem* 6
- 628 doi:10.1093/noajnl/vdab121 (2021).
629 3 Holt, M. G. Astrocyte heterogeneity and interactions with local neural circuits. *Essays*
630 *Biochem* **67**, 93-106, doi:10.1042/ebc20220136 (2023).
631 4 Bilscher, M. M. et al 629 3 Holt, M. G. Astrocyte heterogenei
630 *Biochem* 67, 93-106, doi:10.1042/ebo
631 4 Hilscher, M. M. *et al.* Spatial and term
632 oligodendrocyte subtypes. *BMC Biolo*
633 5 Li, Y. *et al.* Decoding the temporal a
634
-
- 629 3 Holt, M. G. Astrocyte heterogeneity and interactions with local neural circuits. Essays 631 4 Hilscher, M. M. *et al.* Spatial and temporal heterogene
632 oligodendrocyte subtypes. *BMC Biology* 20, 122, doi:10.
633 5 Li, Y. *et al.* Decoding the temporal and regional specifical human brain. *Cell stem cell* 632 oligodendrocyte subtypes. *BMC Biology* 20, 122, doi:10.1186/s12915-022-01325-z (2022).
633 5 Li, Y. *et al.* Decoding the temporal and regional specification of microglia in the developing
634 human brain. *Cell stem* 633 5 Li, Y. *et al.* Decoding the temporal and regional specification of microglia in the develop
634 human brain. *Cell stem cell* **29**, 620-634 e626, doi:10.1016/j.stem.2022.02.004 (2022).
635 Tan, Y.-L., Yuan, Y. & Ti
- 634 bunnels and regional specification of interogram the developing
634 human brain. Cell stem cell 29, 620-634 e626, doi:10.1016/j.stem.2022.02.004 (2022).
635 finn, Y.-L., Yuan, Y. & Tian, L. Microglial regional heterog 635 6 Tan, Y.-L., Yuan, Y. & Tian, L. Microglial regional heterogeneity and its role in the
636 Molecular Psychiatry 25, 351-367, doi:10.1038/s41380-019-0609-8 (2020).
637 1 Liddelow, S. A. & Barres, B. A. Reactive Astroc
-
- 636 *Molecular Psychiatry* 25, 351-367, doi:10.1038/s41380-019-0609-8 (2020).
637 1 Liddelow, S. A. & Barres, B. A. Reactive Astrocytes: Production, Function, and Therapeutic
638 Potential. *Immunity* 46, 957-967, doi:10.1 For the Psychiatry 25, 351-367, doi:10.1038/s41380-019-0609-8 (2020).

Molecular Psychiatry 25, 351-367, doi:10.1016/j.immuni.2017.06.006 (2017)

Bennett, M. L. & Viaene, A. N. What are activated and reactive glia and w
 Formula *Call Deadlyting* Call Deadlyting Cal
-
- 639 8 Bennett, M. L. & Viaene, A. N. What are activated and reactive glia and wh
640 neurodegeneration? *Neurobiol Dis* 148, 105172, doi:10.1016/j.nbd.2020.105
641 9 Tan, Y. L., Yuan, Y. & Tian, L. Microglial regional het For Figure 1. Control of Microsofter and Reaction 2.020.105172 (2021).

640 neurodegeneration? Neurobiol Dis 148, 105172, doi:10.1016/j.nbd.2020.105172 (2021).

642 Psychiatry 25, 351-367, doi:10.1038/s41380-019-0609-8 (20 641 9 Tan, Y. L., Yuan, Y. & Tian, L. Microglial regional heterogeneity and its role in the brain.
642 *Psychiatry* 25, 351-367, doi:10.1038/s41380-019-0609-8 (2020).
643 10 Mathys, H. *et al.* Temporal Tracking of Microgl Fan, Y. L., Yuan, Y. & Tian, L. Microglial regional neterogeneity and its role in the brain. More Psychiatry 25, 351-367, doi:10.1038/s41380-019-0609-8 (2020).

643 10 Mathys, H. *et al.* Temporal Tracking of Microglia Act 643 10 Mathys, H. *et al.* Temporal Tracking of Microglia Activation in M
644 Cell Resolution. Cell Rep 21, 366-380, doi:10.1016/j.celrep.2017.
645 11 Schwartz, H. *et al.* Incipient Melanoma Brain Metastases
646 Neuroinf
- 644 Cell Resolution. *Cell Rep* 21, 366-380, doi:10.1016/j.celrep.2017.09.039 (2017).
645 11 Schwartz, H. *et al.* Incipient Melanoma Brain Metastases Instigate Astrogliosis and
646 Neuroinflammation. Cancer Res 76, 4359-4 645 11 Schwartz, H. *et al.* Incipient Melanoma Brain Metastases Instigate Ast
646 Neuroinflammation. Cancer Res 76, 4359-4371, doi:10.1158/0008-5472.CAN-16
647 12 Colombo, E. & Farina, C. Astrocytes: Key Regulators of Neu
-
- 646 Neuroinflammation. Cancer Res 76, 4359-4371, doi:10.1158/0008-5472.CAN-16-0485 (2016).
647 12 Colombo, E. & Farina, C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol
648 37, 608-620, doi:10.1016/j.it.2
- 647 12 Colombo, E. & Farina, C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol
648 37, 608-620, doi:10.1016/j.it.2016.06.006 (2016).
649 13 Rehman, R. *et al.* Met/HGFR triggers detrimental reactive microg 648
 37, 608-620, doi:10.1016/j.it.2016.06.006 (2016).
 649
 13 Rehman, R. *et al.* Met/HGFR triggers detrimental reactive microglia in TBI. *Cell Rep* **41**,
 111867, doi:10.1016/j.celrep.2022.111867 (2022).
 14 649 13 Rehman, R. *et al.* Met/HGFR triggers detriment
650 111867, doi:10.1016/j.celrep.2022.111867 (2022)
651 14 Yamagata, T. *et al.* Hepatocyte growth factor spec
652 in the neurons, similar to the action of neurotr-
6 650

111867, doi:10.1016/j.celrep.2022.111867 (2022).

651 14 Yamagata, T. *et al.* Hepatocyte growth factor specifically expressed in microglia activated Ras

in the neurons, similar to the action of neurotrophic factors. 14 Yamagata, T. *et al.* Hepatocyte growth factor speci

652 in the neurons, similar to the action of neurotro

653 *research communications* **210**, 231-237, doi:10.100

654 15 Nicoleau, C. *et al.* Endogenous Hepatocyte G
- France Contracts Specifically expressed in intereglia activated Ras

in the neurons, similar to the action of neurotrophic factors. *Biochemical and biophysical*

research communications 210, 231-237, doi:10.1006/bbrc.1995 France II and Table 1913.

653 *research communications* 210, 231-237, doi:10.1006/bbrc.1995.1651 (1995).

654 15 Nicoleau, C. *et al.* Endogenous Hepatocyte Growth Factor Is a Niche Signal for Subventricular

7 Zone Neura Fesearch communications 210, 251-257, doi:10.1000/bbrc.1999.1691 (1999).

654 15 Nicoleau, C. *et al.* Endogenous Hepatocyte Growth Factor Is a Niche Signal fo

655 2008 Neural Stem Cell Amplification and Self-Renewal. *St*
- For 15 Nicoleau, C. et al. Entogenous Hepatocyte Growth Factor Is a Niche Signal for Subventricular

1655 2008 Neural Stem Cell Amplification and Self-Renewal. *Stem Cells* 27, 408-419,

16 Schetters, S. T. T., Gomez-Nicol Example Neural Stem Cell Amplification and Self-Renewal. Stem Cells 21, 400-413,
656 doi:10.1634/stemcells.2008-0226 (2009).
657 16 Schetters, S. T. T., Gomez-Nicola, D., Garcia-Vallejo, J. J. & Van Kooyk, Y. Neuroinflamma
- 657 16 Schetters, S. T. T., Gomez-Nicola, D., Garc

658 Microglia and T Cells Get Rea

659 doi:10.3389/fimmu.2017.01905 (2017).

660 17 Colonna, M. & Butovsky, O. Microglia Fur

661 and Neurodegeneration. Annu Rev Imm

662 Microglia and T Cells Get Ready to Tango. *Front Immunol* 8, 1905,
659 doi:10.3389/fimmu.2017.01905 (2017).
660 17 Colonna, M. & Butovsky, O. Microglia-Function in the Central Nervous System During Health
661 and Neurodege Microglia and T Cells Get Ready to Tango. Tront Immanor 6, 1505,
659 doi:10.3389/fimmu.2017.01905 (2017).
660 17 Colonna, M. & Butovsky, O. Microglia Function in the Central Nervous System During Health
661 and Neurodegene 660 17 Colonna, M. & Butovsky, O. Microglia F
661 and Neurodegeneration. Annu Rev Im
662 051116-052358 (2017).
663 18 Caffarel, M. M. & Braza, M. S. Microg
664 victim, ravager, or something else? J Ex
665 02535-7 (2022).
- 661 and Neurodegeneration. Annu Rev Immunol 35, 441-468, doi:10.1146/annurev-immunol-
662 051116-052358 (2017).
663 18 Caffarel, M. M. & Braza, M. S. Microglia and metastases to the central nervous system:
664 victim, rava 662 051116-052358 (2017).
663 18 Caffarel, M. M. & Braza, M. S. Microglia and metastases to the central nervous system:
664 victim, ravager, or something else? *J Exp Clin Cancer Res* 41, 327, doi:10.1186/s13046-022-
665 0 663 18 Caffarel, M. M. & Braz
664 victim, ravager, or some
665 02535-7 (2022).
666 19 Wang, G. *et al.* Tumor-
667 insights to thera
668 doi:10.3389/fimmu.202
- 664 victim, ravager, or something else? *J Exp Clin Cancer Res* 41, 327, doi:10.1186/s13046-022-
665 02535-7 (2022).
666 19 Wang, G. *et al.* Tumor-associated microglia and macrophages in glioblastoma: From basic
667 insig 665

665 02535-7 (2022).

666 19 Wang, G. *et al.* Tumor-associated microglia and macrophages in glioblastoma: From basic

insights to therapeutic opportunities. *Front Immunol* 13, 964898,

669 20 Blitz, S. E. *et al.* Tu 666 19 Wang, G. *et al.*
667 insights to
668 doi:10.3389/fimi
669 20 Blitz, S. E. *et*
670 Virotherapy: A D
671 21 Urbantat, R. M. wang, G. et al. Tumor-associated microgia and macrophages in glioblastoma. Trom basic
667 insights to therapeutic opportunities. *Front Immunol* 13, 964898,
668 doi:10.3389/fimmu.2022.964898 (2022).
670 Dirtherapy: A Doubl
- magnts to therapeutic opportunities. From immunor 13, 964898,
668 doi:10.3389/fimmu.2022.964898 (2022).
669 20 Blitz, S. E. *et al.* Tumor-Associated Macrophages/Microglia in Glioblastoma Oncolytic
670 Virotherapy: A Doubl 669 20 Blitz, S. E. *et al.* Tumor-Associated N
670 Virotherapy: A Double-Edged Sword. *Int J*
671 21 Urbantat, R. M. *et al.* Tumor-Associated N
672 Glioblastoma and Temozolomide-Induced
- 670 Blitz, S. E. et al. Tumor-Associated Macrophages/Microglia in Glioblastoma Oncolytic
671 21 Urbantat, R. M. et al. Tumor-Associated Microglia/Macrophages as a Predictor for Survival in
672 Glioblastoma and Temozolomide 670 Virotherapy: A Double-Edged Sword. *Int 3 Mol Sci* 23, doi:10.339071jins23031808 (2022).
671 21 Urbantat, R. M. *et al.* Tumor-Associated Microglia/Macrophages as a Predictor for Survive Glioblastoma and Temozolomide-I 672 Grisantat, R. M. et al. Tumor Associated Microglia/Macrophages as a Predictor for Survival in
672 Glioblastoma and Temozolomide-Induced Changes in CXCR2 Signaling with New Resistance
24 672 Glioblastoma and Temozolomide-Induced Changes in CXCR2 Signaling with New Resistance

Overcoming Strategy by Combination Therapy. *Int J Mol Sci* 22, doi:10.3390/ijms222011180

674 (2021).

675 22 Andersen, R. S., Anand, A., Harwood, D. S. L. & Kristensen, B. W. Tumor-Associated Microglia

676 and Macrophag 675 22 Anderse

676 and Ma

677 Cancers

678 23 Radke,

680 24 Köhler,

680 24 Köhler, and Macrophages in the Glioblastoma Microenvironment and Their Implications for Therapy.

677 *Cancers (Basel)* 13, doi:10.3390/cancers13174255 (2021).

678 23 Radke, J. *et al.* Decoding molecular programs in melanoma bra Cancers (Basel) 13, doi:10.3390/cancers13174255 (2021).

678 23 Radke, J. et al. Decoding molecular programs in melanoma brain metastases. Nature

679 Communications 13, 7304, doi:10.1038/s41467-022-34899-x (2022).

680 24 678 23 Radke, J. et al. Decoding molecular programs in mel
679 *Communications* 13, 7304, doi:10.1038/s41467-022-34899
680 24 Köhler, C. Allograft inflammatory factor-1/lonized calcit
681 specifically expressed by most su 679 Communications 13, 7304, doi:10.1038/s41467-022-34899-x (2022).
680 24 Köhler, C. Allograft inflammatory factor-1/lonized calcium-binding adapter molecule 1 is
681 specifically expressed by most subpopulations of macro 680 24 Köhler, C. Allograft inflammatory factor-1/lonized calcium-binding
681 specifically expressed by most subpopulations of macrophages and
682 and Tissue Research 330, 291-302, doi:10.1007/s00441-007-0474-7 (
683 25 Y 681 specifically expressed by most subpopulations of macrophages and spermatids in testis. *Cell*
682 and Tissue Research 330, 291-302, doi:10.1007/s00441-007-0474-7 (2007).
683 25 Yoshihara, K. et al. Inferring tumour pur specifically expressed by most subpopulations of macrophages and spermatids in testis. Cell

and Tissue Research 330, 291-302, doi:10.1007/s00441-007-0474-7 (2007).

683 25 Yoshihara, K. et al. Inferring tumour purity and 683 25 Yoshihara, K. *et al.* Inferring tumour purity and stromal and immune cel
684 expression data. *Nat Commun 4*, 2612, doi:10.1038/ncomms3612 (2013).
685 26 Ros-Martinez, S., Navas-Carrillo, D., Alonso-Romero, J. L. Froshmana, K. et al. Inferring tumour purity and stromal and immune cell admixture from

expression data. Nat Commun 4, 2612, doi:10.1038/ncomms3612 (2013).

Ros-Martinez, S., Navas-Carrillo, D., Alonso-Romero, J. L. & Ore Expression data. Not Commun 4, 2012, doi:10.1038/ncomms3612 (2013).

685 26 Ros-Martinez, S., Navas-Carrillo, D., Alonso-Romero, J. L. & Orenes-Pinero,

novel prognostic tool. Association with clinical outcome, response to Frame is the prognostic tool. Association with clinical outcome, response to treatment and survival

in several malignancies. *Crit Rev Clin Lab Sci* 57, 432-443,

doi:10.1080/10408363.2020.1729692 (2020).

Zhang, Y. *et a* 687 in several malignancies. Crit Rev Clin Lab Sci 57, 432-443,
688 doi:10.1080/10408363.2020.1729692 (2020).
689 27 Zhang, Y. *et al.* Integrin beta7 Inhibits Colorectal Cancer Pathogenesis via Maintaining
690 Antitumor 688 doi:10.1080/10408363.2020.1729692 (2020).
689 27 Zhang, Y. *et al.* Integrin beta7 Inhibits Colorectal Cancer Pathogenesis via Maintaining
690 Antitumor Immunity. *Cancer Immunol Res* 9, 967-980, doi:10.1158/2326-6066. 689 27 Zhang, Y. *et al.* Integrin beta7 Inhibits Col
690 Antitumor Immunity. Cancer Immunol Res 9,
691 (2021).
692 28 Ge, Q. *et al.* Immunological Role and Prognos
693 *Cancer* 12, 595-610, doi:10.7150/jca.50785 (20
694 Example 12 Zhang, Y. et al. Imegini beta7 Inhibits Colorectal cancer Tathogenesis via Maintaining

680 Antitumor Immunity. Cancer Immunol Res 9, 967-980, doi:10.1158/2326-6066.CIR-20-0879

692 28 Ge, Q. et al. Immunologica Finitumor Immunity. Cancer *Immunor Res 9, 967-960*, doi:10.1158/2326-6060.CIR-20-0873

692 28 Ge, Q. *et al.* Immunological Role and Prognostic Value of APBB1IP in Pan-Cancer Analysis. J
 Cancer 12, 595-610, doi:10.7150 692 28 Ge, Q. e

693 Cancer:

694 29 Geirsdo

695 Microgl

696 30 Lafuent

697 Heilate 692 28 Ge, Q. et al. Immunological Role and Prognosite value of APBB11 in Pan-Cancer Analysis. 3
693 *Cancer* 12, 595-610, doi:10.7150/jca.50785 (2021).
694 29 Geirsdottir, L. *et al.* Cross-Species Single-Cell Analysis Re 694 29 Geirsdottir, L. et al. Cross-Species Single-Cell Ana
695 Microglia Program. Cell 179, 1609-1622 e1616, doi:
696 30 Lafuente, E. M. et al. RIAM, an Ena/VASP and Pro
697 mediates Rap1-induced adhesion. De
698 doi:10. Microglia Program. Cell 179, 1609-1622 e1616, doi:10.1016/j.cell.2019.11.010 (2019).

Experiment and Cell 179, 1609-1622 e1616, doi:10.1016/j.cell.2019.11.010 (2019).

Lafuente, E. M. et al. RIAM, an Ena/VASP and Profilin 696 30 Lafuente, E. M. *et al.* RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-G
697 mediates Rap1-induced adhesion. *Developmental cell* 7, 5:
698 doi:10.1016/j.devcel.2004.07.021 (2004).
700 methods and T. *e* Example 1. M. et al. NAM, an Enayvase and Profilm ligand, interacts with Rap1-GTP and

697 mediates Rap1-induced adhesion. Developmental cell 7, 585-595,

doi:10.1016/j.devcel.2004.07.021 (2004).

1 magaki, T. et al. The r 698 doi:10.1016/j.devcel.2004.07.021 (2004).
699 31 Inagaki, T. *et al.* The retinoic acid-responsive proline-rich protein is identified in
699 31 Inagaki, T. *et al.* The retinoic acid-responsive proline-rich protein is i 699 31 Inagaki, T. et al. The retinoic acid-

700 promyeloleukemic HL-60 cells. *J Biol Cher*

702 32 Hoffmann, F. et al. Prognostic and predi

703 expression in melanoma. *Clin Epigenetics*

704 33 Chen, S. et al. Integr 699 31 Inagaki, T. et al. The Tethlote acid-responsive prome herr procent is identified in

700 promyeloleukemic HL-60 cells. *J Biol Chem* 278, 51685-51692, doi:10.1074/jbc.M308016200

702 32 Hoffmann, F. et al. Prognosti From Promyeloleukemic HL-60 cens. J Biol Chem 278, 51685-51692, doi:10.1074/jbc.M308016200

702 32 Hoffmann, F. et al. Prognostic and predictive value of PD-L2 DNA methylation and mRNA

expression in melanoma. *Clin Epigen* 702 32 Hoffma

703 express

704 33 Chen, S

705 adhesio

706 34 Zhang,

707 Colon C 22 Frommann, F. et al. Prognostic and predictive value of PD-L2 DNA methylation and mNNA

2020 expression in melanoma. Clin Epigenetics 12, 94, doi:10.1186/s13148-020-00883-9 (2020).

2021 2021 2021 2021 2021 2021 2021 202 Expression in melanoma. Clin Epigenetics 12, 94, doi:10.1100/313140-020-00883-9 (2020).

704 33 Chen, S. et al. Integrin alphaEbeta7(+) T cells direct intestinal stem cell fate decisions

adhesion signaling. Cell research 204 33 Chen, S. et al. Integrin alphaEbeta7(+) T cells direct intestinal stem cell rate decisions via

2006 34 Zhang, L. *et al.* Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in

2006 Colon Cancer. 205 addition signaling. Cell research 31, 1291-1307, doi:10.1038/s41422-021-00501-2 (2021).

206 34 Zhang, L. et al. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies

207 Colon Cancer. Cell 181, 442-459 2123

2707 Colon Cancer. Cell 181, 442-459 e429, doi:10.1016/j.cell.2020.03.048 (2020).

2708 35 Schmiedel, B. J. *et al.* Single-cell eQTL analysis of activated T cell subsets reveals activation

2709 and cell type-depend 271

27 Colon Cancer. Cell 181, 442-459 e429, doi:10.1016/j.cell.2020.03.048 (2020).

27 Colon Cancer. Cell 181, 442-459 e429, doi:10.1016/j.cell.2020.03.048 (2020).

27 Colon Cancer of also and cell type-dependent effects 35 Schmiedel, B. J. et al. Single-cell eQTL analysis of activated T cell subsets reveals activation

36 aloi:10.1126/sciimmunol.abm2508 (2022).

711 36 Weiss, S. A. *et al.* Melanoma brain metastases have lower T-cell cont 20910)
710 doi:10.1126/sciimmunol.abm2508 (2022).
711 36 Weiss, S. A. *et al.* Melanoma brain metastases have lower T-cell content and microvessel
712 density compared to matched extracranial metastases. *J Neurooncol* 152 711 36 Weiss, S. A. *et al.* Melanoma brain meta

712 density compared to matched extrac

713 doi:10.1007/s11060-020-03619-0 (2021).

714 37 Griss, J. *et al.* B cells sustain inflammati

715 blockade in human melanoma. 712 Weiss, S. A. et al. Melanoma brain metastases have lower T-cell content and microvesser

712 density compared to matched extracranial metastases. *J Neurooncol* 152, 15-25,

713 doi:10.1007/s11060-020-03619-0 (2021).
 212 density compared to matched extracramal metastases. J Neurooncol 132, 13-25,

133 doi:10.1007/s11060-020-03619-0 (2021).

714 37 Griss, J. et al. B cells sustain inflammation and predict response to immune checkpoint
 714 37 Griss, J. *et al.* B cells sustain inflammat
715 blockade in human melanoma. *Nat Con*
716 (2019).
717 38 Huang, L. *et al.* Correlation of tumor-in
718 survival by immunogenomic analysis. *Can*
719 (2020). 2714 37 Griss, J. et al. B cells sustain inflammation and predict response to immune energybric

2715 blockade in human melanoma. Nat Commun 10, 4186, doi:10.1038/s41467-019-12160-2

2717 38 Huang, L. et al. Correlation of 2020).

715 blockade in human melanoma. Nut Commun 10, 4186, doi:10.1038/s41467-015-12160-2

717 38 Huang, L. et al. Correlation of tumor-infiltrating immune cells of melanoma with overall

2020).

720 39 Saul, D. et al. 717 38 Huang,

718 survival

719 (2020).

720 39 Saul, D.

721 pathwar

722 40 Pais Fer Fraction of tumor-infiltrating immune cells of melanoma with overall

1718 survival by immunogenomic analysis. Cancer medicine 9, 8444-8456, doi:10.1002/cam4.3466

1720 39 Saul, D. et al. A new gene set identifies senescen 319 survival by immunogenomic analysis. Cancer medicine 9, 0444-0450, doi:10.1002/cam4.3466

720 39 Saul, D. et al. A new gene set identifies senescent cells and predicts senescence-associated

pathways across tissues. Na (1994)

1995 - Saul, D.

1997 - Saul, D.

1997 - Pais Fer

1997 - Pais Fer

1998 - Cells in

1998 - Cells in

1998 - Cells in

1998 - Cells in 35 Saul, D. et al. A new gene set identifies senescent cells and predicts senescente-associated

721 pathways across tissues. Nat Commun 13, 4827, doi:10.1038/s41467-022-32552-1 (2022).

722 10 Pais Ferreira, D. et al. Cen 721 pathways across tissues. Nat Commun 13, 4827, doi:10.1038/s41467-022-32532-1 (2022).

722 40 Pais Ferreira, D. *et al.* Central memory CD8(+) T cells derive from stem-like Tcf7(hi) effec

cells in the absence of cytot 722 40 Pais Ferreira, D. et al. Central memory CD8(+) Pleasance from stem-like Terry (iii) effector
723 cells in the absence of cytotoxic differentiation. Immunity 53, 985-1000 e1011,
80i:10.1016/j.immuni.2020.09.005 (202 723 cells in the absence of cytotoxic differentiation. Immunity 33, 985-1000 e1011,
 $10(10.1016/j.)$ mmuni.2020.09.005 (2020).

724 doi:10.1016/j.immuni.2020.09.005 (2020).

It is made available under a CC-BY-NC 4.0 International license. **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2023.10.16.23297080;](https://doi.org/10.1101/2023.10.16.23297080) this version posted October 16, 2023. The copyright holder for this preprint

-
- 725 41 Sade Feldman, W. et al. Defining T Cell States Associated with Response to Checkpoint
726 Immunotherapy in Melanoma. Cell 176, 404, doi:10.1016/j.cell.2018.12.034 (2019).
727 42 Connolly, K. A. *et al.* A reservoir
- 226 Immunotherapy in Melanoma. Centry 2004, doi:10.1016/j.cell.2010.12.034 (2013).

228 Connolly, K. A. *et al.* A reservoir of stem-like CD8(+) T cells in the tumor-draining lyr

229 doi:10.1126/sciimmunol.abg7836 (2021). 227 42 Connolly, K. A. et al. A reservoir of stem-like CD0(+) T cells in the tumor-driaming lymph node

228 preserves the ongoing antitumor immune response. *Sci Immunol* 6, eabg7836,

229 doi:10.1126/sciimmunol.abg7836 (2 Fresh Constitution in the ongoing antituding the ongoing term in the original of the original dots.

1730 43 Fischer, G. M. *et al.* Molecular Profiling Reveals Unique Immune and Metabolic Features of

1731 Melanoma Brain 43 Fischer, G. M. *et al.* Molecular Profiling R
731 Melanoma Brain Metastases. Cancer Disc
732 (2019).
733 44 Desole, C. *et al.* HGF and MET: From Brain
734 *Dev Biol* 9, 683609, doi:10.3389/fcell.2021
735 45 Zhang, Y.
-
- 730 43 Fischer, G. M. et al. Molecular Fromming Reveals Online and Metabolic Features of
731 Melanoma Brain Metastases. *Cancer Discov* 9, 628-645, doi:10.1158/2159-8290.CD-18-1489
732 (2019).
733 44 Desole, C. *et al.* HG For Melanoma Brain Metastases. Cancer Discov 9, 026-045, doi:10.1158/2159-8290.CD-16-1489

732 (2019).

733 44 Desole, C. et al. HGF and MET: From Brain Development to Neurological Disorders. *Front Cell*
 Dev Biol 9, 68 733 44 Desole,

733 44 Desole,

735 45 Zhang,

736 Reveals

737 doi:10.1

738 46 Zhang, 233 44 Desole, C. et al. HGF and MET: From Brain Development to Neurological Disorders. From Cell

2734 Dev Biol 9, 683609, doi:10.3389/fcell.2021.683609 (2021).

2735 2737 doi:10.1016/j.neuron.2015.11.013 (2016).

2737 do *Pev Biol 9, 683609, doi:10.3389/fcell.2021.083609 (2021).*

735 45 Zhang, Y. *et al.* Purification and Characterization of Progeni

737 doi:10.1016/j.neuron.2015.11.013 (2016).

738 46 Zhang, Y., Jain, R. K. & Zhu, M. Rec
- 2135 45 Zhang, Y. et al. Purification and Characterization of Progress and Mature Human Astrocytes

736 Reveals Transcriptional and Functional Differences with Mouse. *Neuron* 89, 37-53,

737 doi:10.1016/j.neuron.2015.11.0 Frances Manuscriptional and Functional Birecrees with Mouse. Neuron 89, 37-53,

1737 doi:10.1016/j.neuron.2015.11.013 (2016).

738 46 Zhang, Y., Jain, R. K. & Zhu, M. Recent Progress and Advances in HGF/MET-Targeted

Thera 738 46 Zhang, Y., Jain, R. K. & Zhu, M. Recentral
739 Therapeutic Agents for Cancer
740 doi:10.3390/biomedicines3010149 (2015).
741 47 Ramani, N. S., Morani, A. C. &
742 (Amplification/Polysomy) Identified in Me
743 *Patho*
- Therapeutic Agents for Cancer Treatment. *Biomedicines* 3, 149-181,

740 doi:10.3390/biomedicines3010149 (2015).

741 47 Ramani, N. S., Morani, A. C. & Zhang, S. MET Gene High Copy Number

742 (Amplification/Polysomy) Iden Therapeutic Agents for Cancer Treatment. Biometicines 3, 143-181,

1740 doi:10.3390/biomedicines3010149 (2015).

741 47 Ramani, N. S., Morani, A. C. & Zhang, S. MET Gene High Copy Number

742 (Amplification/Polysomy) Ident 741 47 Ramani, N. S., Morani, A. C. &

742 (Amplification/Polysomy) Identified in Mel

743 *Pathol* 157, 502-505, doi:10.1093/ajcp/aqa

744 48 Rozeman, E. A. *et al.* Survival and bioma

745 neoadjuvant immunotherapy tria
- (Amplification/Polysomy) Identified in Melanoma for Potential Targeted Therapy. Am J Clin

743 Pathol 157, 502-505, doi:10.1093/ajcp/aqab171 (2022).

744 48 Rozeman, E. A. *et al.* Survival and biomarker analyses from the *Partial Targeted History)* Internet in Melanoma for Fotential Targeted History). Am J cm
 Pathol **157**, 502-505, doi:10.1093/ajcp/aqab171 (2022).
 Reconditional Transform in Melanoma *Nat Med* **27**, 256-263,
 Recond
- 243 Pathol 157, 502-505, doi:10.1095/ajep/aqab171 (2022).

244 48 Rozeman, E. A. *et al.* Survival and biomarker analyses

245 neoadjuvant immunotherapy trials in stage III m

247 49 Reijers, I. L. M. *et al.* The interfe 1944 48 Rozeman, E. A. et al. Survival and biomarker analyses from the OpACIN-heo and OpACIN-

195 neoadjuvant immunotherapy trials in stage III melanoma. Nat Med 27, 256-263,

196 doi:10.1038/s41591-020-01211-7 (2021).

1 reoadjuvant immunotherapy trials in stage in inerational. Nut Med 27, 250-263,

doi:10.1038/s41591-020-01211-7 (2021).

747 49 Reijers, I. L. M. et al. The interferon-gamma (IFN-y) signature from baseline tumor material

p 747 49 Reijers, I. L. M. *et al.* The interferon-gam
748 predicts pathologic response after neoad
749 III melanoma. *Journal of*
750 doi:10.1200/JCO.2022.40.16_suppl.9539 (
751 50 Subramanian, A. *et al.* Gene set enrich
7 Reijers, I. L. M. *et al.* The interferon-gamma (IFN-y) signature from baseline tumor material

748 predicts pathologic response after neoadjuvant ipilimumab (IPI) + nivolumab (NIVO) in stage

179 III melanoma. Journal of
- 749 III melanoma. Journal of Clinical Oncology 40, 9539-9539,

750 doi:10.1200/JCO.2022.40.16_suppl.9539 (2022).

751 50 Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for

752 interpret 1999 III melanoma. Journal of China Oncology 40, 9539-9539,
1990 III melanoma. A. et al. Gene set enrichment analysis: a knowledge-based approach for
1990 III subtramanian, A. et al. Gene set enrichment analysis: a knowled 751 50 Subramanian, A. *et al.* Gene set enrichment
752 interpreting genome-wide expression profiles. *F*
753 doi:10.1073/pnas.0506580102 (2005).
754 51 Gonzalez, H. *et al.* Cellular architecture of huma
755 doi:10.1016/j
-
- 751 50 Subramanian, A. et al. Gene set emfemment analysis. a knowledge-based approach for

1752 interpreting genome-wide expression profiles. *Proc Notl Acod Sci U S A* **102**, 15545-15550,

1754 51 Gonzalez, H. *et al.* Ce merpreting genome-wide expression profiles. Proc Natl Acad Sci O 3 A 102, 13343-13350,

doi:10.1073/pnas.0506580102 (2005).

754 51 Gonzalez, H. *et al.* Cellular architecture of human brain metastases. Cell 185, 729-745 e 754 51 Gonzalez, H. *et al.* Cellular architecture

755 doi:10.1016/j.cell.2021.12.043 (2022).

756 52 Dufner, A., Andjelkovic, M., Burgering,

757 localization and activation differentiall

758 initiation factor 4E-bindin 254 51 Gonzalez, H. et al. Cellular architecture of human brain metastases. Cell 185, 725-745 e720,

255 doi:10.1016/j.cell.2021.12.043 (2022).

256 52 Dufner, A., Andjelkovic, M., Burgering, B. M., Hemmings, B. A. & Thoma 756 52 Dufner, A., Andjelkovic, M., Burgering,
757 localization and activation differentiall
758 initiation factor 4E-binding protein
759 doi:10.1128/MCB.19.6.4525 (1999).
760 53 Seip, K. *et al.* Fibroblast-induced s
761 20015, doi:10.18632/oncotarget.7671 (2016)

756 Samma activation differentially affect S6 kinase 1 activity and eukaryotic translation

758 initiation factor 4E-binding protein 1 phosphorylation. *Mol Cell Biol* 19, 4525-4
- 758 initiation factor 4E-binding protein 1 phosphorylation. *Mol* Cell Biol 19, 4525-4534,

759 doi:10.1128/MCB.19.6.4525 (1999).

760 53 Seip, K. *et al.* Fibroblast-induced switching to the mesenchymal-like phenotype an mination factor 4E-binding protein 1 phosphorylation. Mol Cell Biol 19, 4323-4334,

1759 doi:10.1128/MCB.19.6.4525 (1999).

760 53 Seip, K. *et al.* Fibroblast-induced switching to the mesenchymal-like phenotype and

761 P 760 53 Seip, K. *et al.* Fibroblast-induced
761 PI3K/mTOR signaling protects mela
762 20015, doi:10.18632/oncotarget.767
763 54 Yan, Y. *et al.* Vemurafenib and C
764 Mutation–Positive Locally
765 *Annals of Oncolog*
- 760 53 Seip, K. et al. Fibroblast-induced switching to the mesenchymal-like phenotype and

761 PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors. Oncotarget 7, 19997-

20015, doi:10.18632/oncotarget.7671 (20 20015, doi:10.18632/oncotarget.7671 (2016).

762 20015, doi:10.18632/oncotarget.7671 (2016).

763 54 Yan, Y. *et al.* Vemurafenib and Cobimetinib Potently Inhibit Ps6 Signaling in Brafv600

764 Mutation–Positive Loc 763 54 Yan, Y. *et al.* Vemurafenib and Cobimetini

764 Mutation–Positive Locally Advanced

765 *Annals of Oncology* 25, iv378, doi:10.1093/ann

766 55 Zhao, S. *et al.* Selective Inhibitor of the c

767 Hepatocellu
- 763 54 Tan, T. et al. Vemaration and Cobimetinio Potently immote Pso Signaling in Brafvood
764 Mutation–Positive Locally Advanced or Metastatic Melanoma from Brim7 Study.
765 Zhao, S. et al. Selective Inhibitor of t Annals of Oncology 25, iv378, doi:10.1093/annonc/mdu344.9 (2014).

766 55 Zhao, S. et al. Selective Inhibitor of the c-Met Receptor Tyrosine Kinase in Advanced

767 Hepatocellular Carcinoma: No Beneficial Effect With the U 765 55 Zhao, S. *et al.* Selective Inhibitor of the c-Met Receptor Tyrosir

767 Hepatocellular Carcinoma: No Beneficial Effect With the Use of Tiva

768 12, 731527, doi:10.3389/fimmu.2021.731527 (2021).

769 56 Quail, D. F
-
- 206 35 Zhao, S. et al. Selective Inhibitor of the c-Met Receptor Tyrosine Kinase in Advanced

167 Hepatocellular Carcinoma: No Beneficial Effect With the Use of Tivantinib? Front Immunol

12, 731527, doi:10.3389/fimmu.2021 12, 731527, doi:10.3389/fimmu.2021.731527 (2021).

769 56 Quail, D. F. & Joyce, J. A. The Microenvironmental Landscape of Brain Tumors. Cancer cell 31,

770 326-341, doi:10.1016/j.ccell.2017.02.009 (2017).

771 57 Roesler, 768 12, 731527, doi:10.3389/fimmu.2021.731527 (2021). 276 56 Quail, D. F. & Joyce, J. A. The Microenvironmental Landscape of Brain Tumors. Cancer cent 31,

276 326-341, doi:10.1016/j.ccell.2017.02.009 (2017).

271 57 Roesler, R., Dini, S. A. & Isolan, G. R. Neuroinflammation 120 57 Roesler, R., Dini, S. A. & Isolan, G. R. Neur

1772 glioblastoma and brain metastases: Recent dev

1773 *Immunol* 206, 314-324, doi:10.1111/cei.13668 (20

1775 He, X., Guo, Y., Yu, C., Zhang, H. & Wang, S. Ep

1775
- 272 glioblastoma and brain metastases: Recent developments in imaging approaches. Clin Exp

1773 Immunol 206, 314-324, doi:10.1111/cei.13668 (2021).

274 58 He, X., Guo, Y., Yu, C., Zhang, H. & Wang, S. Epithelial-mesenchy Free Biloblastoma and brain metastases. Recent developments in imaging approaches. Clin Exp

173 Immunol 206, 314-324, doi:10.1111/cei.13668 (2021).

774 58 He, X., Guo, Y., Yu, C., Zhang, H. & Wang, S. Epithelial-mesenchy 773 He, X., Guo, Y., Yu, C., Zhang, H. & Wang, S. Epithelii
775 He, X., Guo, Y., Yu, C., Zhang, H. & Wang, S. Epithelii
775 *Immunol* 14, 1097880, doi:10.3389/fimmu.2023.10978 way in which glioma-associated microglia/macrophages promote glioma progression. Front

1776 11.1097880, doi:10.3389/fimmu.2023.1097880 (2023).

26 way in which glioma-associated microglia/macrophages promote glioma progression. Front
1776 Immunol 14, 1097880, doi:10.3389/fimmu.2023.1097880 (2023).
26 776 Immunol 14, 1097880, doi:10.3389/fimmu.2023.1097880 (2023).

It is made available under a CC-BY-NC 4.0 International license. **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2023.10.16.23297080;](https://doi.org/10.1101/2023.10.16.23297080) this version posted October 16, 2023. The copyright holder for this preprint

-
-
- 277 59 Zhai, H., Heppner, F. L. & Tsirka, S. E. Microglia/macrophages promote glioma progression.

2778 Glia 59, 472-485, doi:10.1002/glia.21117 (2011).

279 60 Sofroniew, M. V. Astrogliosis. Cold Spring Harbor perspective
- 60 Glia 59, 472-485, doi:10.1002/glia.21117 (2011).

779 60 Sofroniew, M. V. Astrogliosis. Cold Spring Hd

781 61 Herrmann, J. E. et al. STAT3 is a critical regula

782 spinal cord injury. J Neurosci 28, 7231-7243, doi:1
 279 60 Sofroniew, M. V. Astrogiosis. Cold Spring Harbor perspectives in biology 7, a020420,

2781 61 Herrmann, J. E. et al. STAT3 is a critical regulator of astrogliosis and scar formation after

2782 spinal cord injury. J
- 781 61 Herrmann, J. E. *et al.* STAT3 is a critical

1782 spinal cord injury. J Neurosci 28, 7231-724:

783 62 Priego, N. *et al.* STAT3 labels a subpop

784 metastasis. Nat Med 24, 1024-1035, doi:10

785 63 Maina, F., Hil France of the means of a critical regulator of astroghosts and scar formation after

1782 spinal cord injury J Neurosci 28, 7231-7243, doi:10.1523/JNEUROSCI.1709-08.2008 (2008).

1784 metastasis. Nat Med 24, 1024-1035, doi Fraggo, N. et al. STAT3 labels a subpopulation of reactive astrocytes required for brametastasis. Nat Med 24, 1024-1035, doi:10.1038/s41591-018-0044-4 (2018).

785 63 Maina, F., Hilton, M. C., Ponzetto, C., Davies, A. M. & 783 62 Priego, N. et al. STAT3 labels a subpopulation of reactive astrocytes required for brain
784 metastasis. Nat Med 24, 1024-1035, doi:10.1038/s41591-018-0044-4 (2018).
785 63 Maina, F., Hilton, M. C., Ponzetto, C., Da Maina, F., Hilton, M. C., Ponzetto, C., Davies, A. M. & Klein, R. Met receptor signaling is

786 required for sensory nerve development and HGF promotes axonal growth and survival of

787 sensory neurons. *Genes Dev* 11, 3
-
- France of the second and HGF promotes axonal growth and survival of

required for sensory nerve development and HGF promotes axonal growth and survival of

sensory neurons. *Genes Dev* 11, 3341-3350, doi:10.1101/gad.11.24. 787 sensory neurons. Genes Dev 11, 3341-3350, doi:10.1101/gad.11.24.3341 (1997).

788 64 Garcia-Diaz, A. et al. Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2

Expression. Cell Rep 29, 3766, doi:10.1016/ 39788

54 Garcia-Diaz, A. et al. Interferon Receptor Signaling Pathways Regulating PD-L:

Expression. Cell Rep 29, 3766, doi:10.1016/j.celrep.2019.11.113 (2019).

790 65 Verhelst, J., Parthoens, E., Schepens, B., Fiers, W. 789

Expression. *Cell Rep* 29, 3766, doi:10.1016/j.celrep.2019.11.113 (2019).

790 65 Verhelst, J., Parthoens, E., Schepens, B., Fiers, W. & Saelens, X. Interferon-inducible protein

791 Mx1 inhibits influenza virus by in Expression. Cell Rep 29, 3766, doi:10.1016/j.cellep.2019.11.113 (2019).

790 65 Verhelst, J., Parthoens, E., Schepens, B., Fiers, W. & Saelens, X. Interfe

791 Mx1 inhibits influenza virus by interfering with functional vi
-
- Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex

The sasembly. J. Virol 86, 13445-13455, doi:10.1128/JVI.01682-12 (2012).

Acker, G. et al. The CXCR2/CXCL2 signalling pathway A For a ssembly. *J Virol* **86**, 13445-13455, doi:10.1128/JVI.01682-12 (2012).

792 assembly. *J Virol* **86**, 13445-13455, doi:10.1128/JVI.01682-12 (2012).

794 high-grade glioma. *Eur J Cancer* **126**, 106-115, doi:10.1016/j 2792 assembly. J Virol 86, 13445-13455, doi:10.1128/JVI.01082-12 (2012).

793 66 Acker, G. *et al.* The CXCR2/CXCL2 signalling pathway - An alternative

794 high-grade glioma. *Eur J Cancer* **126**, 106-115, doi:10.1016/j. 2793 67 Acker, G. et al. The CXCR2/CXCL2 signalling pathway An alternative therapeute approach in

1794 high-grade glioma. *Eur J Cancer* 126, 106-115, doi:10.1016/j.ejca.2019.12.005 (2020).

1795 67 Jiang, H., Lei, R., Di 194 high-grade glioma. Eur J Cancer 126, 100-115, aon.10.1016/j.ejca.2015.12.005 (2020).

195 67 liang, H., Lei, R., Ding, S. W. & Zhu, S. Skewer: a fast and accurate adapter trimmer for

197 2105-15-182 (2014).

198 68 Lo
-
- 801 coordinately downregulated in human diabetes. Nat Genet 34, 267-273, doi:10.1038/ng1180
802 (2003). For generation sequencing paired end reads. *BMC Bioinformatics* 15, 182, doi:10.1186/1471

798 68 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for

RNA-seq data with DESeq2. *Geno* 798 68 Love, M. I., Huber, W.

799 RNA-seq data with DI

800 69 Mootha, V. K. *et al.*

801 coordinately downre

802 (2003).

803 70 Hanzelmann, S., Cast RNA-seq data with DESeq2. *Genome Biol* 15, 550, doi:10.1186/s13059-014-0550-8 (2014).

800 69 Mootha, V. K. *et al.* PGC-1alpha-responsive genes involved in oxidative phosphorylation are

801 coordinately downregulated in 799 RNA-seq data with DESeq2. Genome Biol 15, 350, doi:10.1186/s13059-014-0550-0 (2014).

800 69 Mootha, V. K. *et al.* PGC-1alpha-responsive genes involved in oxidative phosphorylation

801 coordinately downregulated in 801 coordinately downregulated in human diabetes. Nat Genet 34, 267-273, doi:10.1038/ng1180 (2003).
802 (2003).
803 70 Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray
804 and RNA-
-
- 802 (2003).

802 (2003).

803 70 Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray

804 and RNA-seq data. *BMC Bioinformatics* 14, 7, doi:10.1186/1471-2105-14-7 (2013).

805 71 Bier
- 803 70 Hanzeln

804 and RN

805 71 Bierman

806 metasta

807 72 Schildha

808 carcinol 804

and RNA-seq data. *BMC Bioinformatics* **14**, 7, doi:10.1186/1471-2105-14-7 (2013).

805 71 Biermann, J. *et al.* Dissecting the treatment-naive ecosystem of human melanoma brain

metastasis. *Cell* **185**, 2591-2608 e2 805 71 Biermann, J. *et al.* Dissecting the treatment-naive ecosystem of human melan metastasis. *Cell* 185, 2591-2608 e2530, doi:10.1016/j.cell.2022.06.007 (2022).
807 72 Schildhaus, H. U. *et al.* MET amplification statu 806

metastasis. Cell 185, 2591-2608 e2530, doi:10.1016/j.cell.2022.06.007 (2022).

807 72 Schildhaus, H. U. *et al. MET amplification status in therapy-naive adeno- and squamous cell*

carcinomas of the lung. *Clin Cancer* Electronics Cell 185, 2551-2608 e2530, doi:10.1016/j.cell.2022.06.007 (2022).

807 72 Schildhaus, H. U. et al. MET amplification status in therapy-naive adeno- and

808 (2015).

810 73 Livak, K. J. & Schmittgen, T. D. Anal
- 808 carcinomas of the lung. Clin Cancer Res 21, 907-915, doi:10.1158/1078-0432.CCR-14-0450
809 (2015).
810 73 Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time
811 quantitative PCR 809 (2015).
810 73 Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time
811 quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25, 402-408,
812 doi:10.1006/meth.2001.1262 810 73 Livak, K
811 quantita
812 doi:10.1
813 811 9 quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408,
812 doi:10.1006/meth.2001.1262 (2001).
813 $\frac{1}{812}$ doi:10.1006/meth.2001.1262 (2001).
813
814 813
813
814
-
-
- 813
814
815 815
816
- ---
816
817
- ---
817

818 **Figure legends**
819 Figure 1: Transcript
820 **identification of sult
821 MBM of indicated pa** Figure 1: Transcriptome and methylome profiling of Iba1^{high} and Iba1^{neg} Figure 1: Transcriptome and methylome profiling of Iba1^{nigh} and Iba1^{neg} MBM revealed
identification of subset-specific genes. a.) Immunohistochemistry (IHC) for Iba1 (red) of
MBM of indicated patients. b.) Representati **identification of subset-specific genes**. a.) Immunohistochemistry (IHC) for Iba1 (red) of
821 MBM of indicated patients. b.) Representative IHC for levels of CD3 in Iba1^{high} (Pat 4) and
822 Iba1^{neg} (Pat 1) MBM. c.) I MBM of indicated patients. b.) Representative IHC for levels of CD3 in Iba1^{high} MBM of indicated patients. b.) Representative IHC for levels of CD3 in Iba1^{nigh} (Pat 4) and
822 Iba1^{neg} (Pat 1) MBM. c.) Immune score of MBM (study EGAS00001005976, n=16) indicating
823 different immunologic (color cod β lba1^{neg} (Pat 1) MBM. c.) Immune score of MBM (study EGAS00001005976, n=16) indicating 822 Iba1^{neg} (Pat 1) MBM. c.) Immune score of MBM (study EGAS00001005976, n=16) indicating
823 different immunologic (color coded) subsets of tumors. d.) Dot plot showing the significant
824 correlation of Iba1/AIF1 expr different immunologic (color coded) subsets of tumors. d.) Dot plot showing the significant
824 correlation of Iba1/AIF1 expression and immune score of brain metastases (BM, R=0.86,
825 p<2.2e-16) and extracranial metastas 824 correlation of Iba1/AIF1 expression and immune score of brain metastases (BM, R=0.86,
825 p<2.2e-16) and extracranial metastases (EM, R=0.78, p=5.5e-13). e.) Survival analysis of
826 patients with MBM (study, EGAS00001 9<2.2e-16) and extracranial metastases (EM, R=0.78, p=5.5e-13). e.) Survival analysis of
826 patients with MBM (study, EGAS00001003672), featuring high or low level of Iba1/AlF1
827 expression revealed no significant diffe patients with MBM (study, EGAS00001003672), featuring high or low level of Iba1/AIF1
827 expression revealed no significant difference (p=0.11). f.) Survival analysis of TCGA
828 melanoma patients (n=459), featuring high o expression revealed no significant difference (p=0.11). f.) Survival analysis of TCGA
828 melanoma patients (n=459), featuring high or low level of lba1/AIF1 expression revealed
829 significant difference (logrank p=1.3e-0 melanoma patients (n=459), featuring high or low level of Iba1/AIF1 expression revealed
829 significant difference (logrank p=1.3e-07) and Cox-regression analysis showed association
830 with favorable disease course (HR=0. significant difference (logrank p=1.3e-07) and Cox-regression analysis showed association
830 with favorable disease course (HR=0.46). g.) Schematic representation of candidate
831 identification by methylome and transcri with favorable disease course (HR=0.46). g.) Schematic representation of candidate
831 identification by methylome and transcriptome profiling of n=16 MBM of study. Methylome
832 (850k) profiling of Iba1^{high} (n=5) or Ib 831 identification by methylome and transcriptome profiling of n=16 MBM of study. Methylome
832 (850k) profiling of Iba1^{high} (n=5) or Iba1^{neg} (n=2) identified 416 differentially methylated
833 regions (DMRs), within t (850k) profiling of Iba1^{high} (n=5) or Iba1^{neg} (n=2) identified 416 differentially methylated

regions (DMRs), within the 5´-UTR of 316 corresponding genes of which 296 were

expressed in MBM with 56 genes (77 DMRs), s regions (DMRs), within the 5´-UTR of 316 corresponding genes of which 296 were
834 expressed in MBM with 56 genes (77 DMRs), significantly (p≤0.05) discriminating lba1^{high}
835 and lba1^{low/neg} MBM. h.) Heat map represe expressed in MBM with 56 genes (77 DMRs), significantly (p≤0.05) discriminating Iba1^{high} 834
835
836
837 and Iba1^{low/neg} MBM. h.) Heat map representation of 77 DMRs (left panel) and top expressed and Iba1^{lowmeg} MBM. h.) Heat map representation of 77 DMRs (left panel) and top expressed
836 (right panel) genes (n=31). Analysis identified a panel of 12 genes that clustered with
837 expression of microglia/TAM-associ (right panel) genes (n=31). Analysis identified a panel of 12 genes that clustered with
expression of microglia/TAM-associated genes AIF1, SYK and HCK. i.) Correlation analysis
of cluster genes with association to immune/T expression of microglia/TAM-associated genes AIF1, SYK and HCK. i.) Correlation analysis
838 of cluster genes with association to immune/TAM regulated processes, strength of
839 correlation is color coded. j.) Comparative 838 of cluster genes with association to immune/TAM regulated processes, strength of
839 correlation is color coded. j.) Comparative t-SNE representation of brain cell subclasses
840 microglia, neurons and oligodendrocytes correlation is color coded. j.) Comparative t-SNE representation of brain cell subclasses

microglia, neurons and oligodendrocytes (left) and expression of *APBB1IP* (Amyloid Beta

841 Precursor Protein Binding Family B Me microglia, neurons and oligodendrocytes (left) and expression of *APBB1IP* (Amyloid Beta
841 Precursor Protein Binding Family B Member 1 Interacting Protein), expression level (log2
842 RPKM) is color coded. k.) Dot plot s 841 Precursor Protein Binding Family B Member 1 Interacting Protein), expression level (log2
842 RPKM) is color coded. k.) Dot plot showing the significant correlation of *APBB1IP* expression
843 and immune score of brain RPKM) is color coded. k.) Dot plot showing the significant correlation of *APBB1IP* expression
and immune score of brain metastases (BM, R=0.86, p<2.2e-16) and extracranial
28 843 and immune score of brain metastases (BM, R=0.86, p<2.2e-16) and extracranial

28

metastases (EM, R=0.92, p<2.2e-16). Significance was determined by unpaired, two-sided t-
test (d, g, k).
Figure 2: Expression of ITGB7 serves as indicator of lymphocyte infiltration. a.) Box
plot representation of level 845 test (d, g, k).
846 **Figure 2: Ex**
847 plot represen
848 immune cell Figure 2: Expression of ITGB7 serves as indicator of lymphocyte infiltration. a.) Box
plot representation of levels of ITGB7 indicates a wide pattern of expression among indicated
immune cell populations. Monocytes and neu plot representation of levels of ITGB7 indicates a wide pattern of expression among indicated

848 immune cell populations. Monocytes and neutrophil granulocytes show low levels of ITGB7.

849 b.) IHC of a representative M immune cell populations. Monocytes and neutrophil granulocytes show low levels of ITGB7.

849 b.) IHC of a representative MBM of a patient with refractory intracranial disease for Iba1 (red,

850 first column) and CD3 (bro b.) IHC of a representative MBM of a patient with refractory intracranial disease for Iba1 (red,
850 first column) and CD3 (brown, second column) indicating focal enrichment of
851 microglia/macrophages and CD3⁺ T cells 850 first column) and CD3 (brown, second column) indicating focal enrichment of
851 microglia/macrophages and CD3⁺ T cells within ITGB7 positive areas (red, second column).
852 Hematoxylin and eosin (H&E) staining shows microglia/macrophages and CD3⁺ microglia/macrophages and CD3⁺ T cells within ITGB7 positive areas (red, second column).
852 Hematoxylin and eosin (H&E) staining shows discrimination of tumor cells and tumor-
853 infiltrating lymphocytes (TILs) c.) Exp B52 Hematoxylin and eosin (H&E) staining shows discrimination of tumor cells and tumor-

B53 infiltrating lymphocytes (TILs) c.) Expression (FPKM, log2) of CD4, PD-L1 (CD274) and

B54 SUSD3 in MBM with high or low level o 853 infiltrating lymphocytes (TILs) c.) Expression (FPKM, log2) of CD4, PD-L1 (CD274) and
854 SUSD3 in MBM with high or low level of ITGB7, indicating cellular co-occurrence. d.) Dot plot
855 showing the significant inver 854 SUSD3 in MBM with high or low level of ITGB7, indicating cellular co-occurrence. d.) Dot plot
855 showing the significant inverse correlation (R=-0.87, p=5.2e-05) of β-values (probe
856 cg26689077) indicating the met 855 showing the significant inverse correlation (R=-0.87, p=5.2e-05) of β-values (probe
856 cg26689077) indicating the methylation level at a side located within the proximal enhancer-
857 like structure of the ITGB7 gene eg26689077) indicating the methylation level at a side located within the proximal enhancer-
857 like structure of the ITGB7 gene and immune score of MBM (n=14) of study
858 EGAS00001005976 (first panel). Box plots represe 857 like structure of the ITGB7 gene and immune score of MBM $(n=14)$ of study
858 EGAS00001005976 (first panel). Box plots represent a significant (p=4.5e-04) or non-
859 significant (p=0.86) association of ITGB7 methylat 858 EGAS00001005976 (first panel). Box plots represent a significant (p=4.5e-04) or non-
859 significant (p=0.86) association of ITGB7 methylation (probe cg26689077) or BRAF mutation
860 status (center and right panels) of significant (p=0.86) association of ITGB7 methylation (probe cg26689077) or BRAF mutation
860 status (center and right panels) of all MBM investigated (n=21). e.) Dot plot showing the
861 significant correlation of ITGB7 e status (center and right panels) of all MBM investigated (n=21). e.) Dot plot showing the
861 significant correlation of ITGB7 expression and immune score of MBM (R=0.51, p=1.8e-06)
862 and EM (R=0.61, p=1.1e-09) indicatin significant correlation of ITGB7 expression and immune score of MBM (R=0.51, p=1.8e-06)
and EM (R=0.61, p=1.1e-09) indicating immune-related expression of ITGB7 irrespective of
the side of metastasis. f.) Correlation map s and EM (R=0.61, p=1.1e-09) indicating immune-related expression of ITGB7 irrespective of
863 the side of metastasis. f.) Correlation map showing high association (p<0.05) of ITGB7 with
864 relevant immune cell markers such the side of metastasis. f.) Correlation map showing high association (p<0.05) of ITGB7 with
relevant immune cell markers such as PD-1 (PDCD1), PD-L1 (CD274), PD-L2 (PDCD1LG2)
but low correlation with tumor cell markers NGF relevant immune cell markers such as PD-1 (PDCD1), PD-L1 (CD274), PD-L2 (PDCD1LG2)
865 but low correlation with tumor cell markers NGFR, MITF, MLANA or SLC45A2. g.) Dot plot
866 showing the significant correlation of ITGB7 but low correlation with tumor cell markers NGFR, MITF, MLANA or SLC45A2. g.) Dot plot
866 showing the significant correlation of ITGB7 and expression of PD-L2 (BM: R=0.45, p=3.4e-
967 05; EM: R=0.42, p=1.1e-03) and SUSD3 866 showing the significant correlation of ITGB7 and expression of PD-L2 (BM: R=0.45, p=3.4e-
867 05; EM: R=0.42, p=1.1e-03) and SUSD3 (BM: R=0.44, p=5.2e-05; EM: R=0.61, p=2.6e-07).
868 h.) Dot plot showing the correlatio 05; EM: R=0.42, p=1.1e-03) and SUSD3 (BM: R=0.44, p=5.2e-05; EM: R=0.61, p=2.6e-07).
868 h.) Dot plot showing the correlation of ITGB7 expression and immune score of primary (PT;
869 R=0.59, p=9.4e-16), metastatic (EM; R=0 h.) Dot plot showing the correlation of ITGB7 expression and immune score of primary (PT;

869 R=0.59, p=9.4e-16), metastatic (EM; R=0.78, p=2.2e-16) and brain metastatic (BM; R=0.2,

870 p=0.61) melanoma (TCGA-SKCM), indi R=0.59, p=9.4e-16), metastatic (EM; R=0.78, p=2.2e-16) and brain metastatic (BM; R=0.2,

870 p=0.61) melanoma (TCGA-SKCM), indicating that expression of ITGB7 is independent from

871 melanoma progression stages. i.) Survi 970 p=0.61) melanoma (TCGA-SKCM), indicating that expression of ITGB7 is independent from
871 melanoma progression stages. i.) Survival analysis of TCGA melanoma patients (n=459),
29 871 melanoma progression stages. i.) Survival analysis of TCGA melanoma patients (n=459),
29
29 872 featuring high or low level of ITGB7 and SUSD3 expression revealed significant difference
873 (logrank p=4.0e-04 and p=6.6e-08) and Cox-regression analysis showed association with
874 favorable disease course (HR=0.60 873 (logrank p=4.0e-04 and p=6.6e-08) and Cox-regression analysis showed association with
874 favorable disease course (HR=0.60 and HR=0.48). Box and whisker plots show median
875 (center line), the upper and lower quarti 874 favorable disease course (HR=0.60 and HR=0.48). Box and whisker plots show median
875 (center line), the upper and lower quartiles (the box), and the range of the data (the
876 whiskers), including outliers (a, c, d). center line), the upper and lower quartiles (the box), and the range of the data (the
whiskers), including outliers (a, c, d). Significance was determined by unpaired, two-sided t-
test (c, d) or one-way ANOVA (a).
878 **Fi** whiskers), including outliers (a, c, d). Significance was determined by unpaired, two-sided t-
877 test (c, d) or one-way ANOVA (a).
878 **Figure 3: Signature-based deconvolution identified parameter of MBM featuring a**
879

877 test (c, d) or one-way ANOVA (a).
878 **Figure 3: Signature-based dec
879 favorable disease course and
880 GSEA (ssGSEA)-based deconv** Figure 3: Signature-based deconvolution identified parameter of MBM featuring a
1879 favorable disease course and identified a role of MET signaling. a.) Single-sample
1880 GSEA (ssGSEA)-based deconvolution of MBM of study 879 **favorable disease course and identified a role of MET signaling**. a.) Single-sample
880 GSEA (ssGSEA)-based deconvolution of MBM of study EGAS00001005976 using
881 customized gene signatures indicating "Signaling" pro 880 GSEA (ssGSEA)-based deconvolution of MBM of study EGAS00001005976 using
881 customized gene signatures indicating "Signaling" processes, cellular subsets and stages of
882 microglia and astrocyte and immune cell subset customized gene signatures indicating "Signaling" processes, cellular subsets and stages of

microglia and astrocyte and immune cell subsets. ssGSEA demonstrated distinct separation

of MBM with high, median or low immune microglia and astrocyte and immune cell subsets. ssGSEA demonstrated distinct separation
of MBM with high, median or low immune score regarding expression levels of signature
genes, BMCs served as controls. ssGSEA uncovere 883 of MBM with high, median or low immune score regarding expression levels of signature
884 genes, BMCs served as controls. ssGSEA uncovered differentially activated pathways and
885 processes such as MET and STAT3 and i genes, BMCs served as controls. ssGSEA uncovered differentially activated pathways and
885 processes such as MET and STAT3 and interferon signaling, senescence (SenMayo), stress
886 response and tumor inflammation in tumor processes such as MET and STAT3 and interferon signaling, senescence (SenMayo), stress
response and tumor inflammation in tumors enriched for reactive microglia and astrocytes
and innate and acquired immune cells subsets. response and tumor inflammation in tumors enriched for reactive microglia and astrocytes
and innate and acquired immune cells subsets. b.) Confocal microscopy images of orthotopic
tumors established by stereotactic injecti and innate and acquired immune cells subsets. b.) Confocal microscopy images of orthotopic
888 tumors established by stereotactic injection of BMC1-M4 or BMC2 cells into brains of
889 Crl:CD1-Foxn1^{nu} mice²³, stained fo tumors established by stereotactic injection of BMC1-M4 or BMC2 cells into brains of
889 Crl:CD1-Foxn1^{nu} mice²³, stained for Iba1 (green, microglia) or Iba1, GFAP (red, astrocytes)
890 and KBA.62 (turquoise, pan-melano Crl:CD1-Foxn1^{nu} mice²³ Crl:CD1-Foxn1^{nu} mice²³, stained for Iba1 (green, microglia) or Iba1, GFAP (red, astrocytes)
and KBA.62 (turquoise, pan-melanoma cell marker). DAPI served as nuclear dye. Markers
show distinct areas of tumor (MBM) and and KBA.62 (turquoise, pan-melanoma cell marker). DAPI served as nuclear dye. Markers

891 show distinct areas of tumor (MBM) and microenvironment (TME) and regions of microglia

892 infiltration, 21 days after intracrania 891 show distinct areas of tumor (MBM) and microenvironment (TME) and regions of microglia
892 infiltration, 21 days after intracranial injection²³. MBM-TME boarders are indicated by white,
893 dashed lines. c.) IHC of t infiltration, 21 days after intracranial injection 23 infiltration, 21 days after intracranial injection²³. MBM-TME boarders are indicated by white,
dashed lines. c.) IHC of tumors investigated in (a) for activation and tyrosine phosphorylation
(residue Y705) of STAT3. pST dashed lines. c.) IHC of tumors investigated in (a) for activation and tyrosine phosphorylation
894 (residue Y705) of STAT3. pSTAT3^{Y705} is particularly present in microenvironmental cells
895 (astrocytes). Black, dashed (residue Y705) of STAT3. pSTAT3^{Y705} (residue Y705) of STAT3. pSTAT3^{Y705} is particularly present in microenvironmental cells

(astrocytes). Black, dashed lines indicate MBM-TME boarders. In b, c, bars indicate 50 µm.

d-e.) Expression levels of hepatocyte g (astrocytes). Black, dashed lines indicate MBM-TME boarders. In b, c, bars indicate 50 µm.

896 d-e.) Expression levels of hepatocyte growth factor (HGF) in tumors of studies

897 EGAS00001005976, TCGA-SKCM and EGAS0000100 896 d-e.) Expression levels of hepatocyte growth factor (HGF) in tumors of studies
897 EGAS00001005976, TCGA-SKCM and EGAS00001003672 demonstrating HGF expression
898 in all tumor subsets. f-g.) Investigation of HGF expres EGAS00001005976, TCGA-SKCM and EGAS00001003672 demonstrating HGF expression

898 in all tumor subsets. f-g.) Investigation of HGF expression in immune cell subsets (DICE

899 database³⁵) and brain cells (study GSE73721) 898 in all tumor subsets. f-g.) Investigation of HGF expression in immune cell subsets (DICE
899 database³⁵) and brain cells (study GSE73721) revealed highest levels in basophil
30 database $^{\rm 35}$ 899 database³⁵) and brain cells (study GSE73721) revealed highest levels in basophil
30
30 granulocytes and monocytes (f) and in astrocytes and microglia (g). h.) UMAP projection of
901 expression profiles from nuclei isolated from 5 neurotypical donors as provided by Seattle
902 Alzheimer's disease brain cell a expression profiles from nuclei isolated from 5 neurotypical donors as provided by Seattle
902 Alzheimer's disease brain cell atlas (https://portal.brain-map.org/explore/seattle-alzheimers-
903 disease), cellular subtypes Alzheimer's disease brain cell atlas (https://portal.brain-map.org/explore/seattle-alzheimers-
903 disease), cellular subtypes are color coded (left panel). Log-normalized expression levels of
904 HGF in nuclei isolated fr disease), cellular subtypes are color coded (left panel). Log-normalized expression levels of
904 HGF in nuclei isolated from 5 neurotypical donors (center panel). Log-normalized expression
905 levels of HGF in nuclei isol 904 HGF in nuclei isolated from 5 neurotypical donors (center panel). Log-normalized expression
905 levels of HGF in nuclei isolated from 84 aged donors (42 cognitively normal and 42 with
906 dementia), right panel, demons levels of HGF in nuclei isolated from 84 aged donors (42 cognitively normal and 42 with
906 dementia), right panel, demonstrating increased number of HGF expressing microglia and
907 astrocytes as triggered by inflammatory dementia), right panel, demonstrating increased number of HGF expressing microglia and
astrocytes as triggered by inflammatory processes. i.) Dot plot showing the correlation of
HGF expression and immune score of BM (R=0.4 astrocytes as triggered by inflammatory processes. i.) Dot plot showing the correlation of
908 HGF expression and immune score of BM (R=0.49, p=5.3e-06) and EM (R=0.41, p=1.5e-03)
909 indicating a potential role of HGF in 908 HGF expression and immune score of BM (R=0.49, p=5.3e-06) and EM (R=0.41, p=1.5e-03)
909 indicating a potential role of HGF in immune cell-related processes. Box and whisker plots
910 show median (center line), the upp 909 indicating a potential role of HGF in immune cell-related processes. Box and whisker plots
910 show median (center line), the upper and lower quartiles (the box), and the range of the data
911 (the whiskers), including 910 show median (center line), the upper and lower quartiles (the box), and the range of the data
911 (the whiskers), including outliers (d-g). Significance was determined by unpaired, two-sided t-
912 figure 4: Ecad⁺ MB

911 (the whiskers), including outliers (d-g). Significance was determined by unpaired, two-sided t-
912 test (e) or one-way ANOVA (g).
913 **Figure 4: Ecad⁺ MBM are defined by expression of MET receptor.** a.) Schematic
91 912 test (e) or one-way ANOVA (g).
913 **Figure 4: Ecad⁺ MBM are d**
914 summary of the initial scre
915 (EGAS00001005976; n=16 MBI **Figure 4: Ecad⁺ MBM are defined by expression of MET receptor.** a.) Schematic 913 **Figure 4: Ecad⁺ MBM are defined by expression of MET receptor.** a.) Schematic
914 summary of the initial screen of MBM expression data of our recent study
915 (EGAS00001005976; n=16 MBM) for subset expressed recepto 914 summary of the initial screen of MBM expression data of our recent study
915 (EGAS00001005976; n=16 MBM) for subset expressed receptors. MBM contain Ecad⁺ and
916 NGFR⁺ subsets and admixed cells such reactive micro (EGAS00001005976; n=16 MBM) for subset expressed receptors. MBM contain Ecad⁺ (EGAS00001005976; n=16 MBM) for subset expressed receptors. MBM contain Ecad⁺ and
916 NGFR⁺ subsets and admixed cells such reactive microglia, labeled by expression of
917 Iba1/AIF1 and or P2RY12. The initial survey yi NGFR⁺ subsets and admixed cells such reactive microglia, labeled by expression of 916 NGFR⁺ subsets and admixed cells such reactive microglia, labeled by expression of
917 Iba1/AIF1 and or P2RY12. The initial survey yielded 24 receptors that potentially establish
918 cell survival/growth of MBM. b.) C 917 Iba1/AIF1 and or P2RY12. The initial survey yielded 24 receptors that potentially establish
918 cell survival/growth of MBM. b.) Correlation map (Spearman, p<0.05) showing the
919 relationship of identified receptors e ell survival/growth of MBM. b.) Correlation map (Spearman, p<0.05) showing the
919 relationship of identified receptors expressed in MBM of our previous study, emphasizing the
920 distinct pattern of Ecad⁺ and NGFR⁺ mo relationship of identified receptors expressed in MBM of our previous study, emphasizing the
920 distinct pattern of Ecad⁺ and NGFR⁺ molecular subsets. The value of the correlation
921 coefficient is color coded. c.) B distinct pattern of Ecad⁺ and NGFR⁺ distinct pattern of Ecad⁺ and NGFR⁺ molecular subsets. The value of the correlation

921 coefficient is color coded. c.) Box plots depicting the levels of most relevant receptors that

922 significantly separated Ecad coefficient is color coded. c.) Box plots depicting the levels of most relevant receptors that
922 significantly separated Ecad^{high} and Ecad^{low} subsets of MBM and extracerebral metastases
923 (EM) of study EGAS00001003 significantly separated Ecad^{high} and Ecad^{low} 922 significantly separated Ecad^{nigh} and Ecad^{low} subsets of MBM and extracerebral metastases

923 (EM) of study EGAS00001003672, providing MBM = 79, EM = 59 (ADIPOR1, Adiponectin

924 Receptor 1, p=0.019/7.9e-05; SIRP 923 (EM) of study EGAS00001003672, providing MBM = 79, EM = 59 (ADIPOR1, Adiponectin
924 Receptor 1, p=0.019/7.9e-05; SIRPA, Signal Regulatory Protein Alpha, p=1.1e-05/0.0046;
925 PLXNC1, Plexin C1, p=4.6e-06/3e-04). d.) 924 Receptor 1, p=0.019/7.9e-05; SIRPA, Signal Regulatory Protein Alpha, p=1.1e-05/0.0046;
925 PLXNC1, Plexin C1, p=4.6e-06/3e-04). d.) Box plots depicting the levels of MET in Ecad^{high}
926 and Ecad^{low} subsets of MBM PLXNC1, Plexin C1, p=4.6e-06/3e-04). d.) Box plots depicting the levels of MET in Ecad^{high} 925
926
927 and Ecad^{low} subsets of MBM and EM (left panel, $p=1.4e-04/p=0.41$) or in all subtypes of MBM and EM ($p=2.7e-05$) in high and low proliferating tumor cell subsets (right panel, 31 927 MBM and EM (p=2.7e-05) in high and low proliferating tumor cell subsets (right panel,
31
31

928 p=9.1e-03). e.) IHC of selected MBM for MET and MITF validated the two subsets. f-g.)
929 Expression and activation status of MET in BRAF wildtype (wt; Pts 14, 39) and BRAF^{V600E/R}
930 mutated MBM (Pts 28, 29, 31). P Expression and activation status of MET in BRAF wildtype (wt; Pts 14, 39) and BRAF^{V600E/R} 929
930
931
932 mutated MBM (Pts 28, 29, 31). Phosphorylation of MET at residues Y1234/1235 is critical for
931 kinase activation. h.) IHC of indicated tumors for co-localization of pMET^{Y1234/1235} (brown) and
932 Iba1 (red) demonstratin kinase activation. h.) IHC of indicated tumors for co-localization of pMET^{Y1234/1235} (brown) and
1932 Iba1 (red) demonstrating potential activation of MET receptor signaling tumor cells by stromal
1933 cell-secreted HGF. 932 Iba1 (red) demonstrating potential activation of MET receptor signaling tumor cells by stromal
933 cell-secreted HGF. i.) Heat map representing expression levels of regulators and targets of
934 interferon signaling an ell-secreted HGF. i.) Heat map representing expression levels of regulators and targets of
934 interferon signaling and immune related genes showing clustering according to the level of
935 ITGB7 expression. Box and whiske 934 interferon signaling and immune related genes showing clustering according to the level of
935 ITGB7 expression. Box and whisker plots show median (center line), the upper and lower
936 quartiles (the box), and the ran 935 ITGB7 expression. Box and whisker plots show median (center line), the upper and lower
936 quartiles (the box), and the range of the data (the whiskers), including outliers (c, d).
937 Significance was determined by un

quartiles (the box), and the range of the data (the whiskers), including outliers (c, d).
937 Significance was determined by unpaired, two-sided t-test (c, d).
938 Figure 5: Inhibitors of MET receptor decrease growth of br 937 Significance was determined by unpaired, two-sided t-test (c, d).
938 **Figure 5: Inhibitors of MET receptor decrease growth
039 conventional melanoma cell lines.** a.) Comparative IHC of
940 phosphorylated and activated Figure 5: Inhibitors of MET receptor decrease growth of brain metastatic and
939 conventional melanoma cell lines. a.) Comparative IHC of selected MBM for levels of
940 phosphorylated and activated MET receptor (pMET^{Y1234} conventional melanoma cell lines. a.) Comparative IHC of selected MBM for levels of
940 phosphorylated and activated MET receptor (pMET^{Y1234/1235}) and ribosomal protein S6
941 (pS6^{235/236}) of consecutive sections sugge phosphorylated and activated MET receptor (pMET^{Y1234/1235} phosphorylated and activated MET receptor (pMET^{Y1234/1235}) and ribosomal protein S6
(pS6^{235/236}) of consecutive sections suggesting MET-associated activation of mTOR
signaling. b.) Immunofluorescence microscopy of lymp $(pS6^{235/236})$ of consecutive sections suggesting MET-associated activation of mTOR 941 ($pS6^{235/236}$) of consecutive sections suggesting MET-associated activation of mTOR
942 signaling. b.) Immunofluorescence microscopy of lymph node-metastatic (T2002) and brain
943 metastatic (BMC53) patient-derived 942 signaling. b.) Immunofluorescence microscopy of lymph node-metastatic (T2002) and brain
943 metastatic (BMC53) patient-derived melanoma cell lines for co-occurrence of MET (red) and
944 pS6^{235/236} (green). DAPI serve metastatic (BMC53) patient-derived melanoma cell lines for co-occurrence of MET (red) and
944 pS6^{235/236} (green). DAPI served as nuclear dye. c.) qPCR analysis of BMCs for expression of
945 MET receptor, bars indicate me $\mathsf{pS6}^{235/236}$ pS6^{235/236} (green). DAPI served as nuclear dye. c.) qPCR analysis of BMCs for expression of
945 MET receptor, bars indicate median levels ±SD of three biological replicates. d.) Gross initial
946 ARQ197 sensitivity test MET receptor, bars indicate median levels ±SD of three biological replicates. d.) Gross initial
946 ARQ197 sensitivity test of BMC53 and BMC1-M1 cells showing high and low levels of MET
947 expression. Cell density was det 946 ARQ197 sensitivity test of BMC53 and BMC1-M1 cells showing high and low levels of MET
947 expression. Cell density was determined by crystal violet staining. e.) Broad range
948 determination of sensitivity of BMCs, T2 947 expression. Cell density was determined by crystal violet staining. e.) Broad range

948 determination of sensitivity of BMCs, T2002 and conventional melanoma cell lines (A375,

949 A2058, MeWo) to METi PHA-665752 and 948 determination of sensitivity of BMCs, T2002 and conventional melanoma cell lines (A375,
949 A2058, MeWo) to METi PHA-665752 and ARQ197. Cell density and BRAF mutation status
950 are indicated. Dotted line depicts the 949 A2058, MeWo) to METi PHA-665752 and ARQ197. Cell density and BRAF mutation status
950 are indicated. Dotted line depicts the estimated range of IC_{50} . f.) PHA-665752 dose-response
951 fit curve-based calculation of 950 are indicated. Dotted line depicts the estimated range of IC_{50} . f.) PHA-665752 dose-response
951 fit curve-based calculation of IC_{50} values of A375 cells with overexpression of NGFR or RFP
952 control cells and 951 fit curve-based calculation of IC₅₀ values of A375 cells with overexpression of NGFR or RFP
952 control cells and MeWo cells. g.) Dabrafenib dose-response fit curve-based calculation of
953 IC₅₀ values of BMCs exh 952 control cells and MeWo cells. g.) Dabrafenib dose-response fit curve-based calculation of
953 IC₅₀ values of BMCs exhibiting different BRAF mutations (BMC2^{p.N581Y}, BMC4^{p.V600K}) and
954 A375^{p.V600E}, A2058^{p.V60} IC_{50} values of BMCs exhibiting different BRAF mutations (BMC2^{p.N581Y}, BMC4^{p.V600K} 953 IC₅₀ values of BMCs exhibiting different BRAF mutations (BMC2^{p.N5811}, BMC4^{p.v600K}) and
954 A375^{p.V600E}, A2058^{p.V600E} cells. h-i.) Live cell imaging-based tracking of confluence (%) of
955 BMC2 and BMC4 cells A375^{p.V600E}, A2058^{p.V600E} $4375^{p.9600E}$, A2058^{p.V600E} cells. h-i.) Live cell imaging-based tracking of confluence (%) of
955 BMC2 and BMC4 cells in dependence of increasing doses of ARQ197. Shown are median
32 955 BMC2 and BMC4 cells in dependence of increasing doses of ARQ197. Shown are median 32

values±SD of eight technical replicates. A representative out of two experiments is shown. j.)
957 ARQ197 dose-response fit curves of BMCs, T2002 and conventional cell lines. Calculated
958 IC₅₀ values are indicated, su 957 ARQ197 dose-response fit curves of BMCs, T2002 and conventional cell lines. Calculated
958 IC₅₀ values are indicated, suggesting response of dabrafenib resistant cell lines to METi. k.)
959 Bar diagram summarizing I 958 IC₅₀ values are indicated, suggesting response of dabrafenib resistant cell lines to METi. k.)
959 Bar diagram summarizing IC₅₀ values (nM) indicating the response of indicated cell lines to
960 ARQ197. The BRAF s 959 Bar diagram summarizing IC₅₀ values (nM) indicating the response of indicated cell lines to
960 ARQ197. The BRAF status is color coded. I.) Working model suggesting the activation of
961 MET receptor signaling in ad 960 ARQ197. The BRAF status is color coded. I.) Working model suggesting the activation of
961 MET receptor signaling in adjacent tumor cells and in (reactive) microglia (RM) by microglia
962 released HGF. IRF-mediated HGF 961 MET receptor signaling in adjacent tumor cells and in (reactive) microglia (RM) by microglia
962 released HGF. IRF-mediated HGF expression in turn is triggered by immune cell
963 (monocytes/macrophages, M) released int released HGF. IRF-mediated HGF expression in turn is triggered by immune cell
963 (monocytes/macrophages, M) released interferon-gamma. HGF binding to tumor cell (TC)
964 expressed MET receptor directs downstream activatio 963 (monocytes/macrophages, M) released interferon-gamma. HGF binding to tumor cell (TC)
964 expressed MET receptor directs downstream activation of the RAS/RAF/MEK/ERK and the
965 PI3K/AKT/mTOR/p70S6K branch. The latter i expressed MET receptor directs downstream activation of the RAS/RAF/MEK/ERK and the
965 PI3K/AKT/mTOR/p70S6K branch. The latter is leading to phosphorylation and activation of
966 the ribosomal protein S6. Box and whisker PI3K/AKT/mTOR/p70S6K branch. The latter is leading to phosphorylation and activation of
966 the ribosomal protein S6. Box and whisker plots show median (center line), the upper and
967 lower quartiles (the box), and the ra

the ribosomal protein S6. Box and whisker plots show median (center line), the upper and
967 bower quartiles (the box), and the range of the data (the whiskers), including outliers (c).
968 **Figure 6: HGF/MET receptor sign** 967 lower quartiles (the box), and the range of the data (the whiskers), including outliers (c).
968 **Figure 6: HGF/MET receptor signaling might be activated in tumor cells at imr
969 cell/TAM dense areas.** Schematic repr Figure 6: HGF/MET receptor signaling might be activated in tumor cells at immune

cell/TAM dense areas. Schematic representation of our working model suggesting the

interaction of tumor cells with stromal cells, particula **cell/TAM dense areas.** Schematic representation of our working model suggesting the
970 interaction of tumor cells with stromal cells, particularly microglia and immune cells,
971 consequentially leading to activation of 970 interaction of tumor cells with stromal cells, particularly microglia and immune cells,
971 consequentially leading to activation of MET signaling in tumor cells via stromal cell-released
972 HGF. Expression of HGF in 971 consequentially leading to activation of MET signaling in tumor cells via stromal cell-released
972 HGF. Expression of HGF in turn and ITGB7 and PD-L1 is likely triggered by T cell provided
973 interferon-gamma. Increa 972 HGF. Expression of HGF in turn and ITGB7 and PD-L1 is likely triggered by T cell provided
1973 interferon-gamma. Increased levels of ITGB7 may foster recruitment of immune cells.
1974 973 interferon-gamma. Increased levels of ITGB7 may foster recruitment of immune cells.
974
975

975

975

- 977
978
-

978
979 979
980

980

981 **Supplementary figure legends
982 Supplementary figure 1: Iba1/AIF1 exp
983 (IF) for Iba1 (red) and GFAP (labeling
984 mutated MBM (Pat 15) that progressed of Supplementary figure 1: Iba1/AIF1 expression separates MBM** a.) Immunofluorescence
983 (IF) for Iba1 (red) and GFAP (labeling of reactive and normal astrocytes) of a NRAS^{Q61R}
984 mutated MBM (Pat 15) that progressed on (IF) for Iba1 (red) and GFAP (labeling of reactive and normal astrocytes) of a NRAS Q61R 983
984
985
986 mutated MBM (Pat 15) that progressed on treatment with immune checkpoint inhibitors (ICi;
ipilimumab) showed strong infiltration of tumor-associated microglia/macrophages (TAMs)
and the presence of aggregates of microglia ipilimumab) showed strong infiltration of tumor-associated microglia/macrophages (TAMs)
and the presence of aggregates of microglia and reactive astrocytes. MBM (without adjacent
stromal cells) of Pat 3 showed high infiltr 986 and the presence of aggregates of microglia and reactive astrocytes. MBM (without adjacent
987 stromal cells) of Pat 3 showed high infiltration of TAMs. DAPI served as nuclear dye. b.) Box
988 plots representing the le 987 stromal cells) of Pat 3 showed high infiltration of TAMs. DAPI served as nuclear dye. b.) Box
988 plots representing the levels (FPKM, log2) of Iba1/AIF1 in MBM and BMC of study
989 EGAS00001005976 and MBM and EM of st 988 plots representing the levels (FPKM, log2) of Iba1/AIF1 in MBM and BMC of study
989 EGAS00001005976 and MBM and EM of study EGAS00001003672. c.) Per sample
990 representation of expression levels (FPKM, log2) of Iba1/A 989 EGAS00001005976 and MBM and EM of study EGAS00001003672. c.) Per sample
990 representation of expression levels (FPKM, log2) of Iba1/AlF1 in MBM, brain metastases-
991 derived cell lines (BMCs) and brain controls (BC) 990 representation of expression levels (FPKM, log2) of Iba1/AIF1 in MBM, brain metastases-
991 derived cell lines (BMCs) and brain controls (BC) of studies mentioned in (b). d-f.) Survival
992 analyses of MBM patients (n= 994 Analysis revealed a significant (logrank p=5.5e-07) favorable disease course (HR=0.50, Coxanalyses of MBM patients (n=67) of study EGAS00001003672 or of TCGA-SKCM study

993 (n=459), featuring high or low level of APBB1IP (d, e) or PD-L2 (PDCD1LG2) expression.

994 Analysis revealed a significant (logrank p=5.5 (n=459), featuring high or low level of APBB1IP (d, e) or PD-L2 (PDCD1LG2) expression.
994 Analysis revealed a significant (logrank p=5.5e-07) favorable disease course (HR=0.50, Cox-
995 regression analysis) of *APBB1IP*^h 994 Analysis revealed a significant (logrank p=5.5e-07) favorable disease course (HR=0.50, Cox-
995 regression analysis) of *APBB1IP*^{high} melanoma (e) and favorable outcome associated with
996 high levels of PD-L2 expres regression analysis) of *APBB1IP*high regression analysis) of *APBB1IP*^{nigh} melanoma (e) and favorable outcome associated with

996 high levels of PD-L2 expression in MBM (f). Survival of MBM patients was not significantly

997 affected by *APBB1IP* levels 996 high levels of PD-L2 expression in MBM (f). Survival of MBM patients was not significantly
997 affected by *APBB1IP* levels (d). g.-m.) Correlation and cell type-specificity of microglia
998 markers SYK, HCK, P2RY12 an 997 affected by *APBB1IP* levels (d). g.-m.) Correlation and cell type-specificity of microglia
998 markers SYK, HCK, P2RY12 and *AIF1*. n.) Dot plot shows significant (R=0.85, p=1.3e-04)
999 correlation of *ITGB7* express 998 markers *SYK, HCK, P2RY12* and *AIF1.* n.) Dot plot shows significant (R=0.85, p=1.3e-04)

999 correlation of *ITGB7* expression of MBM (n=16, study EGAS00001005976) and immune

900 score. Box and whisker plots show me orrelation of *ITGB7* expression of MBM (n=16, study EGAS00001005976) and immune
000 score. Box and whisker plots show median (center line), the upper and lower quartiles (the
001 box), and the range of the data (the whisk score. Box and whisker plots show median (center line), the upper and lower quartiles (the
1001 box), and the range of the data (the whiskers), including outliers (b).
1002 **Supplementary figure 2: The indicators of favora**

box), and the range of the data (the whiskers), including outliers (b).
1002
Supplementary figure 2: The indicators of favorable disease cou
1004 APBB1IP are broadly expressed among immune cell subsets 1002
1003
1004
1005 **Supplementary figure 2: The indicators of favorable disease course ITGB7, SUSD3 and**
1004 **APBB1IP are broadly expressed among immune cell subsets.** a.) Box plots showing
1005 expression levels of ITGB7 among T cell subse **APBB1IP are broadly expressed among immune cell subsets.** a.) Box plots showing

1005 expression levels of ITGB7 among T cell subsets (CD4, T helper cells), CD8 (cytotoxic T

1006 cells), NK cells (natural killer cells), expression levels of ITGB7 among T cell subsets (CD4, T helper cells), CD8 (cytotoxic T
1006 cells), NK cells (natural killer cells), cDC (conventional dendritic cells), pDC (plasmacytoid
1007 dendritic cells) lymphoid fol 1006 cells), NK cells (natural killer cells), cDC (conventional dendritic cells), pDC (plasmacytoid
1007 dendritic cells) lymphoid follicle-residing B cells (FollicularB cell subsets), innate lymphoid
34 1007 dendritic cells) lymphoid follicle-residing B cells (FollicularB cell subsets), innate lymphoid
34

cells, type 3 (ILC3), mast cells, macrophages (Macro), monocyte subsets (Mono), myofibrils
1009 (non-immune related cells), plasma cells (PlasmaB) and tumor-associated macrophages
1010 (TAMs) as provided by study GSE146771 (non-immune related cells), plasma cells (PlasmaB) and tumor-associated macrophages
1010 (TAMs) as provided by study GSE146771. b.) IHC of MBM of indicated patients for ITGB7.
1011 ITGB7 expression is evident in lymphocyte 1010 (TAMs) as provided by study GSE146771. b.) IHC of MBM of indicated patients for ITGB7.
1011 ITGB7 expression is evident in lymphocyte-enriched areas. c.-d.) Boxplot showing
1012 expression levels of SUSD3 in immune ce 1011 ITGB7 expression is evident in lymphocyte-enriched areas. c.-d.) Boxplot showing
1012 expression levels of SUSD3 in immune cell subsets of (a), and shows levels obtained from
1013 DICE (Database of Immune Cell Express expression levels of SUSD3 in immune cell subsets of (a), and shows levels obtained from
1013 DICE (Database of Immune Cell Expression, Expression quantitative trait loci (eQTLs) and
1014 Epigenomics), suggesting broad but DICE (Database of Immune Cell Expression, Expression quantitative trait loci (eQTLs) and
1014 Epigenomics), suggesting broad but variable expression among immune cell subsets. e.)
1015 Comparative illustration of levels of Epigenomics), suggesting broad but variable expression among immune cell subsets. e.)
1015 Comparative illustration of levels of ITGB7 and SUSD3 as requested from DICE. f.) Box plot
1016 showing expression levels of APBB1I 1015 Comparative illustration of levels of ITGB7 and SUSD3 as requested from DICE. f.) Box plot
1016 showing expression levels of APBB1IP among immune cell subsets of the aforementioned
1017 GEO study, suggesting a broad e 1016 showing expression levels of APBB1IP among immune cell subsets of the aforementioned
1017 GEO study, suggesting a broad expression among immune cell types. Box and whisker plots
1018 show median (center line), the upp 1017 GEO study, suggesting a broad expression among immune cell types. Box and whisker plots
1018 show median (center line), the upper and lower quartiles (the box), and the range of the data
1019 (the whiskers), including 1018 show median (center line), the upper and lower quartiles (the box), and the range of the data

1019 (the whiskers), including outliers (a, c, d, f).

1020

1019 (the whiskers), including outliers (a, c, d, f).
1020
1021 **Supplementary figure 3: Methylome prof** 1020
1021
1022
1023 **Supplementary figure 3: Methylome profiling uncovered epigenetic regulatory sites in**
1022 **the ITGB7 gene.** a.) Schematic representation of the ITGB7 gene, showing exons, intronic
1023 regions and sites of epigenetic mar the ITGB7 gene. a.) Schematic representation of the ITGB7 gene, showing exons, intronic
1023 regions and sites of epigenetic marks as depicted by indicated probes. ITGB7 expression
1024 levels are associated with methylati regions and sites of epigenetic marks as depicted by indicated probes. ITGB7 expression
1024 levels are associated with methylation at sites covered by probes cg26689077 and
1025 cg01033299 located within a proximal enhanc levels are associated with methylation at sites covered by probes cg26689077 and
1025 cg01033299 located within a proximal enhancer-like signature and intronic region close to 5²
1026 UTR. Additional regions as covered b cg01033299 located within a proximal enhancer-like signature and intronic region close to 5²
1026 UTR. Additional regions as covered by probes cg18320160 and cg11510999 are associated
1027 with the BRAF mutation status 1026 UTR. Additional regions as covered by probes cg18320160 and cg11510999 are associated
1027 with the BRAF mutation status of tumors. b.-c.) Dot plots showing no significant correlation
1028 of methylation status (ind 1027 with the BRAF mutation status of tumors. b.-c.) Dot plots showing no significant correlation of methylation status (indicated by β-values) at sites covered by probes cg18320160 and cg11510999 and immune score. d.-e.) Box pots indicating a significant association of β-values, determined by aforementioned probes (cg11510999, $p = 3e-06$; cg18320160, $p = 10e-06$ 1028 of methylation status (indicated by β-values) at sites covered by probes cg18320160 and
1029 cg11510999 and immune score. d.-e.) Box pots indicating a significant association of β-
1030 values, determined by aforeme 1029 cg11510999 and immune score. d.-e.) Box pots indicating a significant association of β-
1030 values, determined by aforementioned probes (cg11510999, p = 3e-06; cg18320160, p=
1031 0.003) and BRAF status (BRAF^{V600} values, determined by aforementioned probes (cg11510999, p = 3e-06; cg18320160, p=
1031 0.003) and BRAF status (BRAF^{V600} vs. wt/NRAS^{Q61}) of MBM. Box and whisker plots show
1032 median (center line), the upper and lowe 0.003) and BRAF status (BRAF^{V600} vs. wt/NRAS^{Q61} 1031 0.003) and BRAF status (BRAF^{V600} vs. wt/NRAS^{Q61}) of MBM. Box and whisker plots show
1032 median (center line), the upper and lower quartiles (the box), and the range of the
1033 data (the whiskers), including out median (center line), the upper and lower quartiles (the box), and the range of the

1033 data (the whiskers), including outliers (d, e).

1034 1033 data (the whiskers), including outliers (d, e).
1034
Algeria

Supplementary figure 4: Single sample GSEA revealed classification of immune
1036 molecular subtypes of MBM. a.) Single-sample GSEA (ssGSEA)-based deconvolution of
1037 MBM (n=79) of study EGAS00001003672 using customized molecular subtypes of MBM. a.) Single-sample GSEA (ssGSEA)-based deconvolution of
1037 MBM (n=79) of study EGAS00001003672 using customized gene signatures indicating
1038 "Signaling" processes, cellular subsets and stages 1037 MBM (n=79) of study EGAS00001003672 using customized gene signatures indicating
1038 "Signaling" processes, cellular subsets and stages of microglia and astrocyte and immune
1039 cell subsets. ssGSEA demonstrated dist "1038 "Signaling" processes, cellular subsets and stages of microglia and astrocyte and immune
1039 cell subsets. ssGSEA demonstrated distinct separation of MBM with high, median or low
1040 immunescore regarding expressio cell subsets. ssGSEA demonstrated distinct separation of MBM with high, median or low
1040 immunescore regarding expression levels of signature genes, BMCs served as controls.
1041 ssGSEA uncovered differentially activated 1040 immunescore regarding expression levels of signature genes, BMCs served as controls.
1041 ssGSEA uncovered differentially activated pathways and processes such as MET and
1042 STAT3 and interferon signaling, senescenc 1041 ssGSEA uncovered differentially activated pathways and processes such as MET and
1042 STAT3 and interferon signaling, senescence (SenMayo), stress response and tumor
1043 inflammation in tumors enriched for reactive m 1042 STAT3 and interferon signaling, senescence (SenMayo), stress response and tumor
1043 inflammation in tumors enriched for reactive microglia and astrocytes and innate and
1044 acquired immune cells subsets. b.) Boxplot 1043 inflammation in tumors enriched for reactive microglia and astrocytes and innate and
1044 acquired immune cells subsets. b.) Boxplot showing expression levels of HGF in indicated
1045 immune cell subsets obtained from acquired immune cells subsets. b.) Boxplot showing expression levels of HGF in indicated
1045 immune cell subsets obtained from DICE. c.-e.) Expression of MET receptor pathway genes
1046 in MBM of study EGAS00001003672 sho immune cell subsets obtained from DICE. c.-e.) Expression of MET receptor pathway genes
1046 in MBM of study EGAS00001003672 showing high or low enrichment of microglia, as
1047 determined by levels of microglia-specific g in MBM of study EGAS00001003672 showing high or low enrichment of microglia, as
1047 determined by levels of microglia-specific genes (SYK, HCK, AlF1/lba1= microglia score
1048 suggests a significant correlation of microgl determined by levels of microglia-specific genes (SYK, HCK, AlF1/lba1= microglia score
1048 suggests a significant correlation of microglia infiltration and activation of MET receptor
1049 signaling. HGF, hepatocyte growth suggests a significant correlation of microglia infiltration and activation of MET receptor
1049 signaling. HGF, hepatocyte growth factor (p=1.8e-09); PIK3CG, Phosphatidylinositol-4,5-
1050 Bisphosphate 3-Kinase Catalytic signaling. HGF, hepatocyte growth factor (p=1.8e-09); PIK3CG, Phosphatidylinositol-4,5-
1050 Bisphosphate 3-Kinase Catalytic Subunit Gamma (p<2.2e-16); PTK2B, Protein Tyrosine
1051 Kinase 2 Beta (p<2.2e-16); STAT3, Signal 1050 Bisphosphate 3-Kinase Catalytic Subunit Gamma (p<2.2e-16); PTK2B, Protein Tyrosine
1051 Kinase 2 Beta (p<2.2e-16); STAT3, Signal Transducer And Activator Of Transcription 3
1052 (p=5.3e-11); MAP4K1; Mitogen-Activated Kinase 2 Beta (p<2.2e-16); STAT3, Signal Transducer And Activator Of Transcription 3
1052 (p=5.3e-11); MAP4K1; Mitogen-Activated Protein Kinase Kinase Kinase Kinase 1 (p=3.4e-
1053 12). Box and whisker plots show median (c (p=5.3e-11); MAP4K1; Mitogen-Activated Protein Kinase Kinase Kinase Kinase 1 (p=3.4e-
1053 12). Box and whisker plots show median (center line), the upper and lower quartiles (the
1054 box), and the range of the data (the

1053 12). Box and whisker plots show median (center line), the upper and lower quartiles (the
1054 box), and the range of the data (the whiskers), including outliers (b-e).
1055 **Supplementary figure 5: MET-FISH analysis r** box), and the range of the data (the whiskers), including outliers (b-e).
1055 **Supplementary figure 5: MET-FISH analysis revealed absen
1056 amplifications in MBM.** a.) Hematoxylin and eosin (H&E) stair
1057 histology (u **Supplementary figure 5: MET-FISH analysis revealed absence of MET receptor**
1056 **amplifications in MBM.** a.) Hematoxylin and eosin (H&E) staining shows tumor cell
1057 histology (upper row). Fluorescence in-situ hybridiz amplifications in MBM. a.) Hematoxylin and eosin (H&E) staining shows tumor cell
1057 histology (upper row). Fluorescence in-situ hybridization with a MET-specific probe (red)
1058 revealed no specific amplifications of th histology (upper row). Fluorescence in-situ hybridization with a MET-specific probe (red)
1058 revealed no specific amplifications of the MET gene in MBM (n=7) as compared with
1059 centromere control (green) and irrespect 1058 revealed no specific amplifications of the MET gene in MBM (n=7) as compared with
1059 centromere control (green) and irrespective of the BRAF/NRAS mutation status. DAPI served
1060 as nuclear dye, bars indicate 50 µm centromere control (green) and irrespective of the BRAF/NRAS mutation status. DAPI served
1060 as nuclear dye, bars indicate 50 µm. b.) Quantitative representation of FISH analysis,
1061 indicating the number of MET copies 1060 as nuclear dye, bars indicate 50 μ m. b.) Quantitative representation of FISH analysis,
1061 indicating the number of MET copies per nucleus and ratio of MET and CEP7 (Centromer 7).
1062 c.) IHC for Iba1 (red) and indicating the number of MET copies per nucleus and ratio of MET and CEP7 (Centromer 7).
1062 c.) IHC for Iba1 (red) and pMET^{Y1234/1235} (brown) revealed absence of activated MET in
36 c.) IHC for Iba1 (red) and $\text{pMET}^{\text{Y1234/1235}}$ 1062 c.) IHC for Iba1 (red) and $pMET^{\gamma_12,34/12,35}$ (brown) revealed absence of activated MET in 36

Iba1^{high} microglia residing in adjacent tissue (upper panel) and MET activation in tumor cells 1063 lba1^{nigh} microglia residing in adjacent tissue (upper panel) and MET activation in tumor cells
1064 without neighboring TAMs. d.) HGF expression in brain cells residing within the different
1065 lobes (FL, frontal; without neighboring TAMs. d.) HGF expression in brain cells residing within the different
1065 lobes (FL, frontal; PL, parietal; TL, temporal; OL, occipital lobe) and pons as retrieved from
1066 the Allan Brain Atlas (http 1065 lobes (FL, frontal; PL, parietal; TL, temporal; OL, occipital lobe) and pons as retrieved from
1066 the Allan Brain Atlas (https://portal.brain-map.org/). Box and whisker plots show median
1067 (center line), the uppe the Allan Brain Atlas (https://portal.brain-map.org/). Box and whisker plots show median
1067 (center line), the upper and lower quartiles (the box), and the range of the data (the
1068 whiskers), including outliers (d).
1 1067 (center line), the upper and lower quartiles (the box), and the range of the data (the
1068 whiskers), including outliers (d).
1069 Supplementary figure 6: Expression of interferon-related genes is enriched in MBM of

1068 whiskers), including outliers (d).
1069
1070 **Supplementary figure 6: Expre**
1071 **ITGB7^{high}/IScore^{high} phenotype** 1069
1070
1071
1072 **Supplementary figure 6: Expression of interferon-related genes is enriched in MBM of
1071 ITGB7^{high}/IScore^{high} phenotype. a.) Heat map indicating expression levels and subset-
1072 association of interferon-inducible ITGB7high/IScorehigh** 1071 **ITGB7^{nign}/IScore^{nign} phenotype.** a.) Heat map indicating expression levels and subset-
1072 association of interferon-inducible genes, mediators of interferon signaling and relevant
1073 immune cell-expressed mar association of interferon-inducible genes, mediators of interferon signaling and relevant
1073 immune cell-expressed markers such as CD3E, CD4, CD8A in MBM (n=79) of study
1074 EGAS00001003672. Molecular subsets, category 1073 immune cell-expressed markers such as CD3E, CD4, CD8A in MBM (n=79) of study
1074 EGAS00001003672. Molecular subsets, category of genes and strength of expression are
1075 color coded. b.-d.) Dot plots indicating the EGAS00001003672. Molecular subsets, category of genes and strength of expression are

1075 color coded. b.-d.) Dot plots indicating the significant correlation of *ITGB7*, *IRF1* (Interferon

1076 Regulatory Factor 1), *IR* color coded. b.-d.) Dot plots indicating the significant correlation of *ITGB7*, *IRF1* (Interferon
1076 Regulatory Factor 1), *IRF8* and *IFNG* in MBM and EM of the aforementioned study. e.) Dot
1077 plots indicating the 1076 Regulatory Factor 1), *IRF8* and *IFNG* in MBM and EM of the aforementioned study. e.) Dot
1077 plots indicating the significant correlation of expression of *HGF*, *IRF1* and *IRF8* in MBM and
1078 EM of the aforemen plots indicating the significant correlation of expression of *HGF*, *IRF1* and *IRF8* in MBM and
1078 EM of the aforementioned study. f.-g.) Investigation of expression data of murine BV2
1079 microglia cells (study GSE13 EM of the aforementioned study. f.-g.) Investigation of expression data of murine BV2
1079 microglia cells (study GSE132739) following interferon (1 U/mL IFNy, 24h) or control
1080 treatment revealed interferon-responsible microglia cells (study GSE132739) following interferon (1 U/mL IFNγ, 24h) or control
1080 treatment revealed interferon-responsible genes. Interferon treatment significantly increased
1081 levels of ltgb7 (p=2.9e-03), Hgf treatment revealed interferon-responsible genes. Interferon treatment significantly increased

1081 levels of ltgb7 (p=2.9e-03), Hgf (p=4.4e-02), Mx1 (p=1.2e-02), Cd274 (p=3.6e-02), Irf1

1082 (p=3.1e-02), Cxcl9 (p=4.0e-03 1081 levels of Itgb7 (p=2.9e-03), Hgf (p=4.4e-02), Mx1 (p=1.2e-02), Cd274 (p=3.6e-02), Irf1
1082 (p=3.1e-02), Cxcl9 (p=4.0e-03) and Aif1 (p=4.0e-03). However, Susd3 was significantly
1083 downregulated upon interferon trea 1082 (p=3.1e-02), Cxcl9 (p=4.0e-03) and Aif1 (p=4.0e-03). However, Susd3 was significantly
1083 downregulated upon interferon treatment (p=4.0e-02). h.) ssGSEA analysis of MBM with
1084 defined signatures showing enrichmen 1083 downregulated upon interferon treatment (p=4.0e-02). h.) ssGSEA analysis of MBM with
1084 defined signatures showing enrichment of interferon-related signaling among other indicated
1085 processes. Box and whisker plo defined signatures showing enrichment of interferon-related signaling among other indicated
1085 processes. Box and whisker plots show median (center line), the upper and lower quartiles
1086 (the box), and the range of th processes. Box and whisker plots show median (center line), the upper and lower quartiles
1086 (the box), and the range of the data (the whiskers), including outliers (f, g).
1087 **Supplementary figure 7: The mTOR/pS6 sign**

(the box), and the range of the data (the whiskers), including outliers (f, g).
1087
Supplementary figure 7: The mTOR/pS6 signaling is activated in MBM
1089 (Pat 14) for levels of activated/phosphorylated MET receptor (p 1087
1088
1089
1090 **Supplementary figure 7: The mTOR/pS6 signaling is activated in MBM.** a.) IHC of MBM
1089 (Pat 14) for levels of activated/phosphorylated MET receptor (pMET^{Y1234/1235}) and mTOR/pS6
1090 (pS6^{S235/236}) signaling revealed (Pat 14) for levels of activated/phosphorylated MET receptor (pMET^{Y1234/1235} (Pat 14) for levels of activated/phosphorylated MET receptor (pMET^{Y1234/1235}) and mTOR/pS6
1090 (pS6^{S235/236}) signaling revealed co-occurrence of both. b.) Co-occurrence of pS6^{S235/236} and
37 (pS6^{S235/236}) signaling revealed co-occurrence of both. b.) Co-occurrence of pS6^{S235/236} $($ pS6^{S235/236}) signaling revealed co-occurrence of both. b.) Co-occurrence of pS6^{S235/236} and
37

-
-
- 1091 MITF. Bars indicate 50 μm. c.) Confocal microscopy imaging of BMC1-M1 and BMC53 cells
1092 for levels of NGFR and MET showing a mutually exclusive expression pattern or low level of
1093 MET in NGFR⁺ cells. d.) Liv 1092 for levels of NGFR and MET showing a mutually exclusive expression pattern or low level of
1093 MET in NGFR⁺ cells. d.) Live cell imaging tracked dose-response of BMC1-M1 cells to
1094 increasing doses of ARQ197. MET in NGFR⁺ cells. d.) Live cell imaging tracked dose-response of BMC1-M1 cells to
1094 increasing doses of ARQ197.
- 1094 increasing doses of ARQ197.

Redmer et al., Figure 1

Redmer et al., Figure 2

Redmer et al., Figure 3

Interferon-induced HGF stimulates MET signaling in MBM

