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Abstract 

Wastewater-based epidemiology provides an approach for assessing the prevalence of pathogens such as 
COVID-19 in a sewer service area. In this study, SARS‐CoV‐2 RNA was measured serially in 44 wastewater 
treatment plants of varying service capacities comprising approximately 67% of the population of Minnesota, 
from September 2020 through December 2022. We employed linear regression models to establish a 
predictive relationship between the weekly SARS‐CoV‐2 RNA concentrations in wastewater and clinical case 
counts.  Metrics were assessed under specified transformation and normalization methods which we 
confirmed by cross-validation averaged across the enrolled treatment plants. We report that the relationship 
between COVID-19 incidence and SARS-CoV-2 RNA in wastewater may be treatment plant-specific. Toward 
establishing guidelines for pathogen surveillance, we further studied storage and time-to-analysis for RNA 
wastewater data and observed large effects of storage temperature, indicating that collection methods may 
have an important effect on the utility and validity of wastewater data for infectious disease monitoring. Our 
findings are additive for any large-scale wastewater surveillance program. 

1 Introduction 

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), has infected millions of people across the globe which 
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continues to cause significant health and economic impacts, and demonstrated the 
importance of having infrastructure available to deploy for monitoring diseases on a 
massive scale. Effective and widespread community testing of individuals is costly and the 
demand for tests frequently exceeds the capacity of testing facilities (Barasa, Ouma, and 
Okiro 2020), and there is a disequilibrium in access to testing due to economic, geographic, 
or social conditions. Furthermore, test results are a lagging indicator of the pandemic’s 
progression, because testing is usually prompted by symptoms, which may take days or 
weeks to manifest after infection (Lauer et al. 2020). Furthermore, with broader use of 
home testing, the less reliable official clinical testing becomes, since those not requiring 
medical attention will tend to also avoid medical facilities that report public health testing 
data. Thus, delays may occur between the appearance of symptoms, testing and the 
reporting of test results (Peccia et al. 2020). Finally, it is estimated that as many as 45% of 
COVID-19 cases are asymptomatic (Li et al. 2020; Nishiura et al. 2020; Oran and Topol 
2020; Post et al. 2020). Considering that most people only seek medical attention and 
undergo diagnostic testing if they are symptomatic, the number of confirmed clinical cases 
may grossly underestimate the prevalence of the disease in a community.  

Wastewater-based epidemiology (WWBE) is a method for monitoring presence and trends 
of an infectious agent that is shed in bodily secretions/excrement in communities. In 
WWBE for SARS-CoV2, wastewater is collected from wastewater treatment plants 
(WWTPs) and is tested by qRT-PCR for SARS-CoV-2 RNA excreted via feces, urine, and 
saliva. The presence and levels of viruses in wastewater samples represents a cross section 
of viral presence and spread in the communities served by those plants. WWBE has been 
successfully employed as a surveillance tool for diseases such as SARS, hepatitis A, and 
polio (Hellmér et al. 2014; Manor et al. 1999; Ye et al. 2016). With regard to SARS-CoV-2, 
viral particles are reported to be shed in feces from infected individuals even if they are 
asymptomatic (Chan et al. 2021; Chen et al. 2020; Cheung et al. 2020; Parasa et al. 2020; 
Wong et al. 2020). Recent studies have shown that WWBE is able to predict COVID-19 
prevalence even earlier than clinical case data Peccia et al. (2020), supporting the idea that 
WWBE can be used as an early warning system to monitor community prevalence and 
spread. 

Over the last three years we have gathered SARS-CoV-2 wastewater data, which we present 
in this paper both to describe the programmatic data to date and to provide more about the 
specifics of the SARS-CoV-2 pandemic, and to identify best practices for WWBE more 
broadly. We present data from two complementary data gathering processes here. The 
primary data is wastewater samples that were collected from 44 total WWTPs across the 
state of Minnesota between September 2020 and December 2022. The SARS-CoV-2 viral 
load in wastewater were obtained by qRT-PCR . These 44 WWTPs represent a broad 
sampling of the Minnesota population serving a total of 191 zip codes and a population of 
3,825,269 people, which is approximately 67% of the total population of the state. The 
secondary data were from an experiment on storage and time-to-analysis conditions for 
qRT-PCR analysis of wastewater data. This experiment was undertaken in part because of  
our findings from our primary data of significant heterogeneity in the data quality and 
predictive ability from different WWTPs. 
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Estimating the SARS-CoV-2 RNA concentrations in wastewater (gene copies per litre) is 
complicated, as the dilution and fecal strength in the wastewater may vary between 
sampling dates due to random chance (e.g., caused by variation in a factory’s runoff). It has 
been recommended to multiply the viral concentration in wastewater by the flow of the 
sampled location (the volume of wastewater that passed through the location in a day) to 
obtain the viral concentrations in gene copies per day, and account for changes in sanitary 
sewer contributions (Hasan et al. 2021; Weidhaas et al. 2021). Normalizing SARS-CoV-2 
RNA concentrations by indicators of human fecal waste is also common, because feces in 
wastewater can have variable levels of SARS-CoV-2 depending upon the amount of water 
used per toilet flush or body washing (Zhan et al. 2022). The contribution of SARS-CoV-2 
from human sourced water can then be estimated by dividing the measured SARS-CoV-2 
concentration by the concentration of the human waste indicator (Zhan et al. 2022). One 
typically examined fecal marker is Pepper Mild Mottle Virus (PMMoV) Maal-Bared et al. 
(2023). Previous studies have shown that PMMoV is the most abundant RNA virus in 
human feces and it is shed in large quantities in wastewater (Melvin et al. 2021, Hamza et 
al. 2019; Kitajima et al. 2014; Kitajima, Sassi, and Torrey 2018; Rosario et al. 2009; Zhang 
et al. 2006). It is also highly stable in wastewater, and its concentrations show little 
seasonal variation (Kitajima et al. 2014; Kitajima, Sassi, and Torrey 2018). Operating on 
this information, our program from 2019-2022 normalized SARS-CoV-2 RNA wastewater 
levels to PMMoV (Melvin et al. 2021).  However, in our ongoing surveillance work, we 
found that normalizing by PMMoV obfuscated the large spike in wastewater measurements 
during the COVID-19 Omicron wave of December 2021-January 2022, which compelled us 
to reexamine normalization methods.  Our findings below suggest that normalization by 
PMMoV may increase the variation in wastewater measurements, and we do not find 
evidence in the current data that it substantially improves prediction.  

Our study objectives in conducting these analyses were to: (1) learn how best to make use 
of large-scale wastewater surveillance RNA measurements, and (2) storage conditions that 
affect said measurements. Our motivation for (2) was driven in part by our results in (1), in 
which we found nontrivial unexplained heterogeneity between WWTPs. We compare a 
variety of data pre-processing methods; to benchmark the effectiveness of a pre-processing 
method we use predictive ability of the data on clinical case counts. We assess model fit 
across a variety of models (and data transformations) by using cross-validation (see the 
methods section).  

However, we have observed nontrivial heterogeneity in the predictive ability of 
measurements from differing WWTPs. Researchers have started to investigate how storage 
conditions affect wastewater RNA and measured concentrations (Khan, Tighe, and 
Badireddy 2021). In a small scale study focusing on one or a small number of WWTPs, the 
storage and measurement conditions can easily be controlled. As we will discuss in our 
results section, we observed significant heterogeneity in the relationship of the wastewater 
measurements with clinical COVID-19 case counts which we attribute to heterogeneous 
quality of data from the WWTPs. Thus, we also implemented a study on storage and time-
to-analysis conditions for measurements from wastewater, to undertake efforts how much 
these aspects affect quality of measurements in order to define sample collection guiding 
principles.  
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In addition to this study on wastewater measurement quality, we study the following 
questions about statistical processing and analysis of wastewater data.  Rather than use 
statistical significance testing of model coefficients, or coefficient of determination (𝑅2) 
from linear regression for assessment of fit, we will use leave-one-out cross-validation, 
which is appropriate for assessing model performance when prediction is the main goal. 
(See the methods section for a full description.) 

2 Description of Surveillance Data 

Wastewater samples were collected from a total of 44 WWTPs across the state of 
Minnesota. From its inception to March 2022, we employed a polyethylene glycol 
concentration and phenol chloroform nucleic acid extraction procedure and qRT-PCR for 
the nucleocapsid gene in the SARS CoV2 genome using N1 and N2 primer:probe pairs.  As 
the pandemic progressed so too did more sensitive and effective isolation and detection 
methods.  Accordingly, in March 2022 we pivoted to a column-based total nucleic acid 
isolation method and a three gene qRT PCR method that measured the nucleocapsid (N), 
spike (S), and ORF1ab (O) proteins, sampled from 40 WWTPs. Our statistical findings 
demonstrate the latter assays are more accurate than  

  

Figure 2.1: Map of WWTPs across the state of 
Minnesota 

the former assays. We present here, data from the latter period, using the three gene qRT 
PCR assay.  Since the two assays are nontrivially different, they cannot be combined into a 
single statistical analysis. For data analysis purposes, a weekly level average of 
measurements was used. Figure 2.1 displays the concentrations of N, S and O in three 
WWTPs, Little Falls, Northfield and Twin Cities, which are chosen as representatives of 
smaller, midsized, and large population areas (see Table 2.1 below).  One sample was 
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reported to have zero concentration of N, S and O. It was removed in further analyses. 
Among the remaining samples, 424 were reported to have zero virus concentration of S. 
The reason for the loss of signal (S gene target failure) was due to  

 

Figure 2.1: Virus concentrations in Little Falls, Northfield and Twin Cities 

prevalence of a SARS CoV2 variant that acquired mutations in the spike gene that 
prevented the primer:probe pair from binding.  Thus, the S gene was not used in any 
further analyses.  Importantly, our analytical resolution was preserved using the N and 
Orf1a genes.  The concentrations of a human fecal marker, PMMoV, were also determined 
in each wastewater sample in parallel. PMMoV concentrations below the 5th percentile 
were replaced with the 5th percentile value, and those above the 95th percentile were 
replaced with the 95th percentile value to avoid outliers. The influent flow rate was 
provided by the participating WWTPs. The catchment area of each WWTP was obtained 
from the Minnesota Pollution Control Agency (MPCA) or, if possible, directly from the 
treatment facility. Many of the smallest WWTPs did not have a digitized catchment area 
available, so the city boundaries were used to approximate this area. Data enrichment 
services from Esri (ESRI 2023) were used to apportion 2020 census block population to the 
WWTP catchment areas. 

The weekly number of new infections for each WWTP service area were obtained from the 
Minnesota Department of Health (MDH) and aggregated to the zip code areas using the 
residential address for the case. Case counts were summed by zip code weekly (Sunday-
Saturday) and the date beginning the week was used to associate with each case 
count.  The case data were then aggregated by WWTP according to the zip codes previously 
found to be associated with each catchment.  Five zip codes intersected more than one 
WWTP catchment area. For the purpose of this study, the catchment area with more area in 
each zip code was assumed to serve the population (and therefore be the source of all the 
cases) of that entire zip code. To allow a log10 transformation, any zero case counts were 
replaced with a value of one. The MDH also provided the number of people who have 
received at least one dose of COVID-19 vaccine, and the number of people with completed 
vaccine series in the areas served by each WWTP over time. The complete series could be 
one, two, or three doses depending on the person’s age and which vaccine they received. 
Being “fully vaccinated” does not include or require further booster doses in the present 
definition. 
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Table 2.1 provides descriptions of the participating WWTPs, including the sampling period, 
the number of weeks where the WWTP was included in the study (because we had clinical 
case count data and had or could impute wastewater measurements), the size of the 
population served, as well as the sample means and standard deviations of weekly case 
count and flow. 

 

Table 2.1: Descriptions of participating WWTPs 

WWTP Code 
No. 

Weeks 
w/ data 

Population 
Avg. Weekly 
Case Count 

Albert Lea AL 36 20,957 28 
Alexandria AX 35 25,689 41 
Bemidji BI 26 32,741 38 
Blooming Prairie BP 10 3,589 4 
Blue Lake BL 28 397,299 674 
Cambridge CB 35 15,529 19 
Chisholm CM 20 5,787 9 
Eagles Point EP 29 113,786 208 
East Bethel EB 27 14,880 17 
Elk River ER 34 94,119 133 
Empire EM 28 176,441 287 
Fergus Falls FF 35 18,799 24 
Glacial Lakes SSWD GL 33 5,574 6 
Glencoe GC 9 8,280 14 
Hastings HS 28 30,027 39 
Hinckley HY 30 5,483 7 
Hutchinson HT 24 17,829 32 
International Falls IF 33 9,618 20 
Lafayette LY 15 844 1 
Lanesboro LB 24 1,849 2 
Le Sueur LS 35 8,237 7 
Little Falls LF 36 14,615 26 
Mankato MK 25 63,489 86 
Marshall ML 36 15,550 19 
Moorhead MH 31 42,602 69 
Mora MR 36 9,872 15 
New Prague NP 36 12,557 14 
North Branch NB 35 16,827 22 
Northfield NF 35 27,040 32 
Rochester RC 36 123,041 242 
Rogers CR 27 14,573 21 
Saint Cloud SD 35 130,901 260 
Seneca SN 28 243,338 430 
St. Croix Valley SV 28 38,958 68 
     

Thief River Falls TR 36 12,971 17 
Twin Cities TC 28 1,854,291 3,261 
Western Lake Superior WL 28 124,459 241 
Willmar WM 36 23,697 35 
Winona WA 34 34,644 59 
Worthington WT 36 14,487 18 
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3 Analysis of surveillance data 

Viral load quantification 

The procedure we used for quantifying viral load is as follows: 40 mL of influent was used to 
isolate total nucleic acids using the Enviro Total Nucleic Acid Kit for Wastewater (Promega, 
Madison, WI) and eluted in a volume of 40 ul.  Five ul was employed for quantitative RT PCR, 
performed in duplicate, using the TaqPath™ COVID-19 Combo Kit (ThermoFisher, Waltham, 
MA) with copy number standards on the QuanStudio 5 RT PCR instrument in order to 
quantitate viral copy number.   

Statistical Methods 

The wastewater samples were collected at irregular time intervals and were isolated on 
different days for different WWTPs and COVID-19 case counts were aggregated weekly. To 
align the wastewater samples with the clinical case counts and to avoid having to analyze 
data on irregular time intervals, we aggregated the wastewater measurements by week 
(Sunday-Saturday). For a given week with any wastewater data, we use the sample average 
of all the measurements of that week as the aggregated measurement. If there was no 
wastewater sample in a week then that week was considered missing and was not included 
in the analysis.   

With time-aligned case counts and wastewater measurements, we performed linear 
regression and fit separate models for each WWTP. To assess the model performance, a 
leave-one-out cross-validation (LOOCV) was used. The models were trained on 𝑛 − 1 
observations and validated on the remaining one observation, where 𝑛 is the sample size. 
The procedure was repeated 𝑛 times with each of the 𝑛 observations used exactly once for 
validation. The average of the 𝑛 prediction errors obtained was computed for model 
comparison. The evaluation metric was the root mean squared errors (RMSE) between the 
predicted value and the actual value. If the dependent variable was log10-transformed, the 
transformation was reversed to obtain the predictions on the original scale before the 
computation of RMSE. This provides an unbiased approach for comparing predictive 
performance of different models. All statistical analyses were performed using R version 
4.2.3 (R Core Team 2022). 

Use of SARS-CoV-2 Concentrations 

Denote the COVID-19 case count at time 𝑡 by  𝐶𝑡 and denote the SARS-CoV-2 concentrations 
(either O or N) measured in a wastewater sample at time 𝑡 by 𝑊𝑡.   In this section, we 
compare different linear regression models for predicting 𝐶𝑡 from 𝑊𝑡. As mentioned in 
section 1, virus concentrations are commonly normalized by either flow, 𝑊𝑡

Flow = 𝑊𝑡 ⋅
Flow𝑡 or a fecal marker such as PMMoV: 𝑊𝑡

PMMoV = 𝑊𝑡/PMMoV𝑡 . However, there have been 
contradictory findings on whether normalization of virus concentration can improve 
correlations with cases (Duvallet et al. 2022; Feng et al. 2021; Maal-Bared et al. 2023). 
Moreover, it seems that no studies examined using both flow and PMMoV to normalize the 
virus concentration, as in 𝑊𝑡

Flow &PMMoV = 𝑊𝑡 ⋅ Flow𝑡/PMMoV𝑡 . (This latter normalization 
has perhaps less logical coherence but to the extent that flow and PMMoV are both 
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informative, but noisy and imperfect, it could be helpful.) We compare these three 
normalization approaches. It is also of interest to know whether adding lagged virus 
concentrations (e.g., 𝑊𝑡−1 and 𝑊𝑡−2) in the model will improve the predictive performance. 
Finally, it is prevalent in the wastewater literature to use a log10 transformation on the 
variables to meet assumptions for parametric analysis (Farkas et al. 2022; Feng et al. 
2021); we compared taking the log transformation of wastewater measurements to not 
taking it, to validate this standard procedure. We focus on using solely the O gene here as it 
correlates closely with the N gene; and the S gene, while helpful in monitoring viral 
variants, can show gain or loss of signal accordingly. To summarize, we varied the following 
factors: 1. Normalization of the virus concentrations (unnormalized, flow, PMMoV or both), 
2. The number of lagged values for the virus concentrations (0, 1 or 2), 3. Whether a log10 
transformation was used on the dependent and independent variables. The three factors 
were `fully crossed’, resulting in a total of 4 ⋅ 3 ⋅ 2 = 24 conditions.       The models were fit 
separately for each WWTP in each condition (we will show, shortly, that different model 
fits are needed for different WWTPs). To allow for comparisons between WWTPs with 
different sizes of population served, we divided the case count and virus concentrations by 
the population size. This ensures that the prediction errors for all WWTPs are theoretically 
on the same scale. Observations with missing values due to the creation of lagged variables 
were removed. As was mentioned above, the models were compared by the averaged-over-
WWTPs LOOCV. 

Table 3.1 displays the RMSE (root mean squared prediction error) of the cross-validated 
RMSE of the linear regression models under different conditions across WWTPs. Lower 
indicates more accurate prediction. For ease of presentation, the RMSE were multiplied by 
1000. (Recall that the case count variable was divided by the corresponding catchment 
area population size.) 

Overall the results in Table 3.1 suggest that taking logs is highly important for 
performance; this validates the standard practice of taking log transformations not just for 
parameter estimation but for prediction. We find that the normalization method is not as 
important especially when logs are taken.  When the raw data were used, normalizing by 
flow alone slightly reduced the RMSE, whereas involving PMMoV in the normalization led 
to an increase in RMSE. Recall that PMMoV is defined by truncating the highest and lowest 
quantile values to mitigate the high variability in its measurement; but this was not enough 
to remove the high level of variability totally. Our interpretation, focusing especially on the 
non-logged models, is that PMMoV introduces extra variability which causes predictive 
degradation. For instance, in our data when we normalize by PMMoV, the spike in 
wastewater RNA levels from the omicron surge that occurred in December 2021 in 
Minnesota does not appear, because the variability of the PMMoV measurements 
obfuscates it.  Although in some contexts and for some WWTPs it seems that using PMMoV 
is helpful, our interpretation is that its high level of variability prevent it from being used 
uniformly in normalization.  On the other hand, our findings validate the use of flow in that 
even without a log transformation, normalization by flow is seen to achieve nearly optimal 
predictive performance. 

Including extra lags generally worsened the predictive performance, perhaps surprisingly. 
These results are in the context of only having a few dozen observations per WWTP, but we 
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argue this is common given that over a longer time horizon the parameters and prediction 
models are likely to change in the face of evolving virus and immunity landscape. It is 
important to note that different models yielded different best fits for individual WWTPs; 
here we are presenting results averaged over all WWTPs.  Overall results are affected both 
by higher variance and lower variance WWTPs. It is worth noting that in some of the lower 
variance WWTPs, predictive performance was improved by using extra lags. For instance, 
in the EB, EP, HT, MH, MK, and TC WWTPs, including lagged variables improves 
performance according to LOOCV. 

Overall, the model with the lowest RMSE of the RMSEs is the one using the virus 
concentrations of O, normalized by flow, with log10 transformation, and without any lags: 

log10(𝐶𝑡+1) = 𝛽0 + 𝛽1log10(𝑊𝑡
Flow) + 𝜖                                  (3.1)   

where 𝛽𝑗 ’s are the regression coefficients, and 𝜖 is the residual. Although it is not clear from 

our results if the normalization by flow is important, this is the model to which we explore 
various extensions in the upcoming sections. 

Table 3.1: RMSEs (x1000) of RMSE across WWTPs in all 24 conditions 

 

Normalization Scale Lags RMSE 

Unnormalized Raw 0 0.73 

Unnormalized Raw 1 0.72 

Unnormalized Raw 2 0.84 

Unnormalized Log 0 0.66 

Unnormalized Log 1 0.67 

Unnormalized Log 2 0.82 

Flow Raw 0 0.64 

Flow Raw 1 0.65 

Flow Raw 2 0.72 

Flow Log 0 0.64 

Flow Log 1 0.65 

Flow Log 2 0.88 

PMMoV Raw 0 0.85 

PMMoV Raw 1 0.94 

PMMoV Raw 2 1.36 

PMMoV Log 0 0.65 

PMMoV Log 1 0.67 

PMMoV Log 2 0.70 

Flow & PMMoV Raw 0 0.86 

Flow & PMMoV Raw 1 1.00 

Flow & PMMoV Raw 2 1.44 

Flow & PMMoV Log 0 0.64 

Flow & PMMoV Log 1 0.66 

Flow & PMMoV Log 2 0.70 

 

3.2.1 Heterogeneity in fit and individual WWTP validation 

It would be ideal if it were possible to develop one model using the pooled data from all 
WWTPs. Unfortunately our results suggest this is not possible; we compared the estimated 
error variance and the estimated regression coefficients of 𝑊𝑡

Flow from the model (3.1) 
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across WWTPs. We found significantly different regression coefficients and variance 
estimates, see Tables 3.2 (giving estimated regression coefficients and 𝑝-values of 

log10(𝑊𝑡
Flow) for each WWTP) and 3.3 (giving estimated 𝜎2 values for each WWTP). We 

found that the estimated coefficients ranged from -0.06 to 0.66 (with summary statistics of 
mean = 0.28, SD = 0.23). The ratio of the largest to smallest variance estimate was larger 
than 10. This indicates that separate fits are needed for separate WWTPs and more broadly 
it suggests the important finding that in any large-scale surveillance plan, measurements 
from different WWTPs (even when analyzed by the same lab) may not be directly 
comparable and may require different interpretation. 

Table 3.2: Estimated Coefficients and p-values of log10(W flow) for each WWTP 

 

Code Estimated Coefficient p-value Code Estimated Coefficient p-value 

AL 0.47 0.00 LF 0.14 0.18 

AX 0.13 0.06 LS 0.18 0.15 

BI 0.10 0.36 LY -0.06 0.21 

BL 0.48 0.00 MH 0.13 0.02 

BP 0.20 0.38 MK 0.66 0.00 

CB -0.01 0.90 ML 0.08 0.56 

CM 0.09 0.48 MR 0.08 0.11 

CR 0.36 0.07 NB 0.31 0.00 

EB 0.21 0.03 NF 0.54 0.00 

EM 0.59 0.00 NP 0.35 0.01 

EP 0.61 0.00 RC 0.65 0.00 

ER -0.02 0.72 SD 0.34 0.00 

FF 0.06 0.50 SN 0.58 0.00 

GC 0.03 0.65 SV 0.59 0.01 

GL 0.19 0.05 TC 0.63 0.00 

HS 0.28 0.04 TR 0.19 0.05 

HT 0.09 0.56 WA 0.35 0.00 

HY 0.16 0.17 WL -0.06 0.73 

IF 0.61 0.00 WM 0.41 0.01 

LB -0.03 0.71 WT 0.63 0.00 

Table 3.3: Sigma squared estimates for each WWTP 

 

Code σ̂ 2
 Code σ̂ 2

 

AL 0.028 LF 0.037 

AX 0.023 LS 0.051 

BI 0.033 LY 0.022 

BL 0.012 MH 0.017 

BP 0.104 MK 0.008 

CB 0.040 ML 0.035 

CM 0.056 MR 0.028 

CR 0.054 NB 0.027 

EB 0.019 NF 0.044 

EM 0.009 NP 0.041 

EP 0.010 RC 0.023 
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t t 

t t 

t t t 

t t 

t t 

t t t 

ER 0.015 SD 0.012 

FF 0.044 SN 0.007 

GC 0.027 SV 0.036 

GL 0.048 TC 0.008 

HS 0.020 TR 0.046 

HT 0.028 WA 0.030 

HY 0.088 WL 0.034 

IF 0.066 WM 0.027 

LB 0.067 WT 0.057 

3.2.2 Use of Vaccination Rate 

We examine how best to incorporate vaccination data in our linear regression models. Let 
𝑉𝑡

one be the percentage of people who have received at least one doses of vaccine out of the 
population served by a WWTP, and 𝑉𝑡

full be the percentage of fully vaccinated people. The 
models to be investigated were built upon the model in Equation (3.1). In addition to the 

normalized virus concentration 𝑊𝑡
Flow, the models also considered the main effects of 𝑉𝑡

one 
and/or 𝑉𝑡

full, as well as two- or three-way interactions between 𝑊𝑡
Flow, 𝑉𝑡

one and 𝑉𝑡
full. The 

models are listed in Table 3.4, along with their means and standard deviations of the cross-
validated RMSE across WWTPs. The model that includes the interaction between 𝑊𝑡

Flow 
and 𝑉𝑡

full,  

log10(𝐶𝑡+1) = 𝛽0 + 𝛽1log10(𝑊𝑡
Flow) + 𝛽2log10(𝑉𝑡

full) + 𝛽3log10(𝑊𝑡
Flow) ⋅ log10(𝑉𝑡

full) + 𝜖,

(3.2) 

minimizes the mean RMSE, but the differences are not large and the results were not 
sensitive to whether 𝑉𝑡

one or 𝑉𝑡
full was used. The clearest result is that including too many 

variables leads to worse predictions. However, as detailed in the next subsection we 
observe that including vaccination may add more variability than it removes (especially 
when predicting two weeks ahead). 

Table 3.4: Means and standard deviations (x1000) of RMSE across WWTPs for 
different vaccination linear models 

 

Formula Mean SD 
 

log10(Ct+1) ∼ log10(W flow) + log10(V one) 0.55 0.21 

log10(Ct+1) ∼ log10(W flow) + log10(V full) 0.54 0.23 

log10(Ct+1) ∼ log10(W flow) + log10(V one) + log10(V full) 2.47 12.26 

log10(Ct+1) ∼ log10(W flow) ∗ log10(V one) 0.54 0.20 

log10(Ct+1) ∼ log10(W flow) ∗ log10(V full) 0.53 0.22 

log10(Ct+1) ∼ log10(W flow) ∗ log10(V one) ∗ log10(V full) 149.12 938.86 
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3.2.3 Prediction Accuracy Over Different Forecast Horizons 

We assess the performance of predictions over different forecast horizons (same week, one 
week ahead and two weeks ahead). The model in Equation (3.2) was fitted separately for 
each WWTP, with log10(𝐶𝑡), log10(𝐶𝑡+1) and log10(𝐶𝑡+2) being the dependent variable. The 
means and standard deviations of the cross-validated RMSE are reported in the first three 
rows of Table 3.5. At the current noise level, we do not see a degradation in ability to 
predict one week ahead versus predicting the current week’s case count.  The predictions 
for two weeks ahead is substantially worse than the predictions for the first week.  For 
comparisons, we fitted the model in Equation (3.1) again with different forecast horizons 
(last three rows of Table 3.5). Interestingly, when predicting two weeks ahead, the simplest 
model (excluding vaccination information) was more accurate in terms of both mean and 
variance. 

Table 3.5: Means and SDs (x1000) of RMSE across WWTPs when predicting the case 
count of the same week, one week ahead and two weeks ahead 

 

Model Mean SD 
 

log(Ct) ∼ log10(Wt flow) ∗ log10(Vt full) 0.54 0.21 

log(Ct+1) ∼ log10(Wt flow) ∗ log10(Vt full) 0.53 0.22 

log(Ct+2) ∼ log10(Wt flow) ∗ log10(Vt full) 0.75 1.47 

 

log(Ct) ∼ log10(Wt flow) 0.59 0.19 

log(Ct+1) ∼ log10(Wt flow) 0.61 0.19 

log(Ct+2) ∼ log10(Wt flow)  0.60 0.19 

 

4 Storage and Time-to-Analysis Stability Study Findings 

Although one might expect a priori for measurements from different WWTPs that that are 
studied in the same lab to have broadly similar characteristics, we found above, in the 
analysis of our surveillance data, nontrivial heterogeneity in predictive ability (coefficient 
values and standard deviation estimates) between different WWTPs.  Unmeasured 
variables such as population mobility, access to clinical testing centers, or population 
willingness to utilize clinical testing could account for some of the variation.  Wastewater 
storage conditions are another possible cause. To shed light on what causes such 
unexplained large differences between WWTPs, we conducted a stability study using a 
large volume of WW from a single site that was partitioned into samples that were stored 
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at varying conditions (4C, -20, and -80C) for 2,5 7, or 14 days.  Nucleic acid for each sample 
(n=4) was then analyzed by qRT PCR concurrently (for a total of 4 * 4 * 5 = 80 data points, 
with summary statistic means (SDs) for each temperature [averaging across  all times] of  
39400 (8560) for baseline, 18600 (8600) for 4C, 2970 (5420) for -20C, and 3360 (1550) 
for -80C) 

 We found that storage temperature had a large and significant impact on the measured 
RNA. The length of time of storage had a less noticeable and not significant impact. We 
subtracted each baseline measurement from each storage measurement , yielding a 
negative number in all cases. We transformed the response by taking the negative and 
then the logarithm. We then fit a linear mixed regression model with no intercept term, 
a (linear) time trend term, a factor variable for the three storage conditions, and a 
random intercept effect for each sampling unit, with no interactions included; that is, 
we fit 

log Wi,t = γi + βj ∗ TempIndicatorj + β4t + ϵi,t 

 for i = 1, . . . , 4, t ∈ {2, 5, 7, 14}, TempIndicatorj an indicator/dummy variable for 
the three temperature storage conditions, γi i.i.d. N (0, σ2) random effects, σ2 > 0, 
ϵi,t  i.i.d. N (0, η2), and βj the fixed effects of interest. The coefficient estimates for 
each of the three storage conditions were significant; the coefficients for −20C and 
−80C were not significantly different than each other, but are different than the 
coefficient for 4C. The negative exponentiated coefficient estimates (p-values) are  
-16200 (2 × 10−12) for 4C, -32300 (1 × 10−14) for -20C, and -32300 (1 × 10−14) for -80C.  
The time trend term was not significant.  The means and standard deviations (over the four 
samples) at each of the 12 different conditions are presented in Table 4.1.  The Day 0 
average (sd) is 39400 (8560).  It is easy to see at a glance the effect of storing below 4 C. 

These data provide important guidelines for sample submission and storage whereby 4C 
stored samples showed less degradation than a -20C or -80C freeze and thaw.   Under these 
principles we advocate long term storage at -80C and shipping temperatures under 
refrigeration (4C). 

Table 4.1: Means (standard deviations) of RNA levels over 4 samples for each of 4 storage 
lengths at 3 different temperatures.  

 

Day 2 Day 5 Day 7 Day 14 

4 C 21900 (6100) 22000 (11700) 15900 (11200) 14500 (2700) 

-20 C 900 (200) 4700 (7600) 5600 (7900) 700 (500) 

-80 C 4000 (1100) 2800 (1300) 3600 (2300) 3000 (1600) 
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5 Conclusions 

We studied surveillance data for SARS-CoV-2 across the state of Minnesota and undertook 
efforts to apply statistical analyses to inform how to best interpret and apply wastewater 
data by studying the predictive relationship of wastewater virus levels on clinical case 
counts. We acknowledge that using clinical case counts as a validation benchmark is an 
imperfect solution, namely because wastewater is in fact intended to solve some of the 
problems that arise from using clinical case counts, as was discussed above. Nonetheless, 
since case counts are the baseline standard used for public health decision making, they 
serve as a natural benchmark. For instance, it is clear that if clinical case counts 
demonstrate a large surge, then the ability of wastewater to demonstrate the same surge is 
important and beneficial; so in this sense a strong statistical relationship between the 
wastewater measurements and case counts is meaningful. 

Our estimates of error variance and regression coefficients vary substantially across 
WWTPs. These findings suggest that the relationship between COVID-19 incidence and 
SARS-CoV-2 RNA in wastewater may be treatment plant-specific, and future work will need 
to continue investigating how to appropriately normalize data from different plants to 
allow for cross-plant comparisons. Additionally, this suggests that at present, COVID-19 
WBE may need to be viewed at individual plant level for its most impactful application. The 
variation is not accounted for by the catchment area or the size of the corresponding 
population. 

Prompted by this variability we set out to dissect this phenomena to determine if we could 
identify actionable items that would boost accuracy (ie diminish variance). Toward that, we 
show that wastewater RNA are quite sensitive to storage conditions, so such storage 
conditions are a strong candidate for accounting for at least some of the variation. 
Consistent with some studies in the wastewater literature (Maal-Bared et al. 2023; Feng et 
al. 2021; Duvallet et al. 2022), the current study finds that the predictive performance does 
not improve after involving PMMoV in the normalization.    Interestingly, adding lagged 
virus concentrations to the model generally worsened the predictive performance.  Using 
the vaccination rate in the model has been shown to improve the predictions. However, the 
results are not very consistent across different forecast horizons.  Due to the relatively low 
number of data points for each WWTP (recall Table 2.1), nonlinear or machine learning 
methods are not effective, and in fact often very parsimonious linear regression models 
performed best .  One shortcoming of this study is that the available data are rather limited, 
and the conclusions may not apply in an extremely data rich environment. However, in 
infectious disease modeling, we believe that true data rich environments (in which 
necessarily model parameters and immunological landscapes all stay constant over time) 
are exceedingly rare.   As such, based on data from a broad geographic area studied during 
the SARS-CoV2 pandemic, we detail our findings that are additive to the fields of 
epidemiology and statistical modeling and prediction, and which provide new guidance for 
storage procedures for wastewater samples. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 15, 2023. ; https://doi.org/10.1101/2023.10.14.23296666doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.14.23296666
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements 

This work was funded, in part, by a grant from 3M and the Minnesota Department of 
Health. 

Reference 
Ahmed, Warish, Nicola Angel, Janette Edson, Kyle Bibby, Aaron Bivins, Jake W O’Brien, Phil 
M Choi, et al. 2020. “First Confirmed Detection of SARS-CoV-2 in Untreated Wastewater in 
Australia: A Proof of Concept for the Wastewater Surveillance of COVID-19 in the 
Community.” Science of the Total Environment 728: 138764. 

Arora, Sudipti, Aditi Nag, Jasmine Sethi, Jayana Rajvanshi, Sonika Saxena, Sandeep K 
Shrivastava, and Akhilendra Bhushan Gupta. 2020. “Sewage Surveillance for the Presence 
of SARS-CoV-2 Genome as a Useful Wastewater Based Epidemiology (WBE) Tracking Tool 
in India.” Water Science and Technology 82 (12): 2823–36. 

Barasa, Edwine W, Paul O Ouma, and Emelda A Okiro. 2020. “Assessing the Hospital Surge 
Capacity of the Kenyan Health System in the Face of the COVID-19 Pandemic.” PLoS One 15 
(7): e0236308. 

Chan, Vinson Wai-Shun, Peter Ka-Fung Chiu, Chi-Hang Yee, Yuhong Yuan, Chi-Fai Ng, and 
Jeremy Yuen-Chun Teoh. 2021. “A Systematic Review on COVID-19: Urological 
Manifestations, Viral RNA Detection and Special Considerations in Urological Conditions.” 
World Journal of Urology 39 (9): 3127–38. 

Chen, Yifei, Liangjun Chen, Qiaoling Deng, Guqin Zhang, Kaisong Wu, Lan Ni, Yibin Yang, et 
al. 2020. “The Presence of SARS-CoV-2 RNA in the Feces of COVID-19 Patients.” Journal of 
Medical Virology 92 (7): 833–40. 

Cheung, Ka Shing, Ivan FN Hung, Pierre PY Chan, KC Lung, Eugene Tso, Raymond Liu, YY 
Ng, et al. 2020. “Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in 
Fecal Samples from a Hong Kong Cohort: Systematic Review and Meta-Analysis.” 
Gastroenterology 159 (1): 81–95. 

Duvallet, Claire, Fuqing Wu, Kyle A McElroy, Maxim Imakaev, Noriko Endo, Amy Xiao, 
Jianbo Zhang, et al. 2022. “Nationwide Trends in COVID-19 Cases and SARS-CoV-2 RNA 
Wastewater Concentrations in the United States.” ACS ES&T Water. 

ESRI 2023. ArcGIS Online, Esri Demographics. Redlands, CA: Environmental Systems 
Research Institute. 

Farkas, Kata, Cameron Pellett, Natasha Alex-Sanders, Matthew TP Bridgman, Alexander 
Corbishley, Jasmine MS Grimsley, Barbara Kasprzyk-Hordern, et al. 2022. “Comparative 
Assessment of Filtration-and Precipitation-Based Methods for the Concentration of SARS-
CoV-2 and Other Viruses from Wastewater.” Microbiology Spectrum 10 (4): e01102–22. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 15, 2023. ; https://doi.org/10.1101/2023.10.14.23296666doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.14.23296666
http://creativecommons.org/licenses/by-nc-nd/4.0/


Feng, Shuchen, Adelaide Roguet, Jill S McClary-Gutierrez, Ryan J Newton, Nathan Kloczko, 
Jonathan G Meiman, and Sandra L McLellan. 2021. “Evaluation of Sampling, Analysis, and 
Normalization Methods for SARS-CoV-2 Concentrations in Wastewater to Assess COVID-19 
Burdens in Wisconsin Communities.” Acs Es&T Water 1 (8): 1955–65. 

Hamza, Hazem, Neveen Magdy Rizk, Mahmoud Afw Gad, and Ibrahim Ahmed Hamza. 2019. 
“Pepper Mild Mottle Virus in Wastewater in Egypt: A Potential Indicator of Wastewater 
Pollution and the Efficiency of the Treatment Process.” Archives of Virology 164 (11): 2707–
13. 

Hasan, Shadi W, Yazan Ibrahim, Marianne Daou, Hussein Kannout, Nila Jan, Alvaro Lopes, 
Habiba Alsafar, and Ahmed F Yousef. 2021. “Detection and Quantification of SARS-CoV-2 
RNA in Wastewater and Treated Effluents: Surveillance of COVID-19 Epidemic in the 
United Arab Emirates.” Science of The Total Environment 764: 142929. 

Hellmér, Maria, Nicklas Paxéus, Lars Magnius, Lucica Enache, Birgitta Arnholm, Annette 
Johansson, Tomas Bergström, and Heléne Norder. 2014. “Detection of Pathogenic Viruses 
in Sewage Provided Early Warnings of Hepatitis a Virus and Norovirus Outbreaks.” Applied 
and Environmental Microbiology 80 (21): 6771–81. 

Khan, Kamruzzaman, Scott W Tighe, and Appala Raju Badireddy. 2021. “Factors Influencing 
Recovery of SARS-CoV-2 RNA in Raw Sewage and Wastewater Sludge Using Polyethylene 
Glycol–Based Concentration Method.” Journal of Biomolecular Techniques: JBT 32 (3): 172. 

Kitajima, Masaaki, Brandon C Iker, Ian L Pepper, and Charles P Gerba. 2014. “Relative 
Abundance and Treatment Reduction of Viruses During Wastewater Treatment 
Processes—Identification of Potential Viral Indicators.” Science of the Total Environment 
488: 290–96. 

Kitajima, Masaaki, Hannah P Sassi, and Jason R Torrey. 2018. “Pepper Mild Mottle Virus as a 
Water Quality Indicator.” NPJ Clean Water 1 (1): 1–9. 

Lauer, Stephen A, Kyra H Grantz, Qifang Bi, Forrest K Jones, Qulu Zheng, Hannah R 
Meredith, Andrew S Azman, Nicholas G Reich, and Justin Lessler. 2020. “The Incubation 
Period of Coronavirus Disease 2019 (COVID-19) from Publicly Reported Confirmed Cases: 
Estimation and Application.” Annals of Internal Medicine 172 (9): 577–82. 

Li, Ruiyun, Sen Pei, Bin Chen, Yimeng Song, Tao Zhang, Wan Yang, and Jeffrey Shaman. 
2020. “Substantial Undocumented Infection Facilitates the Rapid Dissemination of Novel 
Coronavirus (SARS-CoV-2).” Science 368 (6490): 489–93. 

Maal-Bared, Rasha, Yuanyuan Qiu, Qiaozhi Li, Tiejun Gao, Steve E Hrudey, Sudha 
Bhavanam, Norma J Ruecker, Erik Ellehoj, Bonita E Lee, and Xiaoli Pang. 2023. “Does 
Normalization of SARS-CoV-2 Concentrations by Pepper Mild Mottle Virus Improve 
Correlations and Lead Time Between Wastewater Surveillance and Clinical Data in Alberta 
(Canada): Comparing Twelve SARS-CoV-2 Normalization Approaches.” Science of The Total 
Environment 856: 158964. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 15, 2023. ; https://doi.org/10.1101/2023.10.14.23296666doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.14.23296666
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manor, Y, R Handsher, T Halmut, M Neuman, A Bobrov, H Rudich, A Vonsover, L Shulman, O 
Kew, and E Mendelson. 1999. “Detection of Poliovirus Circulation by Environmental 
Surveillance in the Absence of Clinical Cases in Israel and the Palestinian Authority.” 
Journal of Clinical Microbiology 37 (6): 1670–75. 

Melvin, Richard G, Emily N Hendrickson, Nabiha Chaudhry, Onimitein Georgewill, Rebecca 
Freese, Timothy W Schacker, and Glenn E Simmons Jr. 2021. “A Novel Wastewater-Based 
Epidemiology Indexing Method Predicts SARS-CoV-2 Disease Prevalence Across Treatment 
Facilities in Metropolitan and Regional Populations.” Scientific Reports 11 (1): 21368. 

Nishiura, Hiroshi, Tetsuro Kobayashi, Takeshi Miyama, Ayako Suzuki, Sung-mok Jung, 
Katsuma Hayashi, Ryo Kinoshita, et al. 2020. “Estimation of the Asymptomatic Ratio of 
Novel Coronavirus Infections (COVID-19).” International Journal of Infectious Diseases 94: 
154–55. 

Oran, Daniel P, and Eric J Topol. 2020. “Prevalence of Asymptomatic SARS-CoV-2 Infection: 
A Narrative Review.” Annals of Internal Medicine 173 (5): 362–67. 

Parasa, Sravanthi, Madhav Desai, Viveksandeep Thoguluva Chandrasekar, Harsh K Patel, 
Kevin F Kennedy, Thomas Roesch, Marco Spadaccini, et al. 2020. “Prevalence of 
Gastrointestinal Symptoms and Fecal Viral Shedding in Patients with Coronavirus Disease 
2019: A Systematic Review and Meta-Analysis.” JAMA Network Open 3 (6): e2011335–35. 

Peccia, Jordan, Alessandro Zulli, Doug E Brackney, Nathan D Grubaugh, Edward H Kaplan, 
Arnau Casanovas-Massana, Albert I Ko, et al. 2020. “Measurement of SARS-CoV-2 RNA in 
Wastewater Tracks Community Infection Dynamics.” Nature Biotechnology 38 (10): 1164–
67. 

Post, Lori Ann, Tariq Ziad Issa, Michael J Boctor, Charles B Moss, Robert L Murphy, Michael 
G Ison, Chad J Achenbach, et al. 2020. “Dynamic Public Health Surveillance to Track and 
Mitigate the US COVID-19 Epidemic: Longitudinal Trend Analysis Study.” Journal of Medical 
Internet Research 22 (12): e24286. 

R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, 
Austria: R Foundation for Statistical Computing. https://www.R-project.org/. 

Randazzo, Walter, Pilar Truchado, Enric Cuevas-Ferrando, Pedro Simón, Ana Allende, and 
Gloria Sánchez. 2020. “SARS-CoV-2 RNA in Wastewater Anticipated COVID-19 Occurrence 
in a Low Prevalence Area.” Water Research 181: 115942. 

Rosario, Karyna, Erin M Symonds, Christopher Sinigalliano, Jill Stewart, and Mya Breitbart. 
2009. “Pepper Mild Mottle Virus as an Indicator of Fecal Pollution.” Applied and 
Environmental Microbiology 75 (22): 7261–67. 

Weidhaas, Jennifer, Zachary T Aanderud, D Keith Roper, James VanDerslice, Erica Brown 
Gaddis, Jeff Ostermiller, Ken Hoffman, et al. 2021. “Correlation of SARS-CoV-2 RNA in 
Wastewater with COVID-19 Disease Burden in Sewersheds.” Science of The Total 
Environment 775: 145790. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 15, 2023. ; https://doi.org/10.1101/2023.10.14.23296666doi: medRxiv preprint 

https://www.r-project.org/
https://doi.org/10.1101/2023.10.14.23296666
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wong, Martin CS, Junjie Huang, Christopher Lai, Rita Ng, Francis KL Chan, and Paul KS Chan. 
2020. “Detection of SARS-CoV-2 RNA in Fecal Specimens of Patients with Confirmed 
COVID-19: A Meta-Analysis.” Journal of Infection 81 (2): e31–38. 

Ye, Yinyin, Robert M Ellenberg, Katherine E Graham, and Krista R Wigginton. 2016. 
“Survivability, Partitioning, and Recovery of Enveloped Viruses in Untreated Municipal 
Wastewater.” Environmental Science & Technology 50 (10): 5077–85. 

Zhan, Qingyu, Kristina M Babler, Mark E Sharkey, Ayaaz Amirali, Cynthia C Beaver, Melinda 
M Boone, Samuel Comerford, et al. 2022. “Relationships Between SARS-CoV-2 in 
Wastewater and COVID-19 Clinical Cases and Hospitalizations, with and Without 
Normalization Against Indicators of Human Waste.” ACS ES&T Water. 

Zhang, Tao, Mya Breitbart, Wah Heng Lee, Jin-Quan Run, Chia Lin Wei, Shirlena Wee Ling 
Soh, Martin L Hibberd, Edison T Liu, Forest Rohwer, and Yijun Ruan. 2006. “RNA Viral 
Community in Human Feces: Prevalence of Plant Pathogenic Viruses.” PLoS Biology 4 (1): 
e3. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 15, 2023. ; https://doi.org/10.1101/2023.10.14.23296666doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.14.23296666
http://creativecommons.org/licenses/by-nc-nd/4.0/

	1 Introduction
	2 Description of Surveillance Data
	3 Analysis of surveillance data
	Viral load quantification
	Statistical Methods
	Use of SARS-CoV-2 Concentrations
	3.2.2 Use of Vaccination Rate


	4 Storage and Time-to-Analysis Stability Study Findings
	5 Conclusions
	Acknowledgements
	Reference

