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Abstract  
Hippocampal Sclerosis (HS) can elude visual detection on MRI scans of patients with temporal 

lobe epilepsy (TLE), causing delays in surgical treatment and reducing the likelihood of 

postsurgical seizure-freedom. We developed an open-source software that (1) detects HS from 

structural MRI scans, (2) generalises across a heterogeneous multicentre cohort of children and 

adults, and (3) generates individualised predictions for clinical evaluation. 

We included a cohort of 363 participants (152 patients with HS, 90 disease controls with focal 

cortical dysplasia, and 121 healthy controls) from four epilepsy centres in the UK, North 

America, and China. We used the open-source software HippUnfold to extract morphological 
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surface-based features and volumes of the hippocampus from T1w MRI scans. We compared 

pathological hippocampal morphology in patients with HS to normative growth charts generated 

from healthy controls, and to the contralateral hippocampi in patients with HS. HS was 

characterised by decreased volume, thickness and gyrification as well as increased mean and 

intrinsic curvature. A logistic regression classifier trained on these features detected 90.1% of HS 

patients, and accurately lateralised 97.4% of the HS cohort. Crucially, in patients with MRI-

negative histopathologically confirmed HS, the classifier detected HS in 79.2% (19/24) and 

accurately lateralised the lesions in 91.7% (22/24). The Automated and Interpretable Detection 

of Hippocampal Sclerosis classifier (AID-HS) was packaged into an open-source pipeline, which 

detects and lateralises HS and generates individualised patient reports that characterise 

hippocampal developmental abnormalities. 

AID-HS is capable of accurately detecting and lateralising HS in a large, heterogeneous, multi-

centre, cohort of paediatric and adult patients with diagnostically challenging HS.  Moreover, by 

offering transparent, robust and interpretable results, AID-HS can support the presurgical 

evaluation of patients with suspected TLE.  

Keywords: epilepsy; hippocampal sclerosis; machine learning; structural MRI 

Abbreviations: AID-HS = Automated and Interpretable Detection of Hippocampal Sclerosis; 

FLAIR = fluid-attenuated inversion recovery; HS = hippocampal sclerosis; ICV = intracranial 

volumes; TLE = temporal lobe epilepsy 

Introduction  
Hippocampal sclerosis (HS) is the leading cause of refractory focal epilepsy in adults, and the 

third most common cause in children1,2. It is amenable to surgical resection, with seizure 

freedom reported in 76% of individuals at one year after surgery and 70% after five years3. HS is 

typically diagnosed using structural MRI and is characterised by atrophy (i.e., volume reduction) 

of the affected hippocampus on T1-weighted MRI scans, alongside hippocampal T2/FLAIR 

hyperintensity4,5. Additionally, there is evidence of shape abnormalities in the affected 

hippocampus, such as increased curvature of the tail6 and a reduction in hippocampal 

dentations7.  
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Despite its characteristic features, MRI abnormalities can be subtle, and HS is reported to 

represent approximately 10% of focal epilepsy cases that escape detection during routine visual 

inspection of MRI scans8,9. Critically, individuals with an “MRI-negative” scan have 

significantly lower rates of postsurgical seizure freedom (45%) compared to those with identified 

lesions (72%-81%)10. Attempts to localise MRI abnormalities in these patients often involve 

additional investigations, such as Positron Emission Tomography (PET) imaging or invasive 

intracranial EEG. Alongside inducing delays to surgical resection, these procedures place an 

additional burden on patients and families11,12. Developing imaging software that can help to 

detect and characterise subtle cases of HS on presurgical MRI scans has the potential to 

streamline the surgical treatment pathway for these patients and improve their postsurgical 

outcomes.  

Machine-learning technology is increasingly used to improve the detection of epilepsy-

associated abnormalities on MRI, including HS13. Past studies have trained models on 

volumetric- or surface-based features of the hippocampus and the adjacent temporal neocortex to 

both distinguish patients with HS from healthy controls (i.e., detection) and lateralise the side of 

HS-associated abnormalities (i.e., lateralisation)14–18. However, these models have often been 

trained on small, single-centre datasets14–16 and are therefore unlikely to generalise well to other 

centres with different patient cohorts, MRI hardware and scanning protocols. Moreover, models 

trained on larger multi-centre datasets have been comprised of exclusively adult patients17,18, 

thus limiting their applicability in paediatric patients. Finally, and perhaps most importantly, the 

models published to date have lacked open-source code, and can therefore not be independently 

validated by other centres nor used for clinical evaluation. 

The development of automated tools that can effectively accommodate for both adult and 

paediatric patients is challenging, primarily due to the ongoing maturation of the hippocampus 

during childhood – notably its increase in volume, infolding, asymmetries, and myelination19–21. 

Possible solutions to this challenge may involve measuring asymmetries within individuals, as 

this has shown to effectively correct for the effects of age and sex22,23. Another solution may 

involve the use of normative charts24. Normative charts for the hippocampus have previously 

been used to characterise typical and pathological morphological changes that occur with 
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ageing25 and to detect pathological changes in Alzheimer’s disease26. Its use remains unexplored 

in HS, where it could help characterise hippocampal abnormalities across development.   

We aimed to bridge the current gap by creating an open-source software for Automated and 

Interpretable Detection of Hippocampal Sclerosis in patients with epilepsy (AID-HS). This 

software leveraged a large, heterogenous cohort of adult and paediatric patients from four 

epilepsy centres across the UK, North America, and China to increase its applicability across 

diverse patients and clinical settings. To ensure interpretability of the results, we extracted 

comprehensive surface- and volumetric-based MRI features of the hippocampus using the open-

source tool HippUnfold. We used these features to characterise HS abnormalities, through the 

analysis of normative trajectories and assessment of asymmetries, and to automate the detection 

and lateralisation of HS with machine-learning. Finally, AID-HS is shared as a user-friendly 

open-source software that automatically generates individualised and interpretable reports, to 

facilitate its clinical evaluation. 

Materials and methods  

Cohorts and MRI processing  

Inclusion and exclusion criteria 

Following local Institutional Review Board approval, data were retrospectively collected and 

anonymised from four epilepsy centres: Great Ormond Street Hospital (GOSH), UK; the 

National Hospital for Neurology and Neurosurgery (NHNN), UK; Beijing Tiantan Hospital 

(BTH), China; and Cleveland Clinic (CC), USA; prior to sharing with University College 

London. Patients were included if they had histopathologically confirmed HS. “MRI-negative” 

patients were lateralised following additional investigations, such as PET, single-photon 

emission computerized tomography (SPECT), video-telemetry or intracranial EEG. A cohort of 

patients with focal cortical dysplasia (FCD) were included as disease controls, alongside a 

healthy control cohort who had been scanned for research purposes. Patients and controls were 

included if they had a preoperative 3D T1w MRI scan acquired at 3T (Figure 1A) and were more 

than three years old at the time of MRI acquisition.  
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Segmentation of the hippocampus 

MRI data were manually quality controlled. Patients with large imaging artefacts (e.g., motion 

artefacts impairing the visibility of the anatomical structures) on their preoperative T1w MRI 

scan were excluded from further analysis. 

T1w scans (Figure 1A) were used as input in the open-source software HippUnfold27 (Figure 

1B). HippUnfold uses a U-Net neural network architecture to segment the hippocampal cortex, 

and applies Laplacian-based unfolding to fit hippocampal inner and outer hippocampal surface-

meshes to the T1w images. Vertices in the meshes are assigned to the CA1-CA4 subfields, the 

subiculum, and the dentate gyrus (DG) using the BigBrain histological atlas28 in the unfolded 

space. HippUnfold also provides an automated quality check on the segmentation by examining 

dice overlap between the segmentation and a standard template. Following HippUnfold 

guidelines27, segmentations with a dice overlap score below 0.7 underwent visual inspection, and 

subjects with gross segmentation or surface errors were excluded.   

Hippocampal volumes were also calculated using the open-source software FastSurfer29, a deep-

learning accelerated version of FreeSurfer30, which uses a Convolutional Neural Network (CNN) 

architecture to segment cortical and subcortical structures including the hippocampus. 
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Figure 1: AID-HS overview. The T1w scan (A) is used as input in HippUnfold, which 

generates hippocampal segmentations and mesh surfaces that can be visualised flat or folded (B). 

Surface-based features undergo preprocessing to remove outliers, adjust for site-based batch 

effects, and account for inter and intra-individual differences (C). Affected hippocampal features 

are compared to i) normative developmental trajectories of hippocampal features generated from 

the healthy controls, and ii) contralateral hippocampi to characterise the asymmetries (D). 

Asymmetries are used to train a logistic regression model to predict the likelihood of an 

individual having a left HS, right HS or no HS. These scores are used to detect and lateralise HS 

(E). AID-HS outputs individualised patient reports that detail HS detection and lateralisation 

predictive scores as well as hippocampal feature asymmetries and characterisations of 

hippocampal abnormalities against normative trajectories (F). (SRLM: stratum radiatum, 

lacunosum, and moleculare) 

 

Extraction of hippocampal volume and surface-based features  

We extracted the total volume (in mm3) from the hippocampi using both HippUnfold and 

FastSurfer hippocampal segmentations. For in-depth morphological analysis, we used three 
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surface-based features – cortical thickness, gyrification, and curvature – extracted by 

HippUnfold at every vertex of the native folded hippocampal surface using Connectome 

Workbench (https://github.com/Washington-University/workbench). Cortical thickness was 

quantified as the distance between the white matter surface and the pial surface of the 

hippocampus. Curvature and gyrification measurements were obtained from a surface located at 

the mid-thickness between the inner and outer hippocampal surfaces. Mean and intrinsic (or 

Gaussian) curvatures were calculated for the outer surface of the hippocampus, and gyrification 

index was calculated as the ratio between the surface area in its native space and the unfolded 

space, which measures the degree of surface folding31,32.  Finally, we extracted the total volume 

(in mm3) from the hippocampi using both HippUnfold and FastSurfer hippocampal 

segmentations.  

Preprocessing of MRI features 

Surface-based features underwent four steps of pre-processing (Figure 1C).  

Step 1 Outlier removal: surface-based features underwent a filtering process to minimise the 

impact of isolated abnormal vertices. Vertices that fell outside five standard deviations of the 

mean distribution were replaced iteratively with the means of their neighbours. Subsequently, 

surface-based features were smoothed using a 1mm FWHM Gaussian kernel.  

Step 2 Averaging: the mean of each surface-based feature was calculated for each hippocampus 

(including CA1-C4, subiculum, and DG), excluding 1% of vertices at both extremes of the 

anterior-posterior axis due to their significant variability32. This produced single mean values per 

hippocampus for each feature.  

Step 3 Harmonisation: the averaged features were harmonised using neuroCombat33 to adjust for 

site-specific biases, without removing biological covariates (age, sex and disease status). The 

resulting features are henceforth referred to as “harmonised”.  

Step 4 Asymmetry and Normalisation: asymmetry indexes, referred to as “asymmetries”, were 

computed to quantify differences between left (lh) and right (rh) hippocampi for all harmonised 

features following Equation 1. Each subject’s asymmetries were z-scored by the mean and 
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standard deviation across healthy controls to account for typical asymmetry distributions 

following Equation 2. Output features of this process were referred to as “normalised”.   
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As hippocampal volumes from HippUnfold and FastSurfer were already extracted as averaged 

hippocampal values, only Steps 3-4 of the preprocessing were applied to them, after correcting 

them for intracranial volume (ICV) using a linear regression method34. A linear regression model 

was fit between FastSurfer-derived ICV and hippocampal volumes.  The gradient of the 

regression model (Grad) and the mean intracranial volumes (ICVmean) of the healthy controls 

were used to compute the ICV-corrected hippocampal volumes (Volumehippo) for each participant 

(Equation 3).  

����������� ���������	 
  ���������	 � �������� � �����
�  (3) 

In the following methods and results “volume” will refer to the hippocampal volume derived 

from HippUnfold, if not otherwise specified.  

  

Healthy hippocampal anatomy 

Evaluating HippUnfold in paediatric and adult data acquired at 3 Tesla 

To evaluate the applicability of using HippUnfold to analyse paediatric and adult data acquired at 

3T, we conducted a comparison between the surface-based features obtained in our cohort of 

healthy paediatric controls and adults and those previously computed from a cohort of young 

adults acquired at 7T from the Human Connectome Project (HCP) dataset, as detailed in 

DeKraker et al.27. To assess the vertex-level similarities between the two cohorts, Pearson’s 

correlation test was conducted, and correlations were corrected for multiple comparisons using 

the Holm method with a level of significance set at alpha=0.05.  
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Analysis of effect of age, sex and hemisphere on hippocampal features in 

controls 

We used a linear regression model to quantify the effect of age, sex and hemisphere on the 

harmonised features in healthy controls (Table 1). 

Hippocampal anatomy in HS 

Comparison of features in HS relative to normative growth charts 

Normative growth curves for the healthy control harmonised features were generated using 

Generalized Additive Models (GAMs) accounting for age and sex. Estimates were visualised at 

the 5th, 50th and 95th percentiles of the healthy population. Additionally, percentile scores were 

calculated for the ipsilateral and contralateral hippocampi of each individual in the HS group, as 

well as for both hippocampi in the disease control group, and compared to the normative growth 

trajectories (Figure 1D). 

Statistical analysis of hippocampal asymmetry 

The distribution of the normalised asymmetries in the ipsilateral hippocampi of patients was 

compared with hippocampi from both disease controls and healthy controls, where the 

hemisphere in controls was randomly selected. Independent Welch t-tests (for normally 

distributed features) and Mann-Whitney tests (for non-normally distributed features) were 

conducted to compare the median normalised asymmetries among these three groups. P-values 

were corrected for multiple comparisons using the Holm method with a level of significance set 

at alpha=0.05. 

A logistic regression was applied to each normalised asymmetries to find the threshold that best 

distinguish patients with right/left HS from healthy and disease controls. These abnormality 

thresholds were further used as benchmark for determining when normalised asymmetry is 

considered abnormal. 

Automated detection and lateralisation of HS 

Classifier training and leave-one-site-out cross-validation 
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Features with significantly different normalised asymmetries in patients compared to controls 

were used to train a logistic regression classifier to detect and lateralise the side of the 

abnormality. The classifier was set up with a multinomial loss, the lbfgs solver, and balanced 

weights to account for multiclass and unbalanced labels. The classifier was trained to classify 

subjects into one of three classes – left HS, right HS, or no HS – and generated a score for each 

of these classes [SLHS, SRHS, SnoHS], which sum to 1. These scores were then used to assess the 

performances of the classifier at detecting (Equation 4) and lateralising the abnormalities 

(Equation 5). The classifier was evaluated using leave-one-site-out cross-validation, where a 

classifier was trained on the three sites withholding the final site for testing.  

�������� ���	
 
 ����, ���  arg max��
	���, � max������, �������           (4) 

����������������	
 
 �Left HS, Right HS�  arg max�����, �����              (5) 

Classifier evaluation 

Classifier performance was evaluated on two tasks: 1) detection – its ability to accurately 

distinguish patients with HS from healthy and disease controls 2) lateralisation – its ability to 

accurately lateralise the side of the abnormality in patients with HS (Figure 1E).  

Additionally, classifier performance was stratified by age (children, adults), sex, histopathology 

(HS type-1, HS type-2, HS type-3, HS non-specified) and MRI status (MRI-negative, MRI-

positive), and site in patients. Classifier performance was also compared between healthy and 

disease controls. These factors were tested as potential predictors of classifier accuracy using 

multivariable logistic regression models. Regression coefficients for each factor (β) and their 

significance (p-values) were reported alongside the performance breakdowns in Table 2.  

Classifier comparison 

Two further logistic regression classifiers with the same parametrisation were trained on 

hippocampal volumes extracted with FastSurfer. One classifier was trained on the volumes 

corrected for ICV, while the other was trained on the same volumes after applying Steps 3-4 of 

the pre-processing. This comparison allowed evaluation of the AID-HS classifier against a 

volumetric baseline, both with and without pre-processing techniques. Classifiers’ performances 

were compared in terms of accuracy at detecting and lateralising HS. 
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Individual, interpretable hippocampal report  

To provide an individualised and interpretable characterisation of hippocampal abnormalities, 

AID-HS generates individual reports for each subject (Figure 1F). The reports display 

HippUnfold segmentations and surface reconstructions, alongside automated quality control 

scores to highlight subjects in which the segmentation might have failed. Left and right 

hippocampal features are mapped against normative growth charts. Feature asymmetries are 

displayed to indicate the magnitude and direction of asymmetries, and compared to abnormality 

thresholds. Finally, the report includes the detection and lateralisation scores from the AID-HS 

classifier. The AID-HS reports have been co-designed with the neuroradiologists at GOSH to 

ensure they meet the clinical needs of providing transparent and comprehensive information that 

can aid in the diagnostic of patients with suspected HS. 

Data availability  

All data analysis in this study was conducted using Python. The AID-HS software is openly 

available to download on GitHub (https://github.com/mathrip/AID-HS). 

Results 

Cohort 

371 subjects were initially included in the study: 158 patients with HS, 91 disease controls with 

FCD, and 122 healthy controls. After quality control, one (0.3%) participant was excluded due to 

motion artefacts on their T1w scan, and seven (1.9%) participants failed the quality check on the 

HippUnfold segmentation.  

The study’s final cohort consisted of 363 patients: 152 HS patients, 90 disease controls, and 121 

healthy controls. The cohort included 200 adults (≥18 years old) and 163 children (<18 years 

old), with a median age of 27.0 years (IQR = 18.2-38.0) for patients, 14.3 years (IQR = 7.2-23.0) 

for disease controls, and 15.2 years (IQR = 11.9-24.0) for healthy controls (Table 1). The 

distribution of males and females was homogeneous in patients and disease controls (Table 1), 

while approximately two-thirds of the healthy controls were females (Chi-square (5, N=363) = 

12.3, p = 0.03). In HS patients, the median age of epilepsy onset was 9.0 years old, and 15.7% of 
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patients were categorised as MRI-negative. Among HS patients, the breakdown of 

histopathology diagnoses was 60 HS type-1, 29 HS type-2, 7 HS type-3 and 56 patients with 

non-specified HS.  

Table 1: Demographic and clinical information for the cohort. (GOSH: Great Ormond Street 

Hospital, BTH: Beijing Tiantan Hospital, CC: Cleveland Clinic, NHNN: National Hospital for 

Neurology and Neurosurgery, IQR: interquartile range). 

 

Healthy hippocampal anatomy 

The surface-based thickness, gyrification and curvature features of the healthy controls exhibited 

a similar pattern to those obtained from the HCP cohort of young adults acquired at 7T (all 

 

 GOSH BTH CC NHNN combined 

 HS patients 

Participants (n) 22 72 13 45 152 

Age at scans, years 

(median [IQR]) 

12.6 

[6.4-16.8] 

25.5 

[19.0-30.0] 

37.1 

[21.5-59.3] 

41.0 

[31.0-46.0] 

27.0 

[18.2-38.0] 

Sex (m:f) 13:9 41:31 6:7 17:28 77:75 

Age of seizure onset, 

years (median [IQR]) 

2.5 

[1.0-6.0] 

11.0 

[5.8-15.3] 

11.0 

[9.0-29.0] 

11.0 

[3.0-17.0] 

9.0 

[3.5-16.0] 

MRI-negative (n, %) 4/20 (20.0%) 19/72 (26.4%) 1/13 (7.7%) 0/45 (0.0%) 24/152 (15.7%) 

 Disease controls 

Participants (n) 27 33 30 - 90 

Age at scans, years 

(median [IQR]) 

7.2 

[5.8-11.1] 

15.0 

[9.0-23.0] 

22.8 

[15.9-37.3] 
- 

14.3 

[7.2-23.0] 

Sex (m:f) 12:15 19:14 15:15 - 46:44 

 Healthy controls 

Participants (n) 91 - - 30 121 

Age at scans, years 

(median [IQR]) 

13.5 

[10.0-16.5] 
- - 

37.0 

[25.2-48.5] 

15.2 

[11.9-24.0] 

Sex (m:f) 26:65 - - 12:18 38:83 
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R>0.89, all p-values < 0.001, Figure 2A), demonstrating the consistency of HippUnfold 

performance on 3T MRI. Developmental trajectories of harmonised features in healthy males 

and females are displayed in Figure 2B. Except for curvature, all features exhibited significant 

associations with age (all p-values < 0.05). Additionally, thickness and mean curvature were 

significantly different between males and females, and gyrification and intrinsic curvature were 

significantly different between the left and right hemispheres (all p-values <0.05) (Figure 2C). 

The linear regression gradient between the hippocampal volume and the ICV in healthy controls 

was 2e-4 (Figure 2D). Therefore, hippocampal volumes of each participant were corrected for 

ICV using Equation 3 with the parameters (Grad=2e-4, ICVmean=1.3e6mm3). Similarly, 

hippocampal volumes extracted from FastSurfer were corrected for ICV using the parameters 

(Grad=3e-4, ICVmean=1.3e6 mm3).  
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Figure 2: Healthy hippocampal anatomy. (A) Folded and flat maps of HippUnfold- derived 

surface-based thickness, curvature and gyrification in our study’s healthy controls. Correlation of 

surface-based features extracted from our study’s healthy controls compared to the HCP cohort. 

(B) Normative growth charts of harmonised features in healthy male and female hippocampi for 

the 5th, 50th and 95th percentiles of the population. (C) Coefficients from the linear regression 

model testing the effect of hemisphere, sex and age on the harmonised features and coloured by 

their significance (p-values). (D) Correlation between hippocampal volume (HippUnfold 

derived) and intracranial volume in healthy controls. 
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Hippocampal anatomy in HS 

Hippocampal volume and morphological features derived from ipsilateral hippocampi in HS 

patients deviated from normative curves in controls (Figure 3A). The hippocampal volume, 

thickness and gyrification of pathological hippocampi fell below the 5th percentile range of the 

healthy population for 90.1%, 63.2% and 88.2% of the HS patients, respectively. Additionally, 

curvature and intrinsic curvature values exceeded the 95th percentile in 67.1% and 70.4% of 

patients, respectively.  Overall, in over 60% of patients with HS, all features derived from the 

pathological hippocampus fell outside the 5th or 95th percentile of the healthy population. In 

contrast, the distribution of contralateral hippocampi in HS and hippocampi from disease 

controls aligned with the percentiles of the healthy population.  

In the analysis of asymmetries (Figure 3B), patients exhibited significantly more extreme 

asymmetry values (all p-values < 0.001) between their hippocampi in all features compared to 

both healthy and disease controls. Ipsilateral hippocampi had reduced volume, thickness and 

gyrification, and increased curvature and intrinsic curvature in comparison to contralateral 

hippocampi. No significant differences in asymmetry features were observed between the 

healthy control and disease control groups.  
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Figure 3: Characterisation of morphological abnormalities in HS. (A) Distribution of 

harmonised features in the ipsilateral hippocampi of HS patients (purple), contralateral 

hippocampi of HS patients (orange), and hippocampi of disease controls (green) plotted against 

normative trajectories derived from the 5th and 95th percentiles of the healthy male (blue dashed 

line) and female (red dashed line) controls' hippocampi. Histograms of the percentage of each 

group falling within each centile of normative curves are reported on the right axis. Features 

from ipsilateral HS consistently fell outside of the 5th/95th centiles for all features. (B) Boxplots 
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of z-score asymmetries in ipsilateral hippocampi of HS patients compared to healthy controls 

and disease controls. Statistically significant differences in distributions between each group 

were assessed using the Welch T-test (pW) for normal distributions and the Mann-Whitney test 

(pM) for non-normal ones. 

 

Automated detection and lateralisation of HS 

The AID-HS classifier correctly identified 90.1% of HS patients and 94.3% of disease and 

healthy controls (Table 2). For HS lateralisation, the classifier accurately lateralised 97.4% of HS 

patients. In a subset of 24 MRI-negative patients, the classifier accurately detected 19 patients as 

being pathological (79.2%) and correctly lateralised 22 patients (91.7%).  

Classifier performances remained consistent across the different sites and were not significantly 

different between age groups, with accurate detection in 91.5% of adults and 85.3% of children 

(p = 0.68) and accurate lateralisation in 98.3% of adults and 94.1% of children (p = 0.94). 

Moreover, classifier performances were not significantly different between males and females or 

the HS histopathological subtypes (all p-values > 0.05). Among controls, the classifier did not 

show significant differences in detecting disease controls and healthy controls (p = 0.27).  

Overall, the AID-HS classifier trained on HippUnfold-derived features achieved 92.6% accuracy 

in detecting HS and 97.4% accuracy in lateralising HS. In comparison, classifiers trained solely 

on volumes extracted from FastSurfer achieved 88.4%-90.6% accuracy in HS detection and 

95.4%-94.7% in HS lateralisation when using raw volumes and incorporating pre-processing 

techniques (Table 3). In summary, utilising HippUnfold-derived features with preprocessing 

steps, enabled accurate detection of an additional 15 HS patients and controls and accurate 

lateralisation in four more HS patients compared to utilising FastSurfer-derived features with and 

without preprocessing steps (Table 3). 
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Table 2: AID-HS classifier performance for the detection and lateralisation of HS. A 

breakdown of the performance is provided according to age, sex, MRI status, histopathology, 

and site. Multivariate logistic regression models were used to assess the impact of each factor (β 

coefficients) and the significance (p-values) on classifier performances at HS detection and 

lateralisation. 

  
N 

subjects 

Detection 

(%) 

Impact of factor 

on detection 

(β ; p-value) 

Lateralisation 

(%) 

Impact of factor

on lateralisation

(β ;  p-value) 

Controls  211 94.3% - - - 

group 

Healthy controls 121 95.9% ref - - 

Disease controls 90 92.2% β=-0.67 ; p=0.27 - - 

HS patients  152 90.1% - 97.4% - 

Age 

adult 118 91.5% ref 98.3% ref 

pediatric 32 85.3% β=-0.36 ; p=0.68 94.1% β=-0.11; p=0.94 

Sex 

male 77 90.9% ref 97.4% ref 

female 75 89.3% β=-0.03 ; p=0.97 97.3% β=0.16 ; p=0.89 

MRI status 

positive 128 92.2% ref 98.4% ref 

negative 24 79.2% β=-1.59 ; p=0.07 91.7% β=-1.37 ; p=0.28

Histopathology 

HS type1 60 91.7% ref 100% ref 

HS type 2 29 93.1% β=-0.13 ; p=0.90 89.7% β=-30.4 ; p=1.0 

HS type 3 7 57.1% β=-1.52; p=0.14 85.7 % β=--29.4; p=1.0 

non spec 56 91.1% β=25.1; p=1.0 100% β=-1.6 ; p=1.0 

Site 

BTH 72 93.1% ref 95.8% ref 

GOSH 22 81.8% β=-1.28; p=0.22 95.5% β= -1.36; p=0.50

CC 13 92.3% β=-1.60; p=0.21 100% β=22.5 ; p=1.00 

NHNN 45 88.9% β=-26.5; p=1.00 100% β= -6.23 ; p=1.00
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Table 3: Comparison of detection and lateralisation performances across models. The best 

model is highlighted in bold. 

 

 

Individual hippocampal reports 

In each patient, we used hippocampal feature values compared to normative growth charts, 

hippocampal feature asymmetry scores and results from the AID-HS classifier to create 

individual patient reports. Figure 4 illustrates two example reports for patients who were initially 

reported as MRI-negative but who were later confirmed as right (Example 1) and left (Example 

2) HS through histopathological analysis. HS lateralisation in these patients was performed 

through intracranial EEG prior to surgery. Our reports provide a comprehensive and transparent 

assessment of the segmentation quality, the hippocampal morphology, and the HS detection and 

lateralisation scores.  

In Example 1, automated quality control scores of 0.81 (dice overlap with template 

hippocampus) for both left and right hippocampi, indicated good quality hippocampal 

segmentations (Panel A). Compared with the normative growth charts (Panel B), the left 

hippocampus features fell within the normal range of the healthy population, while the right 

hippocampus had features that fell outside the 5th and 95th percentiles. In the asymmetry analysis 

(Panel C), abnormalities were lateralised to the right hippocampus, which had significant 

reductions in volume, thickness and gyrification, alongside increased curvature and intrinsic 

curvature. These findings were further supported by the automated classifier results (Panel D), 

which indicated right hippocampal sclerosis with a predicted probability of 99.1%.  

Models 

Controls and HS patients 

accurately detected (n,%) 

N=363 

HS patients accurately 

lateralised (n,%) 

N=152 

FastSurfer volumes 321 (88.4%) 145 (95.4%) 

FastSurfer volumes + preprocessing 329 (90.6%) 144 (94.7%) 

HippUnfold features + preprocessing (AID-HS) 336 (92.6%) 148 (97.4%) 
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In Example 2, both hippocampi had features within the 5th and 95th percentiles of the normal 

population. The analysis of the asymmetries demonstrated mixed results, with decreased volume, 

thickness and gyrification of the left hippocampus consistent with left HS, but increased mean 

and intrinsic curvature in right hippocampus, consistent with right HS. The AID-HS classifier 

classified this patient as having no overall asymmetry (predicted probability of 54.5%), but a 

higher probability for left HS (45.4%) compared to right HS (0.1%). This report is an example of 

a more complex patient, with normal hippocampi for the age and head size, and classified as 

having non-lateralising asymmetries. Nevertheless, the in-depth characterisation showed subtle 

atrophic, thickness and gyrification asymmetries that were consistent with left HS, which was 

supported by the higher lateralisation score for left HS. This illustrates how the interpretable 

reports could help inform clinical decision making in difficult-to-diagnose patients.  
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Figure 4: Examples of AID-HS reports for two patients with MRI-negative right HS 

(example 1) and left HS (example 2). (A) Automated hippocampal segmentation and 

reconstructed hippocampal surfaces using HippUnfold, alongside automated quality control of 

the segmentation. (B) Individual hippocampal features compared to normative trajectories (with 
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25th – 75th percentiles in dark green, 5th – 25th and 75th – 95th percentiles in light green, patient’s left 

hippocampus in blue and patients' right hippocampus in pink). (C) Asymmetry scores against left 

and right abnormality thresholds (D) Automated detection and lateralisation scores from the 

AID-HS classifier, indicating the probability that hippocampal feature asymmetries are 

consistent with left or right HS or no HS. 

 

 

Discussion  
AID-HS is an automated and interpretable pipeline for the detection and lateralisation of 

hippocampal sclerosis (HS) from T1w MRI scans. We leveraged the open-source software 

HippUnfold to extract surface-based features and volumes of the hippocampus in a large multi-

centre cohort of adults and children. We characterised the dynamic development of hippocampal 

morphology across a wide age range in healthy controls (seven to 60 years old). Our analysis of 

morphological asymmetry in HS patients revealed significant differences in the pathological 

hippocampi – characterised by reduced volume, thickness and density of gyrification alongside 

increased mean and intrinsic curvatures – compared to both healthy controls and patients with 

focal cortical dysplasia (FCD). These distinctive features were used for automated detection 

(accuracy: 90.1%) and lateralisation (accuracy: 97.4%) of HS. Notably, amongst patients with 

MRI-negative scans, AID-HS successfully detected and lateralised a significant proportion of HS 

cases (accuracies: 79.2% and 91.7%, respectively). AID-HS generates individualised reports that 

characterise hippocampal abnormalities and provide predictive scores for automated detection 

and lateralisation of HS. AID-HS is released as an open-source tool for the epilepsy community. 

We extend beyond past studies in several key respects. First, our machine-learning classifier has 

been trained on a large, multi-centre cohort of both paediatric and adult data, with a variety of 

HS pathologies (HS type-1, HS type-2, HS type-3 and non-specified HS). Previous studies have 

often been limited to a small number of subjects from a single centre14–16, and trained solely 

using adult data17,18, which might limit their ability to generalise to new, previously unseen, 

cohorts. By training and evaluating our classifier on a heterogeneous cohort, we were able to 

demonstrate consistent performances across a range of ages, histopathology subtypes, and MRI 
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scanners. In particular, by using leave-one-site-out cross-validation, we validated the ability of 

the classifier to generalise to new epilepsy centres, a fundamental requirement for widespread 

model adoption. Furthermore, previous classifiers have often relied on the use of multiple MRI 

modalities, such as combining T1w scans with Diffusion Tensor Imaging (DTI), T2 or FLAIR, 

which are not always available. The AID-HS classifier achieved state-of-the-art performance 

using features solely extracted from T1w MRI scans. By developing a classifier using 

heterogenous data from the most commonly acquired MRI protocol, we maximise the utility of 

AID-HS for epilepsy centres around the world.  

Second, AID-HS classifier’s performance exceeded that of previous HS classifiers trained on 

large multi-centre data, including on MRI-negative cases. Indeed, our classifier achieved higher 

scores at detecting and lateralising HS (90.1% and 97.4% respectively) than the classifier trained 

on the large ENIGMA cohort of MRI-positive HS (75% and 83%)17 or a previous in-house tool 

for surface-based features (lateralisation only, 93%) 18). On a subgroup of patients with MRI-

negative HS, our classifier was also able to correctly lateralise more than 90% of the 

abnormalities, compared to 84%18.  

Third, AID-HS has been shown to differentiate patients with HS from patients with FCD, the 

leading cause of lesional MRI negative epilepsy. This is a critical capability for the presurgical 

planning of patients with suspected focal epilepsy with ostensibly normal MRI scans. By 

enabling the automated detection of even the most subtle cases of HS, AID-HS has the potential 

to improve post-surgical seizure-freedom rates alongside reducing the delays, burdens and costs 

of additional invasive investigations in patients with subtle HS. 

Fourth, AID-HS was designed to create interpretable and individualised reports for clinical 

evaluation. While previous studies have presented promising methods for detecting and 

lateralising HS, none of them have offered a reusable tool specifically tailored for clinical 

evaluation. By openly sharing our code, packaging it into a user-friendly pipeline and providing 

a user-guide, we aim to support reproducibility and independent validation of our pipeline. The 

individualised reports have been tailored with the help of expert radiologists to fit clinical need. 

The main objective was to demystify the outcomes of the often-perceived “black-box” of 

machine-learning. Consequently, our reports deliver transparent and interpretable results, 
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facilitating a better understanding of individual abnormalities and offering valuable information 

to aid the diagnosis of challenging HS cases. 

Finally, this study validated for the first time the use of the open-source tool HippUnfold in 3T 

MRI scans acquired with clinical protocols. Indeed, we demonstrated the potential of 

HippUnfold to characterise both healthy development and pathological morphological changes 

throughout the lifespan. This validation of HippUnfold opens avenues for possible wider utility 

to answer other research questions, such as the characterisation of longitudinal structural change 

in HS, or to study other neurological diseases, such as developmental amnesia or Alzheimer's 

disease. 

 

Limitations and future work 

The HS cohort used in this study lacked examples of confirmed bilateral hippocampal 

abnormalities. As such we were unable to train our classifier to detect these pathologies. 

Nevertheless, bilateral abnormalities might be evident when hippocampi are compared to 

normative trajectories, and future work targeting these cases could enable the extension of these 

tools to bilateral HS classification. 

Conclusion 
Our study introduces AID-HS, an open-source software for characterising individual 

hippocampal morphological abnormalities and automating the detection and lateralisation of HS 

in patients with temporal lobe epilepsy. By utilising features extracted from commonly acquired 

T1w scans in a large and heterogenous cohort of paediatric and adult patients from multiple 

epilepsy centres, we have demonstrated generalisable performance across a variety of individuals 

and sites.  To facilitate independent evaluation of our software, we have made all the code 

available on GitHub (https://github.com/mathrip/AID-HS). 
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