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ABSTRACT

Genome sequencing can offer critical insight into pathogen spread in viral outbreaks, but existing
transmission inference methods use simplistic evolutionary models and only incorporate a
portion of available genetic data. Here, we develop a robust evolutionary model for transmission
reconstruction that tracks the genetic composition of within-host viral populations over time and
the lineages transmitted between hosts. We confirm that our model reliably describes within-host
variant frequencies in a dataset of 134,682 SARS-CoV-2 deep-sequenced genomes from
Massachusetts, USA. We then demonstrate that our reconstruction approach infers transmissions
more accurately than two leading methods on synthetic data, as well as in a controlled outbreak
of bovine respiratory syncytial virus and an epidemiologically-investigated SARS-CoV-2
outbreak in South Africa. Finally, we apply our transmission reconstruction tool to 5,692
outbreaks among the 134,682 Massachusetts genomes. Our methods and results demonstrate the
utility of within-host variation for transmission inference of SARS-CoV-2 and other pathogens,
and provide an adaptable mathematical framework for tracking within-host evolution.

MAIN

Advances in pathogen genomic sequencing have enhanced our ability to determine infectious
disease transmission pathways from the accumulation of mutations over time [1–20]. Inferred
transmission networks provide critical insight into how pathogens spread, quantifying key
parameters such as the effective reproductive number. They also permit evaluation of the
effectiveness of mitigation strategies, e.g., vaccination [16] or nonpharmaceutical interventions
[21,22] on transmission rates.

Numerous algorithms for reconstructing outbreaks based on genomic and epidemiological data
have been developed [1,4,9,12,14,19,20,23]. The majority of existing models use the number of
single nucleotide variants (SNVs) between each pair of cases as the only genetic signal to inform
transmission. While a lower SNV distance is indeed a stronger indicator of transmission than a
higher one, this approach oversimplifies the true underlying biological processes in a way that
loses information [6,17], as it overlooks the mechanism that give rise to genetic variants in the
first place. Moreover, these methods rely only on consensus genomes, despite the fact
deep-sequencing data can capture intrahost single nucleotide variants (iSNVs).

Some transmission inference studies do model within-host evolution explicitly and incorporate
iSNVs by adapting existing methods in phylogenetics [8,10,13]. This approach, while much
more reflective of the underlying biological process, requires both enormous computational
power and a highly efficient algorithmic implementation to yield accurate results if implemented
in a Bayesian context [10]. And while maximum-likelihood methods yield results more
efficiently [8,13], they fail to capture the different probabilities associated with different
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transmission networks, as well as the distributions of key epidemic parameters such as the
mutation rate and serial interval.

In this paper, we develop, validate, and apply a novel evolutionary model for outbreak
reconstruction that tracks the composition of the viral population within each host over time
(Figure 1). Under our model, iSNV frequencies follow an approximate power-law distribution, a
result we confirm empirically using a public dataset of 134,682 deep-sequenced SARS-CoV-2
genomes from Massachusetts, USA. Extending our within-host evolutionary model to outbreak
reconstruction, we demonstrate that our approach infers transmission events more accurately
then two leading transmission reconstruction methods, using synthetic, experimental animal, and
human outbreaks for validation. Finally, we apply our model to a dataset of 5,692 outbreak
clusters among the 134,682 Massachusetts genomes, quantifying the prevalence of genetic
signatures in transmission links. Our findings improve upon existing methods in outbreak
reconstruction while underscoring the usefulness of deep-sequencing data in epidemiological
investigations.

Figure 1: Schematic representations of six possible genetic profiles of viral transmission. In all
diagrams, an orange circle represents a virion with adenine (A) at a given site k on the viral
genome, and a blue circle represents a virion with cytosine (C) at site k. The branching process
diagrams represent the early phase of infection (labeled Phase 1), when the viral population
remains small, and mutation events, although rare, significantly impact the resulting minor allele
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frequency. The bar charts represent the proportion of virions exhibiting the major and minor
allele at site k at the end of Phase 2, in which the viral population grows to its maximum size of
approximately 109 to 1011 particles [24]. The vertical gray arrows represent the virions passed
from donor to recipient through the transmission bottleneck. In (A), no iSNVs are observed at
site k in the donor or recipient, with both exhibiting the same allele. In (B), an iSNV arises at site
k in the donor, and the major allele is passed to the recipient through a bottleneck of one particle.
In (C), an iSNV arises at site k in the donor, and the minor allele is passed to the recipient
through a bottleneck of one particle, resulting in a change of consensus genome. In (D), an iSNV
arises at site k in the recipient, where it rises to consensus frequency, resulting in a change of
consensus genome. In (E), an iSNV arises at site k in the donor, and both alleles are passed to the
recipient through a split bottleneck of multiple particles; as a result, the donor and recipient share
the same within-host variant, but the consensus allele does not change. In (F), an iSNV arises at
site k in the donor, and both alleles are passed to the recipient through a split bottleneck of
multiple particles; as a result, the donor and recipient share the same within-host variant, and the
consensus allele changes.

RESULTS

Sub-Consensus Variant Frequencies Exhibit a Power-Law Distribution

To study the distribution of minor allele frequencies, we developed a mathematical model of the
viral population within a host (see Supplement A and [25–27]). The model consists of two
phases: one of exponential growth of the inoculum, followed by a quiescent phase that lasts from
when the viral population reaches a sufficiently large size until the infection ends. We model
within-host viral replication during the first phase as a stochastic pure-birth process, consistent
with previous methodological work [28], in which each birth event may introduce a de novo
mutation with some probability p. Under the pure-birth model, mutations that emerge early in
infection constitute a larger fraction of the ultimate viral population than those that emerge later
in infection. Once the within-host viral population size is sufficiently large (see Supplement B
for a precise mathematical definition), any mutation events that occur negligibly affect the
composition of the viral population. Therefore, following the exponential growth of the
pure-birth model, we model the quiescent phase via the Jukes-Cantor model [29] of neutral
evolution. The combination of these two phases yields a biologically-motivated hierarchical
model for within-host variant frequencies in the absence of natural selection. Per Supplement B,
the probability density function of the frequency x of a de novo minor variant is approximately
proportional to 1/x2, for any sufficiently small value of p.

To assess the validity of our model for de novo minor variant frequencies, we visualized all
iSNV frequencies observed across a dataset of 134,682 genomes, applying a 3% minor allele
frequency threshold [2]. We observed minimal discrepancy between the empirical probability
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density and the theoretical probability density function, f(x)∝ 1/x2 for x > 3% (Figure 2). We
estimated the mutation rate to be 3.40 × 10-6 nt site-1 cycle-1 by maximum likelihood, comparable
to existing estimates of 1–3 × 10-6 nt site-1 cycle-1 [24,30–32] (seeMethods). Given a substitution
rate of 1 × 10-3 nt site-1 year-1 [30–32], our estimate corresponds to a within-host replication rate
of 0.81 cycle day-1. Per Bar-On et al.’s estimate of a burst size of ~1,000 particles, we estimate
that it takes 2.48–3.72 days for a host to reach a peak viral population of 106–109 virions
respectively, in concordance with existing estimates of approximately 3 days [30].

Figure 2: (A) Histogram of minor allele frequencies from the dataset of 134,682 genomes (gray
bars) and modeled probability density function (blue dashed line); (B) Empirical cumulative
density function (orange solid line) and modeled cumulative density function (blue dashed line).
A minor allele frequency filter of at least 3% was applied for both figures; (C) Log-log plot of
empirical (gray) and theoretical density functions.

Within-Host Variants Improve Transmission Inference Accuracy

Extending our model for within-host evolution to account for transmission events gives rise to a
model for viral outbreaks as a whole. To quantify the likelihood of any possible transmission
bottleneck, we modeled the probability of any individual virion passed from one host to another
exhibiting an A, C, G, or T at a given site as a categorical draw, independent and identically
distributed across sites on the viral genome and across transmitted particles (see [28] for
comparable methods). We combined this genomic likelihood function with a standard
epidemiological likelihood function for the susceptible-exposed-infectious-removed (SEIR)
stochastic-epidemic process, yielding a Bayesian statistical model of outbreaks as a whole (see
Methods).

To assess the accuracy of our outbreak reconstruction model relative to existing ones, we first
generated a dataset of 100 synthetic outbreaks. We modeled the generation intervals, latent
period durations, and infectious period durations as a stochastic-epidemic process, with each
time interval independently sampled from a pre-specified probability distribution based on
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existing studies of SARS-CoV-2 Omicron variant transmission [33,34] (see Figure 3A and
Methods). We simulated transmission networks by generating random trees in which the number
of offspring of each case follows a negative binomial distribution with a basic reproductive
number (R0) of 2.5 and overdispersion parameter (k) of 0.1 [35], and extracting a random subtree
of 10–15 individuals to be our cluster, discarding trees in which no such subcluster existed. We
also included an additional 0–5 cases from a different part of the tree in our cluster who each
tested positive within 10 days of someone in the subtree, allowing us to test our model’s ability
to identify distinct clusters.

We generated synthetic genome sequencing data to reflect the evolution of SARS-CoV-2 as
closely as possible. We sampled minor allele fractions at each site for each host per the
distribution shown in Figure 2, with the probability of a given site exhibiting a SNV (or iSNV)
proportional to the number of times we detected the SNV at the given site among the 134,682
Massachusetts genomes. We sampled the virions passed from donor to recipient as independent,
identically distributed (i.i.d.) categorical random variables taking on one of four values
corresponding to the four nucleotides, per the methods of Leonard et al. [28]. We set the per-site,
per-cycle mutation rate to 3.40 × 10-6, and assumed a per-site, per-year substitution rate of 1 ×
10-3 [30–32]. These two parameters are related to each other through the burst size and
replication rate, whose values were assigned based on existing literature [24,30] (seeMethods).

We measured the reliability of our outbreak reconstruction model using four metrics: accuracy,
coverage probability, specificity, and hit rate. Accuracy is defined as the probability that a
random true donor-recipient pair is present in a given posterior sample. Coverage probability is
defined as the chance that a minimal 90%-credible set1 of modeled donors for a given recipient
contains the correct donor (or correctly identifies the recipient as unrelated to the cluster).
Specificity is defined as the probability that in a given posterior sample, a random unrelated case
is correctly identified as being disconnected from the cluster. Finally, hit rate is defined as the
chance that the most probable ancestor for each case as inferred by our algorithm is indeed the
true ancestor.

We compared these metrics of reliability for our method, as well as our method adapted to
analyze only consensus genomes, to two leading transmission reconstruction methods:
outbreaker2 and BadTrIP. Our method using read-level data outperformed the other three by all
four metrics, exhibiting 18.9% higher accuracy than any other tool (see Table 1 and Figure
3A–3D.) Figure 4 provides an illustrative example of the differential performance of our method
and outbreaker2 on a single synthetic outbreak.

1 By “minimal 90%-credible set” we mean the smallest set of possible donors for a given recipient whose combined
probability of being the true donor exceeds 90%.
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Given that some outbreak reconstruction models, including our model and outbreaker2, can
integrate contact tracing into transmission inference, we further benchmarked performance with
this additional form of data. We ran our model and outbreaker2 on the 100 synthetic datasets
under eight different contact tracing scenarios: true positive rate ν (probability of reporting a
contact, given that a transmission occurs) equal to 0%, 25%, 50%, or 75%; and false positive rate
ξ (probability of reporting a contact, given that a transmission does not occur) equal to 0% or
50%. False-positive contact-traced links were sampled from all pairs of people for which a
transmission did not occur. Our model significantly outperformed outbreaker2 in terms of
accuracy, coverage probability, and specificity in all scenarios (see Figure 3E–3H).

Model Accuracy (SD) Coverage Prob. (SD) Specificity (SD) Hit rate (SD)

This paper 59.9% (18.1%) 78.0% (10.3%) 85.9% (21.0%) 61.0% (19.5%)

BadTrIP 41.0% (13.8%) 77.8% (11.6%) 59.8% (30.3%) 51.9% (16.3%)

outbreaker2 33.0% (12.6%) 60.0% (13.1%) 77.1% (24.5%) 33.1% (14.9%)

This paper,
consensus
genomes

31.5% (14.4%) 61.2% (13.7%) 85.3% (17.9%) 34.4% (16.7%)

Table 1: Performance metrics of our model, outbreaker2, BadTrIP, and our model using only
consensus genomes as an input.
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Figure 3: (A), (B), (C), (D) Boxplots of accuracy, coverage probability, specificity, and hit rate
for our model, outbreaker2, our model using only consensus genomes, and BadTrIP. (E), (F),
(G), (H) Boxplots of accuracy, coverage probability, specificity, and hit rate for our model and
outbreaker2 under eight parameter combinations for contact tracing, where ν is the true positive
rate and ξ is the false positive rate.

-8-

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 15, 2023. ; https://doi.org/10.1101/2023.10.14.23297039doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.14.23297039
http://creativecommons.org/licenses/by-nc/4.0/


Figure 4: (A) An example synthetic outbreak, showing the latent (orange) and infectious (red)
stages for each case, as well as transmission events (black lines originating from circles). (B)
Genetic profile of a synthetic outbreak, showing iSNVs and fixed SNVs for each case (mutations
appearing in at most one case not shown). (C), (D) Transmission networks for the example
synthetic outbreak as inferred by our model and by outbreaker2 (2018), respectively, with the
opacity (alpha) of each transmission link corresponding to its posterior probability. A green
arrow indicates a correct transmission link, i.e., one that exists in the synthetic outbreak, and an
orange arrow indicates an incorrect transmission link. Cases 15 and 16 were not part of the same
cluster as cases 1–14.

Animal Study and Contact-Traced Outbreak Validate Transmission Inference Method

Validating our ability to detect transmission events from genomic data alone is hindered by the
lack of controlled experiments or well sampled outbreaks with known transmission routes.
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Nonetheless, we identified one controlled study of BRSV in Swedish cows [18] and one
nosocomial outbreak in South Africa [36,37] as strong candidates for methodological validation
on real data. We chose to reconstruct the BRSV outbreak because it was a controlled study with
known infection dynamics, and because the pathogen exhibited comparable substitution rate to
SARS-CoV-2, estimated at 1.6 × 10-3 nt site-1 yr-1 for synonymous mutations [38]. In the BRSV
outbreak, transmissions occurred either through co-housing or by obtaining bronchoalveolar
lavages from infectious animals and using them to infect naïve animals, with each successive
transmission event occurring seven days after the previous one. All cows were housed in
separate pens (with the exception of the aerosol transmission step), to avoid unintended
transmission pathways [18]. The transmission network is shown in Figure 5A. We reconstructed
the BRSV outbreak using our tool, BadTrIP, outbreaker2, and our tool with only consensus
genomes (see Figure 5B–5E). The four approaches yielded accuracies of 59.3%, 45.5%, 38.9%,
and 44.6%, respectively (see Supplementary Table S1).

We then applied the same four methods to reconstruct a SARS-CoV-2 outbreak at a hospital in
South Africa between March and April of 2020 [36,37]. We selected this outbreak because
among the 39 infected persons, 9 transmission links between patients with sequenced samples
were deemed highly probable by epidemiological investigation (see Supplementary Table S3),
and the COVID-19 prevalence was comparatively low at the time in South Africa (< 0.02%
nationally [39]) as to reduce the probability of undetected external introductions. In addition to
epidemiologically-confirmed links, patient movement histories throughout the hospital were
documented, suggesting certain transmissions to be plausible based on patient co-location. Our
tool, BadTrIP, outbreaker2, and our tool with only consensus genomes, inferred the
epidemiologically-confirmed transmission links with accuracies of 49.5%, 35.1%, 36.8%, and
36.5%, respectively (see Figure 5F–J and Supplementary Table S2).
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Figure 5: (A) Transmission network for the BRSV outbreak. (B), (C), (D), (E) Inferred
transmission networks for the BRSV outbreak by our tool, BadTrIP, outbreaker2, and our tool
with only consensus genomes, with a green arrow representing a correctly-inferred transmission
link and a gray arrow representing an incorrectly-inferred transmission link. The opacity of each
arrow corresponds to its posterior probability. (F) Epidemiologically-confirmed transmissions in
the nosocomial SARS-CoV-2 outbreak in South Africa. (G), (H), (I), (J) Inferred transmission
networks for the SARS-CoV-2 outbreak by our tool, BadTrIP, outbreaker2, and our tool with
only consensus genomes, with a green arrow representing an epidemiologically-confirmed
transmission link, a blue arrow representing a plausible transmission link based on the location
histories of each patient, and a gray arrow representing a transmission link with neither form of
supporting evidence. The opacity of each arrow corresponds to its posterior probability. Nodes
are color-coded by facility: orange represents the medical intensive care unit, red represents a
medical ward, green represents a nursing home, blue represents the cardiac intensive care unit,
purple represents the surgical intensive care unit, yellow represents the neurology ward, and gray
represents patients who traveled between different wards.

Outbreak Reconstruction Identifies Genetic Signatures of Transmission

Outbreak reconstruction with read-level sequencing data allows us to assess the prevalence and
impact of informative within-host diversity. To do so, we extracted putative outbreak clusters
from the 134,682 genomes by creating a network graph, in which a node represents one patient,
and an edge connects two patients if and only if their sequenced samples exhibited a SNV
distance of at most 2 and were collected less than 10 days apart. We then defined a cluster as a
connected component of this graph with at least two nodes. This filtering process identified
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5,692 putative clusters with n ≥ 2 individuals (38,598 individuals total), with median size of 3
individuals per cluster (interquartile range: 2–5). The mean and standard deviation were 6.78 and
14.3, respectively, indicating substantial overdispersion as is typical of outbreak sizes. We ran
our reconstruction algorithm on each cluster, and tabulated all putative transmission links and
their associated posterior probabilities across all clusters. We found that in a random posterior
sample, a randomly-selected transmission link has a 12.3% probability (95% CI via bootstrap:
11.6%–13.0%) of exhibiting at least one genetic relationship visible only in read-level data.
These relationships, which we refer as the three iSNV signatures, are: a minor allele in the donor
becomes fixed in the recipient (minor-to-fixed), a fixed allele in the donor becomes the minor
allele in the recipient (fixed-to-minor), or the major and minor allele at a polymorphic site in the
donor are both present in the recipient (split bottleneck). The other 81.1% of links exhibited no
informative within-host diversity.

While the three iSNV signatures appear in the minority of transmission links, they are
disproportionately useful for resolving transmission networks. To see this more concretely, we
first considered putative transmission links in which the SNV distance between consensus
genomes equals 0 (62.6% of putative links). The only possible iSNV signature such a
transmission link may exhibit is a split bottleneck. Among transmission links with 0 SNV
distance, the posterior probability equalled 41.7% on average (95% CI via bootstrap:
40.5%–42.9%) in the presence of a split bottleneck, and 18.4% otherwise (95% CI via bootstrap:
18.3%–18.6)2. Transmission links with a nonzero SNV distance (37.4% of putative links), on the
other hand, may exhibit any of the three iSNV signatures. Although the posterior probabilities
associated with these links did not differ significantly based on the presence of an iSNV
signature, we found that 24.4% of them exhibit an iSNV signature (95% CI via bootstrap:
23.1%–25.5%). In other words, 24.4% of the time, a transmission link with nonzero SNV
distance could be better inferred with read-level data as compared to consensus genomes,
highlighting one central way that our transmission reconstruction tool improves upon existing
methods.

DISCUSSION

Here, we establish a novel method for modeling genetic diversity in outbreaks, providing a
systematic approach for inferring transmission links from read-level sequencing data. By
modeling the distribution of iSNV frequencies, we quantified the likelihood of any possible viral
outbreak transmission network based on the genomic and epidemiological data collected.
Synthetic outbreak simulations demonstrated that using read-level data in outbreak
reconstruction significantly improved accuracy, coverage probability, specificity, and hit rate
compared to using consensus genomes alone, as our model was able to detect minor allele

2 Averages and confidence intervals computed after removing transmission links with <1% posterior probability, to
remove large volumes of highly improbable transmissions.
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transmissions and split bottlenecks. Moreover, as we show, while BadTrIP offers some
improvement in accuracy over consensus-based methods, accuracy can be improved much
further with our approach to modeling minor variants. Our methods, applied to 5,692 outbreak
clusters, demonstrate the critical role that minor variants play in resolving transmission links.

Our findings have implications across virology, epidemiology, and genetics. Our model for
minor allele frequencies alone provides a reliable means of estimating the per-site, per-cycle
mutation rate without needing to calculate it from the substitution rate per-unit-time, which
requires knowledge of the viral population growth rate and the number of virions produced per
cycle. Moreover, outbreak reconstruction has numerous applications to public health, such as
estimating the reproductive number and overdispersion parameter, estimating attack rate by
vaccine status, investigating the origin of a cluster, and identifying likely viral transmission
pathways in nosocomial settings. With our tool, we provide a more accurate and interpretable
method for conducting these analyses.

However, our outbreak reconstruction model faces a number of limitations in its current form.
First, the relatively slow substitution rate of viruses like SARS-CoV-2 limits the resolution of
any genomics-based outbreak reconstruction method because, in any given outbreak, we expect
to see a number of cases with identical consensus genomes and no informative within-host
diversity. In particular, lack of informative within-host diversity limits our ability to differentiate
between multiple introductions of identical lineages versus within-facility transmission,
negatively impacting the accuracy of our tool (mean = 59.9%, SD = 18.1% for synthetic
datasets). While we outperformed existing tools, we emphasize that we would not expect any
tool to perfectly reconstruct transmission networks for any virus with a relatively low mutation
rate such as SARS-CoV-2. Second, our tool in its current state does not account for unsampled
intermediates: for instance, our tool might reconstruct a transmission chain A → B→ C where A
and C are sequenced, but B is not, as A → C. This limitation could conceivably be addressed by
modifying the MCMC algorithm to add and remove unsequenced cases. Finally, obtaining
reliable and reproducible iSNV calls via deep sequencing remains a challenge, and the detection
of within-host variants may be biased by the method of sample collection (e.g., nasopharyngeal
swab, oral swab) and by the time of collection relative to symptom onset. The presence or
absence of an informative iSNV in a given sample may significantly influence the output of our
outbreak reconstruction tool.

Our model also makes a number of simplifying assumptions about the biological processes
underlying viral infection and transmission, which is necessary to reduce computational
complexity. In line with other outbreak reconstruction models, we assume that mutations are
neutral. This simplification fails to account for cases in which an iSNV rises to a detectable
frequency due to a selective advantage, such as immune escape, or is lost due to either genetic
drift or a selective disadvantage. However, we do our best to minimize the effect of this
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simplification on our reconstruction of SARS-CoV-2 outbreaks by quantifying the frequency of
specific iSNVs across our 134,682 genomes and masking recurrent iSNV calls. In addition, our
model assumes that sites evolve independently, ignoring epistatic effects. It also assumes that the
intrahost viral population is well-mixed, without spatial heterogeneity in genotype. Finally, in
this paper, we tailor our approach to single-stranded RNA viruses. Extensions of our model
would be required to account for more complex pathogens, such as those with extensive
recombination or horizontal gene transfer.

Despite these challenges, our work underscores the usefulness of read-level viral genome data
and high-quality iSNV calls in transmission inference. At present, within-host variant calls below
3% frequency are typically considered unreliable [2], though iSNVs in that range may still be
transmitted and provide critical information about putative donor-recipient pairs. Moreover, our
work stresses the importance of dense sampling of outbreaks, as missing genomes may lead our
model to infer additional index cases or transmissions with large SNV distances erroneously.
Given dense sampling and high-resolution sequencing, we expect our method to reconstruct
outbreaks with high accuracy.

METHODS

Ethical Approvals

The research project (Protocol #1603078) was reviewed and approved by the Massachusetts
Department of Public Health (MADPH) Institutional Review Board and covered by a reliance
agreement at the Broad Institute. An additional non-human subjects research and an exempt
determination (EX-7080) were made by the Harvard Longwood Campus Institutional Review
Board and the Broad Institute Office of Research Subject Protections, respectively, for the
analysis of de-identified aggregate and publicly available data.

Analysis of SARS-CoV-2 Sequencing Data

All sequencing data was downloaded from the NCBI SRA under BioProject PRJNA715749. We
used LoFreq version 2.1.5 to call intrahost single nucleotide variants (iSNVs). We then filtered
out calls with < 100 read depth, < 10 minor allele read count, p-value of Fisher’s exact test for
strand bias < 0.05. In addition, as a means of masking highly-variable sites, we compiled a table
from a larger dataset of 172,519 SARS-CoV-2 genomes sequenced at the Broad Institute listing
the number of times an iSNV rising above 3% frequency appeared at each site. From this dataset,
we calculated the probability of a randomly chosen iSNV in a randomly chosen host occurring at
each site on the viral genome. Based on these probabilities, we masked sites whose probability of
being chosen more than once among 1,000 trials exceeded 5%. This method was designed to
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model the probability of the same iSNV arising de novo more than once in an outbreak of 1,000
people.

Modeling Minor Allele Frequencies

See Supplementary Text, Section A. In brief, we propose a stochastic pure-growth process to
model within-host viral replication, where each birth event may introduce a given substitution
with some probability. If the substitution probability is small, then we can approximate the
probability density function (PDF) of the proportion of mutated particles by the function 1/x2.

Outbreak Reconstruction Model

See Supplementary Text, Section B. In brief, we develop a statistical model for the proportion of
the within-host viral population to exhibit a given nucleotide at a given site, for any host at any
point in time. This model combines the result from Supplementary Text A with the standard
Jukes-Cantor model of neutral evolution. We then combine this genetic model with an
epidemiological model, in which each host may be susceptible, exposed, infectious, or recovered
at any given time. Together, these two components provide an overall likelihood function for
viral outbreaks with read-level sequencing data.

MCMC Implementation

See Supplementary Text, Section C. In brief, we propose several moves to search the space of
possible transmission networks efficiently, as well as standard moves to update underlying
parameter values.

Synthetic Data Generation

We simulated outbreaks by first generating stochastic transmission networks over the course of
four generations. We started with a single index case, and assumed a negative binomial offspring
distribution with mean R0 = 2.5 and overdispersion parameter k = 0.1. We then overlaid a
stochastic-epidemic process identical to that in our outbreak reconstruction model (see
Supplementary Text, Section B.4). Next, we selected a fully-connected subtree with 10–15 nodes
uniformly at random, discarding iterations for which no such subtree existed. We also included
0–5 nodes not in our subtree who tested positive at most 10 days before or after the first or last
case in the subtree, respectively, to simulate unrelated introductions in an outbreak. Finally, we
overlaid the same evolution model as in our outbreak reconstruction algorithm (see
Supplementary Text, Section B.4). We assumed that the sequencing coverage for every case was
100%, with read depths ranging from 100 to 20,000, uniformly at random. All parameter values
are equal to those listed in Supplementary Text, Section C.1.
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SUPPLEMENTARY TABLES

Model Accuracy Coverage Prob. Hit Rate

This paper 59.3% 8 of 9 5 of 9

BadTrIP 45.5% 7 of 9 4 of 9

outbreaker2 38.9% 9 of 9 4 of 9

This paper, consensus
genomes

44.6% 9 of 9 4 of 9

Supplementary Table S1: Accuracy, coverage probability, and hit rate of the four methods
applied to the BRSV outbreak.

Model Accuracy Coverage Prob. Hit Rate

This paper 49.5% 5 of 9 5 of 9

BadTrIP 35.1% 4 of 9 3 of 9

outbreaker2 36.8% 4 of 9 3 of 9

This paper, consensus
genomes

36.5% 5 of 9 4 of 9

Supplementary Table S2: Accuracy, coverage probability, and hit rate of the four methods
applied to the South Africa SARS-CoV-2 outbreak.

From To Supporting Evidence from [36]

P1 P3 “On review of the timeline, it was noticed that the first outpatient case (P1)
and the person who would become the first inpatient case (P3) were both
in the Emergency Department on 9 March. A more detailed investigation
of events of that day uncovered that they were in the ED at overlapping
times, were in close proximity to one another, and were attended to by the
same medical officer.”

P3 HW1 “On review of [HW1’s] shift patterns and patient allocation, it was noted
that she was directly responsible for the care of P3 in CICU on the night
shift of 12 Mar–13 March. Based on the understanding that people can be
infectious 1‐3 days prior to symptom onset, this link provides strong
circumstantial evidence that P3 was infectious at this time and transmitted
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to the CICU nurse.”

P3 P4, P7,
P14

“On the assumption that P3 was infectious throughout her time on MW1
(13‐16 Mar), there were five other cases who may have been exposed
during that time period. This includes a 46‐year‐old female (P4) who was
in the bed directly opposite (in room 12), and four male patients (P6, P7,
P14, X4) who were co‐located in a room down the corridor (room 15).”
[Note: P6 and X4 were not sequenced.]

P4 HW4 “A professional nurse on this ward (HW4) became symptomatic with fever
and flu‐like symptoms at the end of her shift on 23 March and
subsequently tested positive on 29 March. This nurse worked directly with
P4 on 23 March, when P4 was coughing, and performed tasks including
nebulisation.”

HW4 P11,
P15

“[HW4] was signed off work until 27 March and when she returned to
work on 27 March she was still symptomatic with cough, fever and sore
throat, but she continued to work day shifts on 27 & 28 March. On those
days she worked directly with P11 and P15.”

P3 P10 “On 16 April, patient P3 was discharged from St. Augustine’s Hospital to
the Bill Buchanan Association for the Aged in Morningside, a nursing
home with 210 residents. She was there until her readmission to St.
Augustine’s on 22 March. By 31 March, we understand that four other
residents at the home were diagnosed with COVID‐19, including three
women who had shared the sick bay with P3 and one woman who stayed
in a separate unit and only visited P3 (as they were friends from their
residential home). One of the cases from the sick bay was admitted to St.
Augustine’s on 31 March (patient P10).”

Supplementary Table S3: Epidemiological evidence supporting the putative transmission links
identified in the South Africa SARS-CoV-2 nosocomial study.

CODE AND DATA AVAILABILITY

The outbreak reconstruction tool is available as an R package on GitHub, at
github.com/broadinstitute/reconstructR. Code and data for all analyses and figures in this paper
are available at github.com/broadinstitute/transmission-inference. All sequencing data used in
this study are publicly available through the NCBI SRA under BioProject PRJNA715749.
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