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Abstract 

Cholera outbreaks remain an important public health challenge in Kenya, especially in areas with 

poor sanitation and hygiene including urban informal settlements, refugee camps and rural areas 

bordering large water bodies. Even in endemic settings, the distribution of cases exhibits spatial 

and temporal variations. Utilizing a Poisson discrete space-time scan statistic (SaTScan), this 

study investigated the temporal trends and the nature of spatial spread of cholera within selected 

high-risk areas in Kenya. The study was conducted in an urban informal settlement in Nairobi 
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(Mukuru), a refugee camp in Northern Kenya (Dadaab) and the four counties bordering Lake 

Victoria region. Retrospective cholera line list data from January 2012 to December 2022 in the 

selected high-risk areas was used. SaTScan v10.1.2 was used to carry out Spatiotemporal analysis 

and generate spatial clusters. Throughout the study period, a total of 7,372 cholera cases were 

reported, corresponding to a lower annual incidence rate of 12.2 per 100,000 people compared 

to a mean annual incidence of 25 cases per 100,000 population previously reported in Kenya. The 

highest number of cases (n=5934) were reported between 2015 and 2018 with an annual 

incidence rate of 27.0 per 100,000 people, indicating a relative risk (RR) of 7.22 and a log-

likelihood ratio (LLR) of 3015.17 (p< 0.001). The risky clusters (RR>1) were in Dadaab, Fafi, Suna 

West, Nyatike, Ugunja, Ndhiwa and Suna East sub counties with annual cases of 111.6, 164.1, 

28.4, 19.9, 19.4, 14.0 and 13.9 per 100,000, respectively. The sub-counties of Nyakach, Nyando, 

Rachuonyo East, Kisumu East and Kisumu Central were reported as low-risk clusters, with a 

relative risk of 0.055 and an annual incidence rate of 1.1 cases per 100,000 individuals. Out of the 

thirty-two sub-counties included in the study, ten of them did not report any cases of cholera 

during the study period. Cholera cases waxed every three years in the selected high-risk areas. 

This data on hotspots specific to endemic settings forms a basis for prompt public health 

response and resource allocation by prioritizing the significantly high-risk clusters to control and 

eventually eliminate the disease.  

Introduction   

Cholera caused by Vibrio cholerae (V. cholerae) has been incriminated as one of the major causes 

of mortality predominantly in areas of poor sanitation and hygiene globally. In 2015, the global 

burden of cholera was estimated at 1.3 - 4 million infections and 143,000 mortalities. The disease 

is endemic in 69 countries with 60% and 29% of the population residing in Africa and Asia 

respectively. The bacterial pathogen is spread through fecal-oral route either directly from 

person-to-person or indirectly through consumption of contaminated food or water (Sack et al., 

2003). According to World health organization (WHO), about 1 in 10 people who contract cholera 

develop severe clinical signs in 12 hours to 5 days characterized by vomiting, watery diarrhoea, 

leg cramps, restlessness, and irritability (WHO, 2017). WHO recommends intravenous or oral 

hydration as the main treatment for cholera in case of mild to moderate cases, while for severe 
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cases and in patients with underlying conditions, prompt antibiotic treatment using drugs such 

as doxycycline is recommended. In case treatment is not promptly initiated, death may occur 

within hours after onset of symptoms (Adagbada et al., 2012). 

Since the resurgence of cholera in 1970, 50% of the global cholera cases have been reported in 

Sub-Saharan Africa from 1980 to 2011 (Mengel et al., 2014). In Kenya, the disease has been 

widely reported primarily affecting the poor and vulnerable communities living in informal 

settlements in peri-urban areas and refugee camps where overcrowding, inadequate sanitation 

and water shortages are frequent (Stoltzfus et al., 2014; Hounmanou et al., 2016). A recent 

cholera hotspot mapping study done in Kenya identified urban informal settlements, large 

refugee camps, pastoral areas, arid and semiarid lands, areas bordering the lake region and 

Mwea irrigation scheme as high priority (Kiama et al., 2023)  

 

Inadequate hygiene practices, lack of clean water, insufficient toilet facilities and ineffective 

waste treatment significantly increase the risk of cholera outbreaks in informal settlements. 

Additionally, improper solid waste management aggravates the problem by causing clogged 

drainage systems and flooding, further increasing the risk of cholera outbreaks. Overcrowding is 

a major issue in refugee camps. Refugees reside in small tents and makeshift homes with limited 

access to proper sanitation and hygiene facilities. These conditions significantly increase their 

vulnerability to cholera infection (International Rescue Committee, 2017). For instance, 

Individual and communal taps are the primary water sources in the camps. However, use of 

unclean water storage containers increases the risk of infection. In addition, poor handwashing 

facilities and improper human waste disposal practices have previously been associated with a 

heightened risk of cholera outbreaks in such settings. Even though Pit latrines are used for human 

waste disposal, they are often inadequate (Luby et al., 2020).  

 

Fishing is the main economic activity for people living in the Lake region. Individuals engaged in 

subsistence fishing often migrate and settle temporarily in various regions. Limited access to 

clean water and inadequate hygiene and sanitation practices are major risk factors for cholera 

outbreaks in these temporary settlements (Mills et al., 2011; Bene & Neiland, 2003) . Increased 
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cholera outbreaks in the lake region have also been associated with consumption of lake water 

(Bwire et al., 2017; Bompangue et al., 2008). Additionally, during the rainy season, environmental 

V. cholerae attach themselves to plant surfaces, algae, and zooplankton, acting as reservoirs and 

sources of disease transmission (Khonje et al., 2012; Rebaudet et al., 2013). 

Since 1971 when the first outbreak was reported in Kenya, a number of significant cholera 

outbreaks have been reported (Kigen et al., 2020;Mutonga et al., 2013; Scrascia et al., 2009; 

Shikanga et al., 2009; Mugoya et al., 2008 ; Shapiro et al., 1999; Tauxe et al., 1995). Recent 

estimates show that up to 4.9 million people live in cholera prone areas in Kenya commonly 

known as hot spots (Kiama et al., 2023). The 2022 outbreak in Kenya was reported in 25 (53%) 

counties according to the Cholera outbreak situational reports by Kenya’s Ministry of Health 

(https://reliefweb.int/report/kenya/kenya-cholera-outbreak-operational-update-appeal-no-

mdrke054-22-july-2023). 

Globally, there have been efforts to reduce cholera mortalities by 90% and eventually eradicate 

the disease in 20 out of the 47 high burden countries by 2030 (Global Task Force on Cholera 

Control, 2017). Kenya is among the 20 countries targeted for cholera eradication. The Global Task 

Force on Cholera Control, 2017 outlines a roadmap towards cholera eradication by 2030 through 

improved Water, Sanitation and Hygiene (WASH), use of Oral Cholera Vaccines (OCVs), hastening 

disease surveillance in high-risk areas, and early detection and prompt response to outbreaks. 

Kenya’s strategy for cholera control is to deploy OCVs in addition to improved WASH facilities to 

populations living in cholera hotspots, areas that carry the highest disease burden and majorly 

contribute to disease spread. With such targeted efforts to specific areas, the interventions will 

reach communities that need them most(Golicha et al., 2018). 

Since then, significant progress has been made, as Kenya has undertaken cholera hotspot 

mapping using Water, Sanitation, and Hygiene (WASH) measures, along with other 

epidemiological indicators, as an integral component of the country's new cholera elimination 

plan for the period 2022-2030(Kiama et al., 2023). Attempts have been made to investigate 

spatio-temporal trends of cholera across the world (Domman et al., 2017).  A few countries in 

Africa including Zimbabwe and Ghana have investigated the temporal trends and the nature of 
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spatial interaction of cholera (Ngwa et al., 2016; Osei & Stein, 2018; Luque Fernandez et al., 2012). 

Furthermore, studies on spatio-temporal trend of cholera have been extensively done in 

Cameroon, Uganda, Zambia, and Tanzania to identify cholera clusters and provide valuable 

insights for implementing intervention measures (Mwaba et al., 2020; Hounmanou et al., 2019; 

Bwire et al., 2017; Ngwa et al., 2016).  

In Kenya, the cholera hotspot mapping study identified urban informal settlements, refugee 

camps, and areas bordering large water bodies as high-risk areas for cholera outbreaks. However, 

there is still insufficient data regarding the spatial and temporal clustering of the disease specific 

to high-risk sub counties (Kiama et al., 2023). This has hampered efforts to implement effective 

intervention measures for cholera prevention and control in hotspots. 

Therefore, the goal of this study was to identify spatial and space-time clusters of cholera in 

specific high-risk areas of Kenya by employing the spatial scan statistic, SaTScan. The findings 

from this study will provide the government with data that will assist targeted intervention and 

provide an early warning for more effective response measures. It will also inform public health 

intervention towards control and eventual elimination of cholera in Kenya. This will enable the 

country to meet its Sustainable Development Goal of good health and wellbeing by 2030. 

 

Methods 

Study area 

The study was conducted in three areas including i) Dadaab refugee camp, ii) Counties bordering 

Lake Victoria region (Kisumu, Siaya, Migori and Homabay) and iii) Mukuru informal settlement in 

Nairobi. The Lake Victoria region of Kenya and Mukuru informal settlements mostly receive long 

rains between March and May and short rains in October to December while Dadaab is semi-arid 

throughout the year. 

Mukuru informal settlement has a population of 242,941 people with 97,890 households with an 

average of 466 people per acre while the Lake Victoria region has a human population of 

4,397,143 (Kenya National Bureau of Statistics, 2019). Dadaab refugee camp, situated in Garissa 

County, is comprised of three camps (Dagahaley and Ifo in Dadaab sub county, and Hagadera in 

Fafi sub county). The camp has a population of approximately 240,984 people, primarily refugees 
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from Somalia (UNHCR operational portal, 2023). These areas were purposively selected because 

of their increased risk to cholera outbreaks due to overcrowding, inadequate access to clean 

water as well as poor sanitation and hygiene (Kiama et al., 2023; Mills et al., 2011; Bene & Neiland, 

2003). A map of the study area is shown in Figure 1. 

  

 

 

Data collection 

Cholera data from 2012 to 2022 was acquired from the Division of Disease Surveillance and 

Response (DDSR) at Kenya’s Ministry of Health, at a sub county level. Cholera cases were either 

clinically or laboratory confirmed with the former based on symptoms which included watery 

diarrhea occurring at least three times a day, with or without vomiting. Laboratory confirmed 

cases were identified by isolation of Vibrio cholerae O1 or O139 in the stool. Both suspected and 

confirmed cases were included in the study. Population data at sub county level was extrapolated 

from the 2019 Kenya Population and Housing Census report (Kenya national bureau of statistics, 

2019). The shape files of Kenyan Sub counties were obtained from an open data source. 

(https://geodata.ucdavis.edu/gadm/gadm4.1/shp/gadm41_KEN_shp.zip ). Given the difference 

in size of sub county polygons, sub county Centroids were obtained using R version 4.1.0. The 

obtained data on sub county centroids, number of cholera cases and population per sub county 

was securely saved as Comma Delimited (CSV) files. 

Figure 1: Map of the study areas in Kenya: Mukuru informal settlement, Counties 

bordering Lake Victoria region and Dadaab refugee camp. 
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Organization of the dataset.  

Data containing the county, sub-county, total population in each sub-county, and the centroids 

of the sub-counties in the identified high-risk areas was recorded in Microsoft Excel. This data 

saved as CSV file, was then imported into SaTScan v10.1.2 software for conducting spatio-

temporal analysis (SaTScan, 2005). The software required three specific data files to perform the 

analysis including: (1) Case file which contained data on both suspected and confirmed cholera 

cases from 2012 to 2022 (2) Population file with information on the number of people at risk in 

each sub-county obtained from the 2019 Kenya Population and Housing Census report (Kenya 

National Bureau of Statistics, 2019). (3) Coordinates file which had information about the specific 

geographical location of each sub-county. The analysis in this study was conducted at the sub-

county level, and therefore the centroids of the sub-counties were used as the coordinates for 

each sub-county.  

Data analysis 

Spatial scan statistical analysis.  

SaTScan version 10.1.2 was employed to detect and assess purely spatial, spatial variation in 

temporal trends or space-time disease clusters and test their statistical significance. SaTScan 

employed a Poisson-based model to calculate high risk clusters based on a Monte Carlo 

simulation (Block, 2007; Kulldorff, 2006).  

Purely spatial analysis  

To identify purely spatial clusters, SaTScan imposed a circular window placed over the study 

region, centered on the centroid of each sub county, and moved across the region. The size of 

the window was set at 50% of the total population at risk. Within each window, potential clusters 

were tested when the window was centered on the centroid of each sub county. When a new 

case was encountered within the window, the software calculated a likelihood function to assess 

the elevated risk within compared to areas outside the window based on a protocol by Kulldorff, 

2006. 
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The likelihood function was maximized over all windows with an aim of identifying the window 

that formed the most probable cluster and was least likely to have occurred by chance. The 

likelihood ratio for the window was recorded as the Maximum Likelihood Ratio (MLR) test 

statistic. MLR identified the most likely clusters with a higher number of observed than expected 

cases. Distribution of the MLR under the null hypothesis as well as its corresponding P value were 

determined by employing a Monte Carlo simulation approach (Block, 2007). 

The space–time scan statistic 

SaTScan used a cylindrical window with a circular geographic base to detect space-time clusters. 

This window was imposed by centering it around one of several possible centroids located 

throughout the study region. The radius of the window was continuously adjusted in size, 

including both the geographical area and the time interval. The window was systematically 

moved across space and time, exploring every possible geographic location and size, as well as 

considering each potential time interval. This process ensured that all combinations of space and 

time were examined to detect clusters (Kulldorff et al., 1998). In order to determine the 

significance of the space-time clusters detected, a likelihood ratio test statistic was constructed 

in a similar manner as for the purely spatial scan statistic. It compared the observed number of 

cases within the window to the expected number of cases under the null hypothesis, using a 

likelihood ratio approach (Kulldorff, 2001).  

In this study, a spatial window with a maximum radius of 50% of the population at risk and a 

maximum temporal window of 50% of the study period was employed. This approach allowed 

for the detection of both purely spatial clusters and clusters that exhibited spatial and temporal 

patterns. Additionally, the study conducted scans for the most likely clusters of various time 

lengths. These scans utilized a circular spatial window with a radius equivalent to 50% of the 

population at risk, along with a maximum temporal window of 90%. This approach allowed for 

the identification of clusters exhibiting purely spatial patterns, purely temporal patterns, as well 

as combined spatial and temporal patterns. The analysis assumed that the risk ratio of cholera 

was consistent both within and outside the identified window. Multiple circular windows of 

varying sizes, representing potential clusters, were generated for analysis. The analysis was 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2023. ; https://doi.org/10.1101/2023.10.13.23296989doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.13.23296989
http://creativecommons.org/licenses/by/4.0/


conducted using a Poisson based model, and the significance level was determined with a 

threshold of P < 0.05, indicating statistical significance. 

 

Spatial variation in temporal trends scan statistic.  

The scanning window was purely spatial in nature in this statistic. Analysis of the temporal trend 

of cholera cases was computed both inside and outside the scanning window for each sub county 

based on a null hypothesis that the trend is similar within and outside the window. A likelihood 

ratio was calculated based on this hypothesis with an annual increase or decrease in risk. The 

cluster for which within the window temporal trend was least likely to be the same as outside 

the window temporal trend was considered the most apparent cluster. A negative number 

characterized a decreasing trend in risk while an increasing trend was linked to a positive number 

in the output. 

Results 

Descriptive spatio-temporal analysis 

A total of 7372 cholera cases were reported from 2012–2022 in Dadaab refugee camp, Mukuru 

informal settlement and the four counties bordering Lake Victoria region, affecting 22 (69%) of 

the 32 sub-counties in the study area. The largest number of cases affecting 21 sub counties 

(n=2784) were reported in 2015 while the lowest were in 2020 (n=7) whereby only 1 sub county 

was affected (Figure 2). The 22 sub-counties where cholera was reported accounted for 11.5% 

(5.49 million people) of the total Kenyan population. Throughout the study period, Fafi sub-

county experienced the highest burden of cholera with 2420 reported cases, followed by Dadaab 

with 2274 cases, and Suna West with 402 cases. Figure 2 presents the yearly distribution of 

cholera cases at the sub-county level. Zero cases in some sub-counties indicate a lack of reporting 

rather than absence of an outbreak. 
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The analysis of temporal clusters with high concentration of observed cases identified a cluster 

interval for cholera cases between 2015 and 2018. The highest peak incidence rate was observed 

in 2015, with the largest difference between expected and observed number of cases. In contrast, 

the lowest number of cases was observed in 2020, falling below the expected number. These 

findings are graphically represented in Figure 3.  
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Figure 2: Distribution of cholera cases per year in selected high-risk areas in Kenya, 2012-2022 
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Purely Spatial distribution of cholera in high-risk areas in Kenya.  

There were five significantly high-risk clusters with more observed than expected cases (Relative 

Risk > 1). These clusters were observed in Dadaab, Fafi, Suna West, Nyatike and Ugunja with 

annual cases per 100,000 people of 133.6, 23.5 and 19.4 respectively. People living in these sub 

counties were 1.60 to 28.37 times more likely to contract cholera compared to those residing 

elsewhere in the country. Approximately 728,585 people live in these high-risk sub counties. The 

risk of cholera infection was significantly lower in 16 sub counties namely Nyakach, Nyando, 

Rachuonyo East, Kisumu East and Kisumu Central as shown in Table 1 and Figure 4. The high and 

low risk clusters were significantly diverse among sub counties (p < 0.001). 

 
Table 1: Purely Spatial clusters of cholera detected by retrospective spatial analysis using a 

Circular spatial window with a radius of 50% of the population at risk in high-risk areas, Kenya, 

2012-2022 

Name of 
subcounty 

Population Observed 
cases 

Expected 
cases 

Annual 
cases/100000 

Relative 
risk 

Log 
Likelihood 
Ratio 

P 
Value 

Dadaab, Fafi 319,292 
  

4694 428.99 133.6 
 

28.37 8679.669408 
 

0.0001 

Suna West, 
Nyatike 

305,052 
 

787 409.86 
 

23.5 2.03 146.72 
 

0.0001 

Ugunja 104,241 
 

222 140.05 
 

19.4 1.60 20.78 
 

0.0001 

Ndhiwa 218,136 335 293.08 14.0 1.15 2.99 0.466 

Figure 3: Temporal distribution of cholera clusters from selected high-risk areas, Kenya, 2012-2022 
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Figure 4: Map showing 3 clusters and 5 significant spatial cluster locations of cholera in selected 

high-risk areas, Kenya, 2012-2022 

Space–time variability of cholera.  

Space-time analysis was carried out to ascertain whether the high-risk clusters from purely spatial 

analysis were temporary or long term. The analysis was conducted using a circular spatial window 
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with a radius of 50% of the population at risk. Additionally, a maximum temporal window of 50% 

was applied, which included purely spatial clusters. During the study period (2012 to 2022), 

Dadaab and Fafi sub-counties, located approximately 90 km apart, exhibited the highest number 

of annual cholera cases. The incidence rate in these sub-counties was 133.6 cases per 100,000 

population, indicating a significant cholera burden. They also had the highest relative risk 

(RR=28.37, P<0.05). Dadaab and Fafi Sub counties remained statistically significant for high 

cluster of cholera cases throughout the year 2015-2018. One statistically significant secondary 

cluster encompassing Alego Usonga, Ugunja and Ugenya was detected in the year 2016. There 

was significant variation in detection of cholera cases annually in both time and space (p<0.001). 

This is shown in Table 2 and Figure 5 below. 

Table 2: Significant high-risk spatial clusters of cholera in high-risk areas in Kenya, detected by 

retrospective space-time analysis using a Circular spatial window with a radius of 50% of the 

population at risk and a maximum temporal window of 50% including purely spatial clusters 

2012-2022. 

Name of 
Sub 
County 

Coordinates Timeframe Population Observed 
case 

Expected 
case 

Annual 
cases/1000 

RR   LLR P 
value 

Dadaab 
and Fafi 

(0.065322 N, 
40.374216 E) 
/ 90.14 km 
 

2012/1/1 to 
2022/12/31 
 

319292 
 

4694 428.99 
 

133.6 
 

28.37 8679.
6694
08 
 

< 
0.001 
 

Nyatike, 
Suna 
West, 
Suba 
North, 
Uriri, 
Ndhiwa, 
Suna East 
and 
Awendo 
 

(0.920871 S, 
34.142828 E) 
/ 44.64 km 
 

2015/1/1 to 
2015/12/31 
 

1029538 
 

1296 125.66 
 

126.0 12.30 1953.
9119
76 
 

< 
0.001 
 

Alego 
Usonga, 
Ugunja 
and 
Ugenya 
 

(0.068122 N, 
34.232069 E) 
/ 19.41 km 
 

2016/1/1 to 
2016/12/31 
 

462938 
 

554 56.66 
 

119.4 10.49 783.1
6428
1 
 

< 
0.001 
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The space-time analysis was adjusted to incorporate a circular spatial window with a radius of 

50% of the population at risk and a maximum temporal window of 90%, including both purely 

spatial and purely temporal clusters. This modification allowed for a more comprehensive 

evaluation of the spatiotemporal patterns of cholera, considering a broader temporal window 

for cluster detection. As shown in Table 3, Dadaab and Fafi sub counties remained statistically 

significant high-risk clusters (p = 0.001) from 2015-2022.  

Table 3: Significant high-risk spatial clusters of cholera in selected regions in Kenya, detected 

by retrospective space-time analysis using a circular spatial window with a radius of 50% of the 

population at risk and a maximum temporal window of 90% including purely spatial and purely 

temporal clusters, 2012-2022. 

 

Name of Subcounty Coordinat
es 

Timefram
e 

Populatio
n 

Observ
ed 
cases 

Expected 
cases 

Annual 
cases/10
00 

RR LLR P 
value 

          
Dadaab and Fafi (0.065322 

N, 
40.374216 
E) / 90.14 
km 
 

2015/1/1 
to 
2022/12/
31 
 

319292 
 

4603 311.97 
 

180.2 
 

37.6
2 

9797
.515
7 
 

< 
0.0001 
 

Figure 5: Map showing significant space-time clusters of cholera in selected high-risk areas. 

Kenya, 2012-2022 
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Spatial variation in temporal trends of cholera.  

There was a 0.654% overall annual increase in cholera cases with temporal and spatial variability 

(p<0.001) among the sub counties. Table 4 and Figure 6 below show Sub counties such as Dadaab 

and Fafi having an increasing trend within the window and a decreasing pattern outside the 

window. 

 

Table 4: Spatial variation in temporal trends of cholera in the selected high-risk areas in Kenya, 

2012-2022 

 

 

 

Figure 6: Map showing significant clusters of cholera in selected high-risk areas, Kenya, using a 

spatial variation in temporal trends analysis, 2012-2022. 

Name of Subcounty Observed 
cases 

Expected 
cases 

Relative 
risk 

Annual 
cases/1000 

% 
cluster 
increase 
or 
decrease 
(Inside 
time 
trend) 

% 
cluster 
increase 
or 
decrease 
(Outside 
time 
trend 

LLR 

Dadaab, Fafi 4694 428.99 
 

28.37 133.6 
 

10.850% 
annual 
increase 
 

15.439% 
annual 
decrease 
 

586.695196 
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Discussion 

During the study period, annual cholera epidemics followed a recurring pattern of waxing and 

waning, indicating a cyclicality in the occurrence of cholera outbreaks over time. In Kenya, these 

epidemic cycles have previously been reported to occur approximately every five to seven years 

lasting for two to three years (Kiama et al., 2023). In the current study, cholera cases waxed every 

three years in the selected high-risk areas. A similar trend has also been observed in countries 

such as India, Cameroon, and Bangladesh (Muzembo et al., 2022;Pascual et al., 2002;Ngwa et al., 

2016). These countries have reported cholera epidemics that exhibit a recurring pattern with 

cycles ranging from 3 to 6 years. This similarity in cyclical occurrence of cholera outbreaks across 

multiple regions highlights a shared temporal pattern in the disease dynamics. By understanding 

these cycles, public health authorities can proactively plan interventions, allocate resources, and 

implement targeted measures to mitigate the impact of cholera outbreaks and work towards 

long-term prevention and control of the disease.  

The peak of the cholera outbreak occurred in 2015, followed by a decline then a slight increase 

in number of cases in 2018. Additionally, there was another peak of cholera cases in 2022. The 

large number of cases observed in Kenya in 2015 was attributed to prolonged rainfall and 

subsequent flooding, which led to contamination of water sources and rapid spread of cholera 

(Moore et al., 2017). Conversely, the outbreak in 2022 was triggered by the impact of prolonged 

and severe drought, which resulted in water scarcity. Inadequate access to clean drinking water 

and poor sanitation exacerbated cholera transmission (WHO, 2023). In implementing 

appropriate prevention and control measures, it is important to consider such climatic factors 

that play a critical role in cholera outbreaks. 

There is significant spatial and temporal variation in cholera patterns among the sub-counties 

studied. The observed differences in the spatial and temporal patterns of cholera can be 

attributed to the geographic variations and socio-economic factors within the study areas. 

Specifically, the study areas were characterized by diverse settings, including a refugee setting 

(Dadaab refugee camp), urban setting (informal settlements), and rural setting (counties 

bordering the Lake Victoria region). These different settings likely contribute to varying levels of 
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cholera risk due to factors such as population density, access to clean household water and 

sanitation facilities, and healthcare resources. Understanding these geographic and socio-

economic variations is crucial in tailoring effective cholera prevention and control strategies for 

each specific setting. 

 

There were purely spatial and space-time statistically significant cholera clusters in selected high-

risk areas in Kenya. Among these clusters, Dadaab and Fafi sub-counties stood out as the most 

significant, with a Relative Risk of 28.37 and a P-value <0.0001. This finding agrees with a previous 

study conducted on cholera hotspot mapping in Kenya using the GTFCC model, which also 

identified Dadaab as a high-risk sub-county (Kiama et al., 2023). Furthermore, similar findings 

have been reported in previous studies conducted in Ghana, Nigeria and Bangladesh, indicating 

the presence of possible spatial and temporal clustering of cholera (Ngwa et al., 2021; Debes et 

al., 2016;Osei & Duker, 2008).  These consistent findings across different areas further strengthen 

the understanding of the epidemiology of cholera and its transmission dynamics, thus providing 

valuable insights for targeted prevention and control strategies.  

During the study period, both the purely spatial analysis and the space-time analysis consistently 

identified Dadaab and Fafi sub-counties as having the highest number of observed cholera cases. 

When the space-time analysis was modified to include a maximum temporal window of 90% and 

incorporate temporal clusters, Dadaab and Fafi sub-counties continued to exhibit statistically 

significant purely spatial clusters from 2015 to 2022 (RR=37.62, P-value < 0.0001). This indicates 

a strong association between these sub counties and the occurrence of cholera cases, suggesting 

a persistent and significant cholera burden in these areas throughout the study period (see Table 

3).  

Dadaab refugee camp houses a significant number of refugees and asylum seekers, primarily 

originating from Somalia. Since its establishment in 1991, the average population of refugees in 

Dadaab has been steadily growing. The ongoing conflict, drought, and famine in Somalia 

continues to drive a substantial influx of people into the camp. Access to critical Water, Sanitation 

and Hygiene facilities therefore remain constrained as more people move into the already 
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populated camps. This significantly increases the risk of cholera transmission among the refugee 

population. Drought can be identified as an additional contributing factor, as it has been linked 

to the extensive and prolonged transmission of cholera, often accompanied by high case fatality 

rates, particularly in arid and semi-arid regions. Previous studies have linked cholera outbreaks 

in Dadaab refugee camp to poor drainage systems and cross border movement (Golicha et al., 

2018). This has also been observed in Zambia and Uganda where cholera cases have been linked 

to cross border movement (Bwire et al., 2017;Mwaba et al., 2020). A study by Breiman in 2009 

additionally linked cholera outbreaks in Kakuma refugee camp in Kenya to storing drinking water 

at home in open containers and sharing latrines (Breiman et al., 2009). These findings stress on 

the importance of addressing these specific practices and implementing appropriate measures 

to prevent cholera outbreaks in refugee camps. 

Nyakach, Nyando, Rachuonyo East, Kisumu East, Kisumu Central, Muhoroni, Rachuonyo North, 

Kisumu West, Suba South, Rangwe, Seme, Homabay Town, Rongo, Rarieda, Gem, and Awendo 

were identified as a cluster with a lower relative risk (RR=0.055), indicating a low rate of cholera 

cases in these areas. This spatial variation in cholera case distribution could be possibly explained 

by improved access to clean drinking water, proper sanitation and hygiene and adequate access 

to health facilities (Cowman et al., 2017). 

In the years 2015 and 2016, Space-time analysis identified a cluster encompassing the areas 

surrounding Suba North, Uriri, Ndhiwa, Suna East, Alego Usonga, Ugenya, and Awendo. This 

cluster was not detected in the purely spatial analysis output, highlighting the significance of 

SaTScan in identifying recently emerging clusters. The use of space-time analysis allowed for the 

detection of dynamic patterns and trends that may not have been evident through purely spatial 

analysis alone. This finding emphasizes the importance of employing comprehensive analytical 

approaches, such as SaTScan, to capture the full extent of cluster patterns and improve our 

understanding of the temporal dynamics of cholera outbreaks. 

 

This study reveals that cholera exhibits an overall increasing pattern of 0.654%, indicating a 

gradual rise in the number of cases over time. The increasing trend of cholera observed aligns 

with the findings reported by WHO in 2023 regarding the exponential rise in cholera cases in 
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Africa amidst a global surge. The WHO reports indicate that climate change has played a 

significant role in driving larger and more severe cholera outbreaks worldwide (WHO, 2023). The 

changing climate patterns, including increased temperatures and alterations in rainfall patterns, 

create favorable conditions for the growth and spread of Vibrio cholerae. There is therefore an 

urgent need for comprehensive strategies to address climate change impacts and mitigate risks 

associated with cholera outbreaks globally. 

 

Limitations of this study 

Both suspected and confirmed cases were used in spatio-temporal analysis. This could result in 

overestimation of cholera cases. Laboratory confirmation of cases is crucial for accurate diagnosis 

and surveillance, but it may not always be feasible or accessible in resource-limited settings. 

Therefore, reported cholera cases may not provide a true picture of the disease burden in the 

selected high-risk areas. 

Underestimation of cholera cases for individuals who did not seek treatment at public healthcare 

facilities was another limitation. Cholera cases that went unreported or were managed outside 

formal healthcare systems may not have been captured in the surveillance data. This could result 

in an incomplete representation of the true extent of cholera transmission within the population.  

Additionally, this study did not investigate potential risk factors contributing to cholera 

outbreaks. While the analysis focused on spatial and temporal patterns of cholera cases, other 

factors such as water and sanitation conditions, socio-economic factors, and hygiene practices 

could also play a role in the spread of the disease. Further research that incorporates 

investigation of these potential risk factors would provide a more comprehensive understanding 

of the determinants of cholera outbreaks in the high-risk areas. 

 

Conclusion 

SaTScan analysis conducted in this study has provided valuable insights into the spatial and 

temporal patterns of cholera outbreaks in the high-risk areas in Kenya. The study identified 

statistically significant clusters of cholera cases, highlighting areas with elevated risk. The study 

also revealed the existence of both purely spatial and space-time clusters, emphasizing the need 
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to consider both spatial and temporal dimensions in cholera surveillance and control efforts. This 

comprehensive approach enables the detection of emerging clusters and the implementation of 

timely interventions to prevent further spread of the disease.  

Overall, this study contributes to the existing knowledge on cholera epidemiology and provides 

valuable insights to public health practitioners and policymakers in cholera prevention and 

control. It also serves as a basis for generating hypotheses for further research on contextual 

factors, including the impact of climate change on cholera occurrence and the risk factors related 

to water, hygiene, and sanitation in high-risk areas. 
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