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Abstract: 

Alzheimer’s disease (AD) is a multifaceted neurodegenerative disorder with varied 
patient progression. We aim to test the hypothesis that AD patients can be categorized into 
subgroups based on differences in progression. We leveraged data from three randomized 
clinical trials (RCTs) to develop a knowledge-guided, deep temporal clustering (KG-DTC) 
framework for AD subtyping. This model combined autoencoders for contextual information 
capture, k-means clustering for representation formation, and clinical outcome classification for 
clinical knowledge integration. The derived representations, encompassing demographics, APOE 
genotype, cognitive assessments, brain volumes, and biomarkers, were clustered using the 
Gaussian Mixture Model to identify AD subtypes. Our novel KG-DTC framework was 
developed using placebo data from 2,087 AD patients across three solanezumab clinical trials 
(EXPEDITION, EXPEDITION2, and EXPEDITION3), achieving high performance in outcome 
prediction and clustering. The KG-DTC model demonstrated superior clustering structures, 
especially when combined with k-means clustering loss. External validation with independent 
clinical trial data showed consistent clustering results, with a 0.33 silhouette score for three 
clusters. The model's stability was confirmed through a leave-one-out approach, with an average 
adjusted Rand Index around 0.945. Three distinct AD subtypes were identified, each exhibiting 
unique patterns of cognitive function, neurodegeneration, and amyloid beta levels. Notably, 
Subtype 3 (S3) showed rapid cognitive decline across multiple clinical measures (e.g., 0.64 in S1 
vs. -1.06 in S2 vs. 15.09 in S3 of average ADAS total change score, p<.001). This innovative 
approach offers promising insights for understanding variability in treatment outcomes and 
personalizing AD treatment strategies. 

Introduction 

 
Alzheimer’s disease (AD) is incurable and challenging to diagnose and treat due to its 

complexity, heterogeneity, and multifactor nature. Its progression patterns manifest through a 
broad spectrum of longitudinally linked clinical features and outcomes that vary across AD 
patients. Variability in AD has impeded many clinical trials for drug development1,2. Therefore, 
precision medicine for AD aims to understand why individuals respond differently to treatments, 
and temporal subtyping has become a crucial tool in identifying patient subgroups to answer 
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such questions. By transforming the raw data along disease progression into clinically relevant 
and interpretable information, temporal subtyping minimizes progression heterogeneity among 
individuals3,4, guides clinicians to tailor treatment to AD subgroups, and ultimately develops 
successful AD subtype-specific drugs. 

Recent studies have used electronic health records (EHRs) and Alzheimer's Disease 
Neuroimaging Initiative (ADNI) databases extensively to derive systematic and comprehensive 
AD subtypes5–8. However, these datasets are sparse or noisy. Randomized clinical trials (RCTs) 
are another rich but understudied multimodal data source. The placebo groups from RCTs allow 
us to investigate the disease progression without being confounded by the exposure to 
experimental drugs. A pooled group of placebo-treated patients from RCTs can increase the 
power and diversity of AD populations. RCT databases were used to identify phenotypes or 
subtypes in sepsis and respiratory disease9,10. Considering the successful utilization of RCT data 
in various diseases, using multimodal data from RCT to derive the AD subtypes is promising. 

 Temporal subtyping of AD is a data-driven, unsupervised learning task to group patients 
into similar disease progression patterns. Clustering is a widely used to discover subtype. Recent 
advances in deep representation learning overcome the limitations of traditional clustering 
methods that are hard to handle high-dimensional and multimodal data6,11. The deep learning-
based clustering learns low-dimensional representation for multivariate longitudinal observations, 
which can be used in downstream tasks. However, the separate step learning approach has 
certain limitations. Firstly, it learns a low-dimensional representation for multivariate 
longitudinal observations, but this is not directly learned for clustering, which can hinder the 
overall clustering performance. Secondly, this method identifies temporal subtypes in an entirely 
unsupervised manner, ignoring any existing information about patients' clinical outcomes. This 
information, such as clinical trial outcomes, is crucial for understanding the progression of the 
disease and predicting future clinical outcomes. Thus, such an approach may not fully utilize all 
available resources for optimal results. 

This study proposed knowledge-guided, deep temporal clustering, which is a unified 
framework to identify AD subtypes. We first developed a knowledge-guided deep clustering 
architecture to derive clustering-friendly vector-based representations. This architecture 
combined (1) temporal autoencoders (AEs) to capture contextual information and generate 
representations, (2) k-means clustering to encourage the representation to form clusters, and (3) 
clinical outcome classification to reflect clinical knowledge. Second, our model could generate 
informative representation through qualitative and quantitative analysis to derive meaningful 
subtypes. To this end, we applied the proposed framework to construct the representation learned 
from pooled RCTs with multimodal data, namely demographics, cognitive assessments, brain 
region volumes, biomarkers including amyloid-beta ( �� ), and genomic data on the 
apolipoprotein E (APOE) gene. We used the learned representation to cluster patients through 
the Gaussian mixture model (GMM) to derive AD subtypes and characterize the subtypes of AD 
to interpret potential disease progression patterns. From our extensive validation on the subtypes 
via reproducibility test, stability test, and significance test, we found that the subtypes were 
reproducible, stable, and clinically meaningful. 
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Fig. 1 Overall framework. Our framework to identify the subtypes of AD progression has three
stages: 1) data preprocessing, 2) subtype discovery, and 3) external validation. After data
preprocessing and pooling, we developed knowledge-guided deep temporal clustering (KG-DTC
methods and applied them to pooled clinical trial data. The KG-DTC method identified subtypes
of AD patients using their longitudinal observations on efficacy measures. We internally
validated the model using cross-validation and ablation study. We then externally validated the
clustering result’s reproducibility and stability with independent clinical trial data. After
thoroughly evaluating the clustering model, we investigated the characteristics of clusters (i.e.,
subtypes) and common patterns within the clusters. This figure was adapted from Dinga.12 

Results 

Data summary 

We developed our model using 2,087 AD patients from three RCT placebo arms (505 in
EXPEDITION113, 518 from EXPEDITION213, and 1,064 from EXPEDITION314).  For each
patient, we included visits with assessments conducted or biomarkers collected. As a result, we
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selected visits 1, 2, 3, 4, 5, 6, 10, 13, 16, 19, and 23.0 for EXPEDITION 1 and 2, and visits 1, 2, 
3, 5, 9, 12, 15, 18, and 22 for EXPEDITION 3. The total number of visits was 13,946. We set 
aside EXPEDITION2 as an external validation set and used EXPEDITION1 and EXPEDITION3 
as a discovery set. The data comprises eight demographics, 28 baseline efficacy measurements, 
and 28 time-variant variables observed from baseline to the end of clinical trials. The efficacy 
measures include cognitive assessments, imaging biomarkers, fluid biomarkers, quality-of-life 
assessments, and a neuropsychiatric assessment (Supplementary Table S1. Demographics and 
longitudinal features summary.). 

Knowledge-guided deep temporal clustering summary 

We developed a novel and unified framework (Fig. 1) for knowledge-guided deep 
temporal clustering (KG-DTC, Fig. 5) to identify subtypes from temporal multimodal data 
(Method: Subtype discovery: Knowledge-Guided Deep Temporal Clustering (KG-DTC) model). 

Model cross-validation 

We first evaluated the performance of KG-DTC in a cross-validation manner. We 
evaluated whether our model could learn a representation that can predict clinical outcomes 
when embedding the knowledge guidance. We also evaluated our model’s clustering 
performance by silhouette scores and UMAP (uniform manifold approximation and projection 
for dimension reduction) visualization (Method: Model evaluation). For comparison, we ablated 
each component in KG-DTC (i.e., k-means clustering, knowledge guidance) and evaluated the 
three criterions above. Overall, we found that KG-DTC achieved high performance in both 
outcome prediction and clustering (Table 1). KG-DTC had R-squared (��) scores of 0.84 and 
0.31 for two selected clinical outcome variables (i.e., ADAS and CDR) and a silhouette score of 
0.26 with three clusters. The UMAP plot showed that three clusters separate the patients well. 
Other ablated models (M1, M2, and M3) failed to achieve a balance between outcome prediction 
and clustering. The UMAP showed that the clusters are not compact or not evenly separated. 

Table 1 Evaluation of representation and clustering with ablated models, and 
reproducibility of clustering 

Dataset Pooled discovery data (EXPEDITION1+EXPEDITION3) 
External data 

(EXPEDITION2) 
Model  M1: Seq2seq  

 reconstruction 
M2: Seq2seq 
reconstruction + 
knowledge 
guidance 

M3: Seq2seq 
reconstruction + 
clustering loss 

Ours: Seq2seq 
clustering loss + 
knowledge 
guidance 

 Trained DG- 
 KDC 

�
�       

  ADAS  -0.40  0.91  -0.41  0.84  0.84 
  CDR  -0.45  0.85  -0.15  0.31  0.32 
Silhouette  0. 03 (3)  0.18 (3)  0. 37 (3) 

 
 0.26 (3)  0.33(3) 
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UMAP 
Clustering 
structure 
 
 
 
 
   

 
   

Silhouette: Highest silhouette scores (number of clusters). We use  scores to examine outcome
regression fit to evaluate representation quality; we use the highest silhouette scores with the
number of clusters for clustering performance evaluation; we use UMAP visualization for
clustering structure evaluation. We evaluated the model’s representation, clustering, and
effectiveness of components with three ablated models: 1) M1: simple model with only seq2seq
reconstruction structure, 2) M2: model with seq2seq reconstruction and knowledge guidance,
and 3) M3: model with seq2seq reconstruction and clustering loss. 

We then investigated the contribution of each model component. We observed that joint
optimization of k-means clustering significantly improved silhouette scores and made compact
clustering structures in UMAP visualization. As shown in Table 1. UMAP clustering structure, it
was evident that the representations learned by M3 and KG-DTC with k-means clustering loss
have formed clearly separated and compressed clusters. In contrast, the representations learned
by the ablated models M1 and M2 without k-means clustering loss fail to form distinct cluster
shapes (highest silhouette scores of 0.03 and 0.18 at cluster counts 3, respectively), and the
samples are scattered with a great amount of mixing. In addition, we observed that knowledge
guidance helps preserve rich clinical context in representation. Knowledge guidance increased
the outcome prediction accuracy (M1’s  of -0.40 and -0.45 vs. M3’s  of -0.41 and -0.15),
and it also prevented the accuracy from extremely decreasing when it was combined with k-
means clustering loss (M2’s  of 0.91 and 0.85 vs KG-DTC’s  of 0.84 and 0.31). These
advances are also visualized in the UMAP plots. The representation learned from the ablated
model M3 without knowledge guidance has formed separated clusters. Still, the samples are
gathered to form one giant cluster, failing to generate informative and well-separated clusters. 

Clustering reproducibility evaluation 

After cross-validating our clustering model's performance, we investigated the
reproducibility of the clusters on external data. We applied the KG-DTC models trained with the
discovery data (EXPEDITION1 + EXPEDITION3) to the external data (EXPEDITION2) and
compared the clusters from each set. As a result, we identified similar clustering results from the
external set (Table 1). The proportions of clusters were 48.1, 9.0, and 42.8% in discovery data
and 43.0, 13.0 and 44.0% in external data. In addition, we found that applying the trained KG-
DTC to the external set achieved the outcome classification accuracy (the  of 0.84 and 0.32)
and 0.33 silhouette scores of 3 clusters, which is similar to the results with the discovery set. In
the UMAP plots, clustering results from the external set also achieved a compact and distinct
shape. Our models show great representation quality and clustering reproducibility in the
external set. 

 

e 
he 
for 
nd 
eq 
ce, 

int 
act 
, it 
ss 
ed 
ter 
he 
ge 
d 
), 
-

se 
ed 
re 

he 
he 
nd 
he 
ata 

-
) 

In 
ct 
he 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 2, 2024. ; https://doi.org/10.1101/2023.10.13.23296985doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.13.23296985


Clustering stability evaluation 

Now that we verified that the ORDTCR could reproduce similar clustering results with 
external data, we investigated whether the ORDTCR is stable enough to generate similar 
clustering results consistently. We evaluated our clustering model’s assignment stability using 
the leave-one-out (LOO) approach5 (Method: Clustering evaluation). We set leave-out sample 
size � � �1: 50�. Supplementary Fig. 1 showed that the average adjusted Rand Index (ARI) 
slightly fluctuated around 0.945 over different leave-out sample sizes. This finding demonstrated 
that our clustering model is stable, and the identified clusters are not statistical artifacts. Due to 
the stochastic nature of optimization, traditional clustering methods may produce inconsistent 
clustering results if the sample similarity is not well defined. The KG-DTC model projected the 
complicated multimodal longitudinal observation into a representation space where the sample 
similarity preserves the clinically meaningful patterns. 

Clustering interpretation and its statistical significance 

After thoroughly validating our proposed clustering models, we investigated common 
patterns of patients within the clusters. To illustrate the within-cluster distribution of cognitive 
scores, brain regional volumes, and amyloid beta deposition, we plotted violin plots to visualize 
data distribution across three clusters (Fig. 3 (A)). In addition, the main drawback of neural-
network-based clustering is its inability to explain how static data and longitudinal sequences 
map to the latent dimensions. To address this and obtain interpretable patterns, we calculated the 
feature importance scores to determine the important baseline and longitudinal variables for 
cluster assignment. We built a cluster assignment (i.e., S1, S2, and S3) classification model and 
adapted it to feature permutation attribution algorithm1 (Method: Clustering evaluation). The 
AUROC for cluster assignment classification tasks were 0.90, 0.94, and 0.96. Using this 
approach, we calculated the importance scores of individual variables (Fig. 3 (B)). 

To provide more detailed characterizations of each subtype, we statistically tested the 
important individual variables to determine whether they were distributed differently across 
clusters. As a result, we identified important features that distinguish the cluster assignment and 
generated profiles for each cluster. The profiles of clusters (or AD subtypes) have statistically 
distinctive characteristics. Also, the clusters were closely associated with the primary clinical 
outcomes of the trials. We identified three AD subtypes (Subtype 1 (S1), Subtype 2 (S2), and 
Subtype 3 (S3)) with distinct patterns in impaired cognitive function (C), neurodegeneration (N), 
and amyloid beta (A) (Table 2), as well as clinical outcomes in the trials (Fig. 4). 

Table 2 Characteristics of Subtypes at Baseline and Endpoint Changes (The cells represent 
mean (median, std) unless specific illustration) 

Subtypes Subtype 1 (S1) Subtype 2 (S2) Subtype 3 (S3) P 
N of patients 741 139 659  
Demographics     
Age at first visit  74.15 (74.73, 7.82) 74.31 (75.28, 8.68) 72.83 (73.5, 7.98) 0.005 
Females - no. (%) 419 (56.55) 83 (59.71) 396 (60.09) 0.383 
Hispanic - no. (%) 66 (8.91) 19 (13.67) 44 (6.68) 0.02 
Race 
  Black or African 
American 

 
22 (2.97) 

 
9 (6.47) 

 
12 (1.82) 

 
0.009 

  White 611 (82.46) 109 (78.42) 572 (86.8) 0.015 
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APOE Gene 
  No E4 252 (34.01) 55 (39.57) 216 (32.78) 0.307 
  One E4 370 (49.93) 59 (42.45) 311 (47.19) 0.224 
  Two E4 94 (12.69) 15 (10.79) 102 (15.48) 0.183 
Baseline     
ADAS     
ADAS-cog14 total 29.32 (29.0, 8.91) 34.63 (34.0, 11.0) 31.76 (31.0, 9.3) <.001 
Complex Attention 3.71 (3.0, 3.2) 6.48 (4.0, 17.95) 4.71 (4.0, 3.24) <.001 
Executive Function 0.38 (0.0, 1.07) 0.91 (0.0, 1.63) 0.51 (0.0, 1.24) <.001 
Language 1.52 (1.0, 1.92) 2.71 (2.0, 2.71) 2.18 (1.0, 2.54) <.001 
Learning and 
Memory 

23.24 (23.0, 6.54) 25.22 (26.0, 6.69) 23.75 (24.0, 5.93) 0.004 

Perceptual-Motor 
Function 

1.23 (1.0, 1.12) 1.87 (1.0, 1.62) 1.58 (1.0, 1.3) <.001 

CDR     
CDR total 4.07 (4.0, 2.06) 5.26 (4.5, 3.16) 4.41 (4.0, 2.01) <.001 
Complex Attention 0.7 (0.5, 0.52) 0.91 (1.0, 0.66) 0.76 (0.5, 0.54) 0.001 
Executive Function 2.31 (2.0, 1.43) 3.13 (3.0, 2.16) 2.53 (2.5, 1.44) <.001 
Learning and 
Memory 

1.97 (2.0, 1.1) 2.58 (2.0, 1.63) 2.09 (2.0, 1.01) <.001 

Social Cognition 0.66 (0.5, 0.45) 0.85 (1.0, 0.62) 0.72 (0.5, 0.47) 0.002 
MMSE     
MMSE total 22.7 (23.0, 2.51) 21.94 (22.0, 3.09) 22.0 (22.0, 2.44) <.001 
Complex Attention 3.23 (3.0, 1.53) 3.22 (4.0, 1.72) 2.82 (3.0, 1.56) <.001 
Executive Function 3.23 (3.0, 1.53) 3.22 (4.0, 1.72) 2.82 (3.0, 1.56) <.001 
Language 8.16 (8.0, 0.84) 7.89 (8.0, 1.07) 8.08 (8.0, 0.86) 0.014 
Learning and 
Memory 

11.3 (11.0, 2.13) 10.83 (11.0, 2.51) 11.1 (11.0, 2.09) 0.154 

NPI total 8.71 (4.0, 10.9) 8.96 (4.0, 11.23) 7.76 (4.0, 10.2) 0.201 
ADL total 66.32 (68.0, 8.93) 58.62 (62.0, 15.34) 64.67 (67.0, 10.15) <.001 
EQ5D total 74.54 (80.0, 18.93) 69.71 (71.0, 23.56) 75.48 (80.0, 18.35) 0.041 
QLADC total 36.34 (36.0, 5.98) 34.5 (35.0, 7.13) 36.3 (36.0, 5.83) 0.014 
Aβ levels     
Aβ40 (log pg/mL) 5.33 (5.36, 0.3) 5.14 (5.29, 0.87) 5.31 (5.32, 0.28) 0.046 
Aβ42 (log pg/mL) 1.61 (0.0, 1.87) 1.55 (0.0, 2.04) 1.52 (0.0, 1.82) 0.506 
Aβ42/40 ratio 0.19 (0.15, 0.16) 0.35 (0.16, 0.66) 0.18 (0.14, 0.13) 0.267 
PET-SUVR 1.49 (1.49, 0.17) 1.48 (1.47, 0.19) 1.5 (1.5, 0.16) 0.107 
vMRI (regional brain volumes are scaled by WBV) 
ERCV_L  1.1 (1.18, 0.55) 0.9 (0.87, 0.52) 1.11 (1.19, 0.53) <.001 
ERCV_R 1.04 (1.09, 0.53) 0.88 (0.79, 0.53) 1.06 (1.14, 0.5) <.001 
HV_L 2.61 (2.7, 0.75) 2.4 (2.34, 0.76) 2.65 (2.75, 0.73) 0.002 
HV_R 2.7 (2.81, 0.78) 2.48 (2.42, 0.78) 2.74 (2.88, 0.76) 0.001 
VV (cm3) 47.41 (43.3, 22.26) 48.12 (43.7, 22.6) 53.54 (48.3, 23.54) <.001 
WBV (cm3) 988.64 (981.71, 108.77) 980.34 (981.6, 117.18) 976.9 (973.18, 98.77) 0.223 
Endpoint Changes 
ADAS     
ADAS-cog14 total 0.64 (1.0, 4.89) -1.06 (0.0, 7.18) 15.09 (13.0, 9.88) <.001 
Complex Attention 0.17 (0.0, 3.04) -1.34 (0.0, 17.14) 3.87 (3.0, 10.25) <.001 
Executive Function 0.18 (0.0, 1.14) 0.22 (0.0, 1.63) 1.15 (0.0, 2.05) <.001 
Language 0.07 (0.0, 1.42) -0.4 (0.0, 1.93) 3.05 (2.0, 3.57) <.001 
Learning and 
Memory 

0.06 (0.0, 3.76) -1.0 (0.0, 5.28) 6.99 (6.0, 4.3) <.001 

Perceptual-Motor 
Function 

0.16 (0.0, 1.18) 0.09 (0.0, 1.54) 1.57 (1.0, 2.02) <.001 

CDR     
CDR total 0.84 (0.5, 1.83) 0.83 (0.0, 1.88) 3.2 (2.5, 3.05) <.001 
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Complex Attention 0.15 (0.0, 0.48) 0.22 (0.0, 0.51) 0.55 (0.5, 0.68) <.001 
Executive Function 0.53 (0.0, 1.27) 0.63 (0.0, 1.43) 2.07 (1.5, 2.14) <.001 
Learning and 
Memory 

0.41 (0.0, 1.02) 0.35 (0.0, 1.08) 1.67 (1.0, 1.68) <.001 

Social Cognition 0.15 (0.0, 0.43) 0.14 (0.0, 0.44) 0.47 (0.5, 0.56) <.001 
MMSE     
MMSE total -1.42 (-1.0, 3.57) -1.92 (-2.0, 3.77) -6.09 (-6.0, 4.72) <.001 
Complex Attention -0.44 (0.0, 1.7) -0.71 (0.0, 1.86) -1.4 (-1.0, 1.71) <.001 
Executive Function -0.44 (0.0, 1.7) -0.71 (0.0, 1.86) -1.4 (-1.0, 1.71) <.001 
Language -0.14 (0.0, 1.18) -0.31 (0.0, 1.44) -1.22 (-1.0, 1.72) <.001 
Learning and 
Memory 

-0.86 (-1.0, 2.36) -0.92 (-1.0, 2.18) -3.59 (-3.0, 2.97) <.001 

NPI total 0.3 (0.0, 10.31) 0.18 (0.0, 9.31) 5.35 (2.0, 13.36) <.001 
ADL total -4.08 (-3.0, 8.43) -5.56 (-2.0, 10.78) -13.04 (-10.0, 12.63) <.001 
EQ5D total -0.99 (0.0, 18.96) 1.28 (0.0, 21.87) -4.81 (0.0, 20.09) 0.001 
QLADC total -1.22 (0.0, 4.79) -0.53 (0.0, 4.94) -2.88 (-2.0, 5.03) <.001 
Aβ levels     
Aβ40 6.08 (6.07, 0.15) 6.02 (6.07, 0.52) 6.1 (6.09, 0.14) 0.004 
Aβ42 6.02 (6.0, 0.12) 5.97 (6.0, 0.52) 6.02 (6.0, 0.11) 0.232 
Aβ42/40 ratio 0.23 (0.14, 0.34) 0.36 (0.19, 0.75) 0.21 (0.16, 0.25) 0.001 
PET-SUVR 0.0 (0.0, 0.09) 0.0 (0.0, 0.06) 0.0 (0.0, 0.1) 0.222 
vMRI     
ERCV_L -46.94 (-25.23, 54.79) -24.93 (0.0, 46.42) -59.12 (-46.8, 61.76) <.001 
ERCV_R -41.26 (-22.8, 48.03) -23.78 (0.0, 40.5) -50.16 (-38.4, 51.82) <.001 
HV_L -94.12 (-93.07, 85.12) -80.17 (-62.3, 92.19) -115.58 (-116.46, 94.14) <.001 
HV_R -95.63 (-98.0, 85.09) -75.27 (-47.5, 118.06) -118.92 (-122.14, 91.84) <.001 
VV 3.89 (3.15, 4.08) 3.17 (1.1, 4.65) 6.8 (6.2, 5.84) <.001 
WBV -12.45 (-11.4, 12.26) -9.9 (-1.8, 13.12) -19.94 (-20.9, 15.31) <.001 
ADAS-cog 14:  14-item Alzheimer’s Disease Assessment Scale – cognitive subscale (range 0 to 
70, higher scores worse), CDR-SB: Clinical Dementia Rating scored by the sum of boxes 
method (range 0 to 18, higher scores worse), MMSE: Mini-Mental State Examination (range 0 to 
30, lower scores worse), ADCS-ADL: Alzheimer’s Disease Cooperative Study – Activities of 
Daily Living Scale (range 0 to 78, lower scores worse), NPI: Neuropsychiatric Inventory (NPI; 
range 0 to 144, higher scores worse), QoL-AD: Quality of Life in Alzheimer's Disease (range 13 
to 52, lower scores worse), EQ-5D: 5-Dimensional EuroQol Quality of Life Scale Proxy Version 
(range 0 to 100, lower scores worse), �� : Amyloid-Beta, PET-SUVR: positron emission 
tomography with standardized uptake value ratio, vMRI: volumetric magnetic resonance 
imaging, ERCV: entorhinal cortex volume, HV: hippocampal volume, VV: ventricular volume, 
WBV: whole brain volume 

 

Fig. 3 Feature distributions (A) and importance patterns (B) by clusters  
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Violin plots (A) illustrate the within-cluster distribution of cognitive scores, brain regional
volumes, and amyloid beta deposition at baseline and change to the endpoint, respectively. Note
the unequal sample size among the cluster types: S1 (N=741), S2 (N=139), and S3 (N=659).
Heatmap (B) visualizes the top important baseline and time-invariant features. 

Specifically, S1 (48.1% in EXPEDITION1+EXPEDITION3; 43.0% in EXPEDITION2)
had the largest cohort with 741 Alzheimer spectrum patients. S2 (9.0% in
EXPEDITION1+EXPEDITION3; 13.0% in EXPEDITION2) had the smallest cohort with 139
patients containing the highest proportion of the Hispanic or Latino population (8.91% in S1 vs.
13.67% in S2 vs. 6.68% in S3, p=0.02; We omitted S1, S2, and S3 below). S2 also had the
highest proportion of the Black or African American population (2.97% vs. 6.47% vs. 1.82%,
p=0.009) and the lowest proportion of the White population (82.46% vs. 78.42% vs. 86.8%,
p=0.015). S3 (42.8% in EXPEDITION1+EXPEDITION3; 44.0% in EXPEDITION2) had 659
slightly younger patients on average (74.15 vs. 74.31 vs. 72.83, p=0.005). 

At baseline, S1 and S3 showed similar overall shapes of data distribution in the violin
plots. The APOE genotype didn’t show significant differences between subtypes. However, S2
had the highest portion of patients without the APOE 4 gene and the lowest portion of APOE 4
carriers. In terms of baseline cognitive assessments, S2 consistently exhibited higher scores
across multiple domains and total scores of ADAS and CDR than S1 and S3 (e.g., 29.32 vs.
34.53 vs. 31.76 of average ADAS total score, p<.001; 4.07 vs. 5.26 vs. 4.41 of average CDR
total scores, p<.001), which indicated worse cognitive performance or more severe disease
symptoms. On the MMSE scale (a measure of cognitive function where lower scores indicated
more severe cognitive impairment), S2 had a slightly lower mean score compared to S1 and S3
(e.g., 22.7 vs. 21.94 vs. 22.0 of average MMSE total scores, p<.001). S1 consistently exhibited
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the most minor cognitive impairment (see details in Table 2). For  levels, S2 had lower 
(5.33 vs. 5.14 vs. 5.31 log pg/mL, p=0.046), though the differences across the subtypes were
significant only for , not for  or the  ratio. Furthermore, neuroimaging data
suggested that patients in S3 generally showed greater entorhinal cortex and hippocampal
volumes than S1 and S2, while S2 showed the lowest brain regional volumes (see details in
Table 2). S3 also retained the most significant average ventricular volume (47.41 vs. 48.12 vs.
53.54 cm3, p<.001). The PET-SUVR and whole brain volume didn’t show significant differences
across subtypes. 

We then evaluated longitudinal trends using endpoint changes for time-variant variables.
S1 and S2 showed similar shapes of cognitive data distribution in violin plots, while S1 and S3
showed similar shapes of neuroimaging data and  levels. We observed that S3 significantly
increased in scores of multiple domains and total scores of ADAS and CDR (e.g., 0.64 vs. -1.06
vs. 15.09 of average ADAS total change score, p<0.001; 0.84 vs. 0.83 vs. 3.2 of average CDR
total change scores, p<.001), indicating a drastic cognitive decline. Interestingly, S2 showed
preserved cognitive domains of complex attention (-1.34), language (-0.4), and learning and
memory (-1.0) measured by ADAS.  On the MMSE scale, S3 showed significantly decreased
scores (e.g., -1.42 vs. -1.92 vs. -6.09 of average MMSE total change scores, p<.001), indicating
deterioration. In  levels, S3 showed the most increase in  (6.08 vs. 6.02 vs. 6.1 log pg/mL
p=0.004) and the least increase in the  ratio (0.23 vs. 0.36 vs. 0.21, p=0.001), while S2
was the opposite. In terms of brain imaging changes, S3 showed the most significant loss in
regional brain volume (e.g., -46.94 vs. -24.93 vs. -59.12 mm3 of average left entorhinal cortex
change volume, p<.001; -94.12 vs. -90.17 vs. -115.58 mm3 of average left hippocampal change
volume, p<.001) and whole brain volume (-12.45 vs. -9.9 vs. -19.94 cm3, p<.001), which
indicated brain atrophy that might correlate with the cognitive decline observed in cognitive
measurements. In addition, S3 showed the most significant increase in ventricular volume (3.89
vs. 3.17 vs. 6.8 cm3, p<.001), suggesting greater brain atrophy. Here, S2 always showed the most
minor changes compared to S3. 

Fig 4 Distribution of different clinical outcome variables for identified clusters 
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Direction of fast decline 

Finally, we plotted the distribution of four clinical outcome measures (i.e., ADAS, CDR,
MMSE, and ADL) across clusters. We separated the population into different paths of
progression using the middle value of each clinical outcome. We observed that the distribution of
S3 lay mostly in the fast decline directions across all four measures. 

Discussion and Conclusions 
Our objective was to shed light on the heterogeneity of Alzheimer's Disease progression

patterns by developing a cutting-edge, deep-learning framework to identify AD subtypes with
static and longitudinal features. Specifically, we developed a representation model called the
knowledge-guided deep temporal clustering representation (KG-DTC) to generate cluster-
friendly and clinical outcome-related representations. The learned representation was examined
with effectiveness in discriminating the heterogeneity of dynamic and complex disorders in the
AD cohort. By applying this approach to the pooled randomized clinical trial data, we identified
three distinct AD subtypes: S2 had the highest cognitive impairment at the baseline but preserved
progression at the endpoint, while S3 had significant deterioration at the endpoint. S1
represented those who have milder symptoms at baseline and often demonstrate less decline over
time. This finding provided a novel understanding of AD progression in combination with
knowledge of neuropathological and clinical heterogeneity, which may pave the way for
individualized AD progression forecasts and customized treatments for specific AD subtypes. 

We employed a seq2seq architecture to encode multivaria longitudinal data and
integrated k-means clustering loss and clinical outcome classification loss to form clinically
meaningful cluster structures. Here, representation learning aimed to map the high-dimensional
complex data to lower-dimensional space. However, traditional representation learning methods
are not designed for clustering tasks. To enable the learned representations to favor clustering
patients, we integrated the k-means clustering loss to encourage the representations to form
clusters. Additionally, previous studies mostly focused on identifying AD subtypes in a purely
unsupervised way6,7,15. While these studies obtained the AD subtypes without considering long-
term clinical outcomes, the identified AD subtypes may not reflect our existing knowledge of
outcomes of clinical interest. We filled this gap by introducing a clinical outcome supervision
task; we employed a classification loss in the model to enable the learned representations to be
informative with multiple clinical outcomes and unveil clinically meaningful and actionable
insights. 
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We identified three distinct AD subtypes from pooled randomized clinical trials, which 
demonstrated heterogeneity in the presentation and progression of Alzheimer’s disease. These 
subtypes were aligned with the NIA-AA’s AT(N)(C) classification (based on fluid biomarkers, 
neurodegeneration, and cognitive symptoms) and with rapid/slow progressors (based on 
cognitive presentation) 16,17. At the baseline, S2 has a higher representation of Hispanic and 
Black or African American populations. Race and ethnicity variations among the subtypes could 
hint at potential genetic or environmental risk factors specific to different populations.18,19 
Clinically, S2 manifests a more severe cognitive deficit at baseline, as evidenced by elevated 
ADAS and CDR scores, reduced MMSE scores, and lower levels of brain regional volumes. 
These suggested that S2 might represent a more severe or rapidly progressing form of the disease. 
However, when it comes to endpoint changes, S3 appears to deteriorate at a faster rate than S2 
regarding cognitive measures and neurodegeneration, indicating that Subtype 3 might experience 
a delayed but rapid cognitive decline, which suggested an A(-) N(+) C(+) profile in the NIA-AA 
framework. Moreover, the significantly greater increase versus other subtypes of ����/��in S2 
suggests potential variations in amyloid pathology or deposition. Interestingly, certain cognitive 
domains in S2 showed lesser deterioration or even improvement, coupled with a reduced rate of 
regional brain atrophy, which suggested an A(+) N(-) C(-) profile in the NIA-AA framework. 

Our data-driven subtyping can contribute to connecting the subtypes into the primary 
endpoint of clinical trials, which will facilitate patient specific therapeutic development. 
Traditional clinical trials often treat Alzheimer's patients as a homogenous group. However, the 
existence of distinct subtypes suggests that treatments could be more effective if they were more 
tailored. Targeted interventions can be designed by identifying which subtype an individual 
belongs to, which may increase the likelihood of therapeutic success. Moreover, aligning data-
driven subtypes with established biomarker frameworks, such as the NIA-AA’s AT(N)(C) 
classification, allows for a more integrated understanding of the disease. This can help in the 
identification of novel biomarkers and the development of therapies targeting specific pathways. 

Our study has some limitations. We did not include the comorbidity risk factors when 
modeled in the context of AD heterogeneity. This reduced the interpretation ability of identified 
AD progression patterns that may be affected by other diseases or drugs. In the future, we 
envision combining and comparing comorbidities longitudinally, thus extending our current 
analyses to understand the contribution of comorbidities in AD subtypes. The inclusion of 
patients from two different trials is an advance since it increased the variability in the sample and 
therefore, represented the AD population better, but it is also a limitation due to data variability 
in multiple studies considering different efficacy measure standards and irregular visit intervals. 
Future work can focus on better visit alignment and missing imputations. Our model has to pre-
specify the number of clusters in k-means clustering loss. However, we do not exactly know how 
many subtypes are in the datasets naturally, and it is sensitive to which datasets are used. Future 
studies should design a structure that can automatically optimize the selection of the best N of 
clusters during the model training process. 

In conclusion, we discovered three longitudinal patterns of AD subtypes by a novel 
outcome-regularized deep temporal clustering approach. Our study is an important step towards 
solving an unmet need, i.e., uncovering the subtypes of AD disease progressions with observed 
heterogeneity in neurology and biology. Moreover, our proposed models unravel the 
heterogeneity in AD that can enable precision medicine and potentially lead to successful 
disease-modifying treatments in the future. 
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Methods 

Study design and dataset 

Figure 1 shows the overall study design, including data preprocessing, subtype discovery, 
model training, and external validation, and clustering significance and stability evaluation. In 
this retrospective study, we used patient data in placebo groups from three randomized AD trials: 
505 in EXPEDITION1 (NCT0090537213, 2009-2012), 518 in EXPEDITION2 (NCT0090468313, 
2009-2012), and 1064 in EXPEDITION3 (NCT0190066514, 2013-2017). Patients in placebo 
groups allow us to investigate the disease progression without being confounded by the exposure 
to experimental drugs. The three trials tested Solanezumab, a humanized anti-amyloid 
monoclonal antibody, for its efficacy in slowing AD decline. They had similar entry criteria, 
including patients 55 years or older who met the criteria of the National Institute of Neurological 
and Communicative Diseases and Stroke–Alzheimer’s Disease and Related Disorders 
Association for probable AD. EXPEDITION1 and EXPEDITION2 included mild to moderate 
patients with MMSE scores of 16 to 26, while EXPEDITION3 included mild patients with 
MMSE scores of 20 to 26. They then underwent 80-week observations. For each patient, the time 
interval between two adjacent longitudinal measurements ranges from 4 to 16 weeks.  

Variables 

We included 8 demographics, 28 baseline clinical conditions, and 28 longitudinal clinical 
conditions’ changes in our model. The clinical conditions included cognitive assessments, 
imaging biomarkers, fluid biomarkers, quality-of-life assessments, and a neuropsychiatric 
assessment from three trials. The cognitive assessments included ADAS-cog14 (range 0 to 90, 
higher scores worse), ADCS-ADL (range 0 to 78, lower scores worse), CDR-SB (range 0 to 18, 
higher scores worse), and MMSE (range 0 to 30, lower scores worse). Imaging biomarkers 
contained v-MRI volumes of the whole brain and regional brains (e.g., hippocampi, entorhinal 
cortices, and ventricles) and amyloid PET imaging for the composite summary standard uptake 
value ratios (SUVRs). The fluid biomarkers are plasma �� levels. The quality-of-life 
assessments are QoL-AD (range 13 to 52, lower scores worse) and EQ-5D Proxy (range 0 to 100, 
lower scores worse). The neuropsychiatric assessment included NPI (range 0 to 144, higher 
scores worse). Supplementary Table 1 provides a summary of all variables in each cohort. 

Data Preprocessing 

We preprocessed the datasets by applying data harmonization, missing value imputation, 
and data transformation to all three trials. As each study can have variables with different names 
or units, careful harmonization was conducted. We matched the variable by reviewing the Case 
Report Form in each trial. We selected visits with assessments conducted or biomarkers collected 
(i.e., visits 1, 2, 3, 4, 5, 6, 10, 13, 16, 19, and 23.0 for EXPEDITION 1 and 2; visits 1, 2, 3, 5, 9, 
12, 15, 18, and 22 for EXPEDITION 3).  For features that have longitudinal changes, we 
calculated change values from the baseline to the visits, thus patients’ longitudinal trends were 
represented as a set of change value sequences. To deal with missing values, we leveraged 
various imputation strategies. Within a sequence, a missing value indicated that a test was not 
conducted during that visit. Assuming a patient’s condition stayed stable before and after a test 
visit, we filled in missing values by propagating the existing values forward and backward along 
a sequence. The remaining missing values were imputed by chained equations (MICE), which is 
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a multiple imputation method that builds a multivariate predictive model to infer the missing
values using the remaining features in a round-robin fashion20. Data from different distributions
were carefully standardized. We log-transformed skewed distributions (i.e.,  levels) into
Gaussian and Gaussian into z-distributions to make variables comparable. To reduce cognitive
variable redundancy, specific cognitive test items (e.g., test of Comprehension of Spoken
Language, Word-Finding Difficulty, and Naming Objects and Fingers in ADAS) were grouped
into cognitive functions as grouped variables (e.g., language in ADAS). Overall, the cognitive
test items of ADAS, CDR, and MMSE were grouped into 6 cognitive functions (i.e., complex
attention, executive function, language, learning and memory, perceptual-motor function, and
social cognition), respectively.  

Subtype discovery: Knowledge-Guided Deep Temporal Clustering (KG-DTC) model 

Fig 5 KG-DTC model structure 

 
[Caption] KG-DTC architecture. We used a temporal autoencoder to encapsulate the
multivariate baseline ( , ) and temporal features ( ) into a hidden representation H. The
hidden representation H is jointly derived to minimize the clustering loss and clinical outcome
regression loss. 

We developed a novel knowledge-guided deep temporal clustering model (see Fig. X).
that identifies patient clusters by deriving cluster-friendly embedding of temporal observations in
an end-to-end framework. Our model is built upon a sequence-to-sequence structure (seq2seq)
that encapsulates time-invariant and time-variant observations into a representation. Here, a
technical challenge is that the representation from the seq2seq does not necessarily form a cluster
Motivated by prior research that embeds clustering into representation learning21,22, we
encouraged the representation to form clusters by incorporating the k-means clustering loss
during training. Clinical outcomes are the main results that are measured at the end of a study to
see whether a given treatment worked. To leverage clinical outcomes as knowledge, we also
guided the representation to be discriminative to clinical outcomes of interest, in order to identify
highly responsive groups and less responsive groups. Details of each component are as follows. 

Temporal autoencoder (Seq2seq). We used gated recurrent units (GRUs) autoencoders
(AEs) for the seq2seq structure. We first instantiated the encoder as a batch normalization layer
connected with a 2-layer stacked GRUs23 to capture temporal and multiscale characteristics of
input data. We then utilized a single-layer GRU as the decoder to reconstruct the input. GRU is a
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variation of RNN with an additional relevance gate and updated gate, which can capture time 
dependencies over different periods and thus efficiently handles temporal patterns. AEs learn the 
embedded representations for high-dimensional data by reconstructing the input series and 
minimizing the reconstruction loss. 

Given 
  patients, the patients data were divided into three parts: demographic 
information � � ����� , baseline clinical conditions �� � ����� , and longitudinal clinical 
condition changes over visit t �� � ������	, where  � � �1, . . . , ��  and � was the total number 
of visits, and ��, �
, ��  were the number of features in each part, respectively. The static 
components �  and ��  were repeated for each time step � . We then concatenated the 
�,  ��, ��� ��  to form a sequence of feature vectors for patient � at visit � , denoted as ��,� �
��;  ��; ���, ��,� � �
, where � � �� � �
 � ��, was the total number of features. Therefore, the 
sequence of concatenated vectors for patient � across all visits can be represented as: �� � �	�
. 
We drop � for simplicity in the following notation. 

We first applied batch normalization over input � � �	�
. The output  � �	�
 is 

 � ! " #� $ %���&/()�*��� � + � �, 

where %��� is the expectation of �, )�*��� is variance of �, ! and � are parameters to be learned, 
and + is a constant added for numerical stability. For simplicity, we still use � as the output of 
batch normalization in the following notation. We then applied multi-layer GRU RNN to the � as 
encoder. Given input x�

�  at visit t, each layer l computed the following functions: 

.�
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� � 4�

� " 5��

� � 6�

� 7, 

*�
� � /��01��23�

� " ��
� � 4�

� " 5��

� � 6�

� 7, 

��
� � ���523�

� " ��
� �  4�

� " 2*�
� 8 5��


� 7 � 6�
� 7, 

5�
� � 21 $ .�

�7 8 5��

� � .�

� 8 ��
� , 

where .�
� , *�

� , and ��
�  were update, reset, new gates, respectively. The update gate .�

�  
helped the model to determine how much of the past information needs to be passed to the future. 
The reset gate *�

� defined how much of the past information to forget. The new gate combined the 
new input with the past hidden state to create new candidates for the hidden state. The W and U 
were the weight matrices and b was the bias for each gate in layer 9. The 5��


�
 was the past 

hidden state from the previous visit in the same layer. The 5�
�  was the combination of the new 

gate and the past hidden state, controlled by the update gate. The output 5�
�  was used as the input 

��
��
 for the next layer in the stacked GRU. Therefore, the final hidden representation from the 

encoder was 5�
��
 � ��, where 0 was the hidden size. 

The single-layer GRU decoder is essentially another RNN layer that takes hidden 
representation 5�

��
 generated by the encoder and aims to reconstruct the original input sequence. 
The computation process is the same as the encoder and the final hidden state returned by the 
decoder is ��

� . This sequence �� � #�

� , ��

� , … , �	
� & is the reconstructed version of the original 
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input sequence. We used mean square error (MSE) to evaluate the quality of the reconstruction, 
which can be formulated as  

;�������������� 
� 1/� " <#x= $ x&�

�

��


 . 

K-means clustering loss. We denoted the hidden representation 5�
��
 for 
 patients as 

> � ����. It is noted that the > obtained from the temporal autoencoder does not guarantee 
distinctive clusters. Hence, following previous work22, we encouraged > to form clusters while 
maintaining the reconstruction by regularizing the AEs through a soft k-means objective, defined 
as follows 

;���� ��  �  �* #>	>& $ �* #?	>	>?& /. �. ?	? � @, 
where ? � ����  denoted the cluster membership matrix, ?	 ? � @ , and k was the 

number of clusters. Minimizing the k-means clustering loss with >  was equivalent to 
maximizing the trace �* #?	>	>?&23. Since the learning of H was dynamic instead of static, the 
training process consisted of iteratively updating F and H. When fixing F, updating H can follow 
the standard stochastic gradient descent (SGD), encouraging the representations to form cluster 
structures. While fixing H, according to the Ky Fan theorem24, we updated F using the closed-
form solution to the trace maximization problem by computing the k-truncated singular value 
decomposition (SVD) of H. We fixed a cluster count of four in k-means clustering loss, which 
was commonly used in multiple previous AD subtyping studies25–27.  

Knowledge guidance. To enable the learned representation to be discriminative to the 
clinical outcomes, we introduced a multi-target multi-linear regression to encourage the learned 
representations to predict multiple clinical outcomes. We selected two primary clinical outcome 
assessments (i.e., total change of CDR-SB and ADAS-cog14 from baseline to end of observation) 
in the trials. We jointly trained the encoder that can detect multiple continuous clinical outcomes. 
Each patient had two clinical outcomes   � � !
",  #
#$�. We predicted the clinical outcomes 
 A% � 3&� " > �  6, where 3&� � ���� were the weights of the fully connected layers and b is 
the residual term. The loss between ground truth and predicted results are defined as 

;��'�������  � ∑ ∑ # A�,% $  �,%&��
��


�
%�
 . 

We jointly optimized the three training losses ;��������������, ;���� ��, and ;��'�������. 
To mitigate detrimental gradient interference in multi-objective learning, we use the gradient 
surgery to project conflicting gradients into the norm of other gradients28. Gradient surgery is a 
technique used to separate the gradients of different tasks, allowing the model to learn each task 
independently. This can help to prevent the gradients of one task from interfering with the 
gradients of another task, which can lead to suboptimal performance on one or more tasks. 
Throughout the training process, the batch size and hidden state feature size were set to 64 and 
32, respectively.     

After we trained the model, we obtained the deep temporal representation H for patients, 
which was used for downstream clustering tasks to determine distinct AD subtypes. Although the 
k-means clustering in our model provides the cluster membership (i.e., ?), we trained a Gaussian 
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mixture model (GMM) and generated final clusters to account for soft membership. To
determine the number of clusters k, we calculated the silhouette scores for k from 2 to 10 (Fig. 6
(A)). The silhouette score measures the similarity of an object to its own cluster compared to
other clusters. It ranges from -1 to 1, with a higher value indicating more cluster separation.
GMM is soft clustering, thus difficult to assign one sample to one cluster. We address this
challenge by setting the probability threshold of membership. The distribution of cluster
membership probabilities shows that subjects are concentrated in the probability interval of more
than 0.9 (Fig. 6 (B)). Thus, after obtaining the clusters from GMM, we selected the
representative “insider” patients for each cluster who had a cluster membership probability larger
than 0.9. 
 
Fig 6. Distribution of silhouette scores and predicted membership probabilities  

A 

 

B 

 

 

Model evaluation  

Cross-validation. We cross-validated the model on the discovery set to find the best
model (as illustrated in Fig. X.). To this end, we randomly partitioned the discovery set into
training, validation, and test sets in a ratio of 8:1:1 for training, best model selection, and final
model performance testing. In the cross-validation we focused on balancing the tradeoff between
multiple objectives: outcome prediction accuracy and clustering performance. We evaluated the
model's capability to learn a representation that could effectively predict clinical outcomes.
Despite incorporating clinical outcomes as a knowledge regularizer during training, the
representation might not always predict these outcomes accurately due to the optimization of
clustering.  

The performance of the regression tasks was measured by the  values. Higher 
values indicate that the model accounts for a good amount of variance of clinical outcome
variables.  We also evaluated our model’s clustering performance by silhouette scores and
UMAP visualization. A higher silhouette score indicates betterer clustering ability, and UMAP
facilitates the mapping of learned representations into a 2D plot to visualize the shape and
distribution of clusters. 

Ablation study. To examine the contributions of individual components (i.e., clustering
optimization and knowledge infusion) within our full model, we compared the full model against
three ablated models to assess the importance of each module: M1 with only temporal encoder,
M2 with temporal encoder and k-means clustering optimization, M3 with temporal encoder and
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knowledge infusion regression tasks. Performance is also assessed by silhouette score, UMAP 
plots, and clinical outcome prediction accuracy. 

Clustering evaluation 

Reproducibility. To further demonstrate the generalizability of the model and 
reproducibility of the clustering patterns, we externally validated the trained model in an 
independent cohort. We applied the trained KG-DTC model using the discovery set to the 
external set and compared the clusters derived from both sets. We compared the distribution of 
clustering membership by comparing UMAP plots. To evaluate the reproducibility of clinical 
implication (i.e., clinical outcome prediction) and clustering performance, we calculated the 
prediction accuracy and silhouette scores on the external set. 

Stability. We quantified the clustering stability using the ARI. ARI computes the 
similarity between two clustering results by counting pairs that are assigned to the same clusters 
in both clustering results29. It ranges from -1 to 1, with a score of 1 indicating a perfect match 
between two clustering results. To investigate the stability of clustering assignment against 
modest data perturbations, we adopted a LOO approach. In this approach, we randomly left out a 
small number of patients � � �1: 50� in the external set, applied the trained KG-DTC model, and 
obtained perturbed clustering results. This process was repeated 200 times for each setting, 
which allowed us to compare the stability of clustering. We measured the similarity between the 
200 different clustering results by calculating the ARI score. 

Interpretation. We conducted a feature importance analysis using a permutation-based 
approach to identify variables that uniquely determine the clusters. We first built classification 
models to predict cluster membership for patients by adding two fully connected layers to the 
trained KG-DTC model. To measure the importance of each feature (including both time-variant 
and time-invariant features) in determining the cluster membership, we calculated feature 
importance scores by permuting the inputs of the model. Specifically, we randomly shuffled the 
values patient-wise for both static and time-varying features and then measured the changes in 
the performance of the model on this shuffled set. Features with a larger decrease in performance 
were more important in determining the clusters. 

To gain a deeper understanding of clustering, we plotted the distribution of four clinical 
outcome measures (i.e., ADAS, CDR, MMSE, and ADL) across clusters. By separating the 
population into different paths of progression using the middle value of each clinical outcome, 
we were able to infer which cluster characteristics were informative regarding progression speed. 

Statistical significance tests. We conducted post-hoc statistical tests to identify variables 
that showed significant differences across clusters. For non-parametric variables, we used the 
Kruskal-Wallis test. For variables that followed a Gaussian distribution, we employed the 
ANOVA test, and for categorical variables, we utilized the Chi-squared test. These statistical 
analyses enabled us to determine whether baseline clinical conditions and clinical condition 
changes at the final visit were significantly different across clusters. This provided valuable 
insights into the distinct factors contributing to the separate clusters identified by our model. 
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Appendix Supplementary Materials 

Supplementary Figure 1. 
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