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Abstract

Postpartum depression (PPD), afflicting one in seven women, poses a major challenge in maternal

health. Existing approaches to detect PPD heavily depend on in-person postpartum visits, leading to

cases of the condition being overlooked and untreated. We explored the potential of consumer

wearable-derived digital biomarkers for PPD recognition to address this gap. Our study demonstrated

that intra-individual machine learning (ML) models developed using these digital biomarkers can

discern between pre-pregnancy, pregnancy, postpartum without depression, and postpartum with

depression time periods (i.e., PPD diagnosis). When evaluating variable importance, calories burned

from the basal metabolic rate (calories BMR) emerged as the digital biomarker most predictive of

PPD. To confirm the specificity of our method, we demonstrated that models developed in women

without PPD could not accurately classify the PPD-equivalent phase. Prior depression history did not

alter model efficacy for PPD recognition. Furthermore, the individualized models demonstrated

superior performance compared to a conventional cohort-based model for the detection of PPD,

underscoring the effectiveness of our individualized ML approach. This work establishes consumer

wearables as a promising avenue for PPD identification. More importantly, it also emphasizes the

utility of individualized ML model methodology, potentially transforming early disease detection

strategies.
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Introduction

Postpartum depression (PPD) is the most common complication of childbirth, occurring in

approximately one in seven women1. PPD can have several implications for women, manifesting in

ways such as irritability, mood swings, fatigue, sleep and appetite disturbance, and thoughts of

suicide2. Undetected PPD has also been shown to have financial implications for affected individuals,

as it can lead to challenges in maintaining employment or reduced work performance3. Furthermore,

PPD has been linked to an elevated risk of mood disorders in the child as well as paternal

depression4,5.

Unfortunately, PPD remains significantly underdiagnosed and undertreated, as indicated by

the strikingly low treatment rate of only 15%6. The current method of diagnosing PPD relies on

screening instruments, such as the Edinburgh Postnatal Depression Score (EPDS), Center for

Epidemiologic Studies of Depression instrument (CES-D), Patient Health Questionnaire (PHQ-9), and

Postpartum Depression Screening Scale (PDSS), where the EPDS is the most commonly used

instrument7. Often, women also need to undergo blood tests to assess thyroid function, as the

symptoms of PPD frequently overlap with hyperthyroidism7. Due to the challenges in diagnosing PPD,

traditional approaches using these screening tools contribute to inadequate screening of women and

subsequent underdiagnosis8,9. Therefore, the advent of new technologies is greatly needed to enable

adequate, and hopefully earlier, detection of PPD.

Digital health tools have been gaining traction in recent years due to the near-ubiquitous

ownership of smartphones10. Leveraging data passively collected by wearables (i.e., digital

biomarkers such as the average heart rate, total steps, and calories burned per day), coupled with

machine learning (ML) algorithms, provides an opportunity to model the relationship between digital

biomarkers and a particular disease for early recognition. Previous studies have demonstrated that

ML algorithms using digital biomarkers from smartwatches can predict cardiovascular diseases,

infection, diabetes, and mental health conditions11–14. For example, one study demonstrated that a

wearable device could estimate the changes in the severity of patients with major depressive disorder
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(MDD), where their findings indicated that ML models exclusively utilizing digital biomarkers from

wearables achieved moderate performance with correlation coefficients of 0.56 (95% CI: 0.39-0.73)

and 0.54 (95% CI: 0.49, 0.59) in the time-split and user-split scenarios between model predictions

and actual Hamilton Depression Rating Scale (HRDS) scores, respectively15. Another study recruited

moderately depressed individuals for four weeks to develop individualized ML models based on

digital biomarkers to predict mood. Their findings displayed a correlation between digital biomarkers

and depression, as evidenced by high-performing models with a mean absolute error (MAE) of 0.77 ±

0.27 points on the 7-point Likert scale, which corresponds to a mean absolute percent error (MAPE)

of 27.9 ± 10.3%16. Notably, both studies adopted an individualized (intra-individual) framework for

developing ML models, corroborating its potential for depression detection. However, while these

studies highlight a relationship between digital biomarkers and depression, they suffer from the

following limitations: 1) they do not assess whether models are applicable in a cohort of postpartum

women to detect PPD; and 2) they utilize data in the model that need active patient engagement with

partnered mobile applications, where user retention is known to decrease over time with

health-related apps17. Therefore, a method that provides continuous monitoring without the need for

clinical encounters to enable early detection of mental health disorders, including PPD, is needed.

The All of Us Research Program (AoURP) is a comprehensive dataset that collects several

health-related data, including surveys, electronic health records (EHRs), physical measurements, and

wearable data from Fitbit devices, with an emphasis on patient populations that have been previously

underrepresented in biomedical research18. Currently, the longitudinal Fitbit data from approximately

13,000 AoURP participants are made available to registered researchers on the All of Us Researcher

Workbench, providing an opportunity to explore digital biomarkers in a diverse cohort of participants.

It is unknown whether digital biomarkers from consumer wearables can be used to detect

PPD. Here, we combine several orthogonal approaches demonstrating that digital biomarkers can be

employed for individualized classification of PPD with data passively collected from Fitbit using the
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AoURP (Figure 1). As such, our findings uncover a novel method for recognizing PPD and serve as a

framework that can be leveraged to facilitate early PPD detection.
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Figure 1: An overview of the analysis workflow to evaluate the potential for digital biomarkers

in postpartum depression (PPD) recognition.

*RF = random forest, GLM = generalized linear models, SVM = support vector machine, KNN =

k-nearest neighbors
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Results

Descriptive statistics

Through computational phenotyping in the AoURP, a patient cohort of women who gave birth with

PPD (n = <20) and without PPD (n = 39) provided valid Fitbit data (Figure 2). The median age was

35.60 (interquartile range (IQR) 4.53) years, compared to those in the non-PPD cohort, which was

33.60 (IQR 4.85). The median and IQR were calculated for each digital biomarker across all women

in the PPD and non-PPD cohorts (Table 1). In both the PPD and non-PPD cohorts, we computed the

median and IQR number of days with digital biomarker data during the pre-pregnancy, pregnancy,

postpartum, and PPD (or PPD equivalent) time periods (additional details about the PPD-equivalent

time period, a similar fourth time period for those without PPD, can be found in the Materials and

Methods section) (Table 1). Briefly, digital biomarkers included in this analysis were daily average

heart rate (HR), standard deviation HR, minimum HR, Q1 HR, median HR, Q3 HR, maximum HR,

sum of steps, activity calories, calories BMR, calories out, fairly active minutes, lightly active minutes,

marginal calories, sedentary minutes, and very active minutes (see descriptions in Supplementary

Table 1).

Digital biomarker comparison across time periods of pregnancy reveals altered profiles and

heterogeneity between women.

Because of the known heterogeneity in depressive symptoms, we hypothesized that variability in

digital biomarkers may exist across individuals in the PPD cohort19. To probe this hypothesis, we

conducted linear mixed-effects models for each digital biomarker in women with PPD, where we

found the random effect of person ID was significant for all digital biomarkers, suggesting meaningful

variability across individuals (Supplementary Table 2). These results coupled with a smaller cohort

sample size prompted us to perform subsequent analyses using an intra-individual approach.
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Figure 2: A schematic of PPD computational phenotyping.
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Table 1: Descriptive statistics of the postpartum depression (PPD) and non-PPD patient

cohorts in the AoURP.

Sample size
PPD cohort Non-PPD

<20 39

Age (years)

PPD cohort Non-PPD
Median IQR Median IQR
35.60 4.53 33.60 4.85

Digital biomarkers
PPD Non-PPD

Digital biomarker Median IQR Median IQR Units
Average HR 74.23 12.30 78.31 11.65 bpm

SD HR 12.18 3.47 12.70 4.39 bpm
Minimum HR 54.00 11.00 57.00 9.00 bpm

Q1 HR 64.00 12.00 68.00 12.00 bpm
Median HR 72.00 12.00 76.00 12.00 bpm

Q3 HR 81.00 14.00 85.00 14.00 bpm
Maximum HR 124.00 18.00 127.00 22.00 bpm

Sum steps 7567.50 5652.25 7352.00 5996.00 steps
Activity calories 989.00 520.25 964.00 591.00 calories
Calories BMR 1466.00 160.00 1390.00 156.00 calories
Calories out 2236.00 471.25 2180.00 540.50 calories

Fairly active minutes 9.00 24.00 8.00 23.00 minutes
Lightly active minutes 245.00 126.00 245.00 122.50 minutes

Marginal calories 501.00 316.00 489.00 358.00 calories
Sedentary minutes 646.00 178.00 710.00 273.50 minutes
Very active minutes 2.00 18.00 4.00 21.00 minutes

Number of days in each time period across all women
PPD cohort Non-PPD cohort

Time period Median IQR Median IQR
Pre-pregnancy 206.00 159.00 227.00 231.25

Pregnancy 258.00 38.00 221.00 140.50
Postpartum 42.00 62.50 72.00 36.00

PPD 42.50 4.50 29.00 16.50
*HR = heart rate, SD = standard deviation, BMR = basal metabolic rate
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In women with PPD, we next sought to compare whether there was a difference in digital

biomarkers across different time periods of pregnancy, including pre-pregnancy, pregnancy,

postpartum, and PPD (where PPD represents both a time period and diagnosis). Therefore, an

intra-individual interrupted time series analysis (ITSA) and Tukey Honest Significance Differences

(HSD) tests were conducted for each digital biomarker. Because of the physiological changes

associated with pregnancy, such as increases in blood and stroke volume, in addition to the

behavioral fluctuations that occur during PPD, like a loss of energy and psychomotor retardation, we

hypothesized that all digital biomarkers (those related to heart rate, steps, physical activity, and

calories burned), would be altered across pre-pregnancy, pregnancy, postpartum, and PPD time

periods20–23. ITSA results supported our hypothesis and demonstrated a significant difference in all

digital biomarkers across time periods in the majority of women with PPD (Supplementary Table 3).

Consistent with ITSA findings, Tukey HSD results showed that several digital biomarkers were

significantly altered between PPD and other time periods (pre-pregnancy, pregnancy, and the

postpartum period) (Supplementary Tables 4 and 5). We further observed various trends in digital

biomarkers between pairs of time periods (i.e., PPD and pre-pregnancy, PPD and pregnancy, PPD

and postpartum, etc.) (Supplementary Table 6).

Individualized ML models effectively differentiate PPD from alternative time periods of pregnancy.

Having seen that digital biomarkers were significantly altered across multiple time periods of

pregnancy within women with PPD, we surmised that individualized multinomial ML models could

accurately distinguish between our four time periods of pregnancy (pre-pregnancy, pregnancy,

postpartum, or PPD) (Supplementary Tables 3-6). To probe this hypothesis, intra-individual ML

models were generated using random forest (RF), generalized linear model (GLM), support vector

machine (SVM), and K-nearest neighbor (KNN) to conclude which algorithm would yield the

best-performing results. Models were assessed using a combination of the multiclass area under the

Receiving Operator Characteristics curve (hereafter referred to as mAUC) and kappa, which are two
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frequently used metrics24,25. After averaging the mAUC for individual models within each algorithm,

the results revealed that RF models performed the best, followed by GLM, SVM, then KNN with an

average mAUC of 0.85, 0.82, 0.75, and 0.74, respectively (Figure 3A). Assessing models in a similar

fashion using another metric, kappa, displayed concordant results in RF (0.80), GLM (0.74), SVM

(0.72), and KNN (0.62) model performance, suggesting that the RF algorithm had the best

performance and should be used going forward (Figure 3B).

Since our analysis aimed to assess the potential of digital biomarkers for personalized

classification of PPD, we sought to further examine each RF model’s performance via a confusion

matrix. Thus, the average sensitivity, specificity, precision, recall, and F1 score were calculated

across all individual models, where the results for the PPD class were 0.79, 0.95, 0.84, 0.79, and

0.81, respectively (Figure 3C). The same metrics for the pre-pregnancy, pregnancy, and postpartum

classes were also calculated (Supplementary Figures 1A-C).
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Figure 3: Individualized RF models exhibited the best performance for multinomial time period

classification.

A: The multiclass AUC (mAUC) across individual random forest (RF), generalized linear model

(GLM), support vector machine (SVM), and K-nearest neighbor (KNN) models.

B: The kappa value across individual RF, GLM, SVM, and KNN models.

C: The sensitivity, specificity, precision, recall, and F1 score across individualized multinomial RF

models for the PPD time period.
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The average mAUC and kappa values of individualized RF models were higher than that of GLM,

SVM, and KNN models. Utilizing individualized RF models resulted in an average sensitivity,

specificity, precision, recall, and F1 score with good performance for recognizing the PPD time period.

Data are expressed as mean ± standard deviation (SD) in A-C.
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In order to ensure the widespread applicability of these algorithms to a diverse range of

women, we did not exclude individuals with a history of depression either before or during pregnancy.

Therefore, we sought to determine whether having depression pre-pregnancy or during pregnancy

impacted individual model performance, specifically for recognizing the PPD class. To answer this

question, we computed the average sensitivity, specificity, precision, recall, and F1 score within the

group of women experiencing PPD, categorized based on their depression history: 1) no prior history

of depression; 2) history pre-pregnancy; 3) history during pregnancy; or 4) history of both

pre-pregnancy and during pregnancy. Notably, the findings revealed no statistically significant

variations in any of these metrics between women with a history of depression during the

pre-pregnancy and/or pregnancy time periods and those without such a history (Supplementary

Figure 2). Promisingly, this suggests the potential for a forthcoming technology focused on detecting

PPD through digital biomarkers to be relevant for women with or without a previous history of

depression before and/or during pregnancy.

Individualized ML models for PPD recognition were specific.

To validate our approach of using digital biomarkers in individualized ML models for PPD detection,

we aimed to test our strategy in a cohort of women who had given birth but did not experience PPD.

Given that women without PPD didn't have a distinct PPD-specific time period as observed in the

PPD cohort, we introduced a fourth time segment in the non-PPD cohort (hereafter referred to as the

PPD-equivalent time period). Following the same ML pipeline as the PPD cohort, individualized RF

models were built for women in the non-PPD cohort. If our conjecture holds, we anticipate observing

elevated model metrics during the pre-pregnancy and pregnancy time periods, accompanied by

diminished performance in the postpartum and PPD-equivalent time segments. This expectation

arises from the idea that digital biomarkers remain unaltered during the postpartum and

PPD-equivalent time periods, resulting in the model's inability to differentiate between them.
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In line with our hypothesis, the sensitivity, specificity, precision, recall, and F1 scores

substantiated that ML models effectively identified the pre-pregnancy (0.89, 0.91, 0.88, 0.89, and

0.88, respectively) and pregnancy (0.85, 0.91, 0.87, 0.85, and 0.86, respectively) time intervals

through digital biomarkers (Figure 4). When compared to model performance in the pre-pregnancy

and pregnancy time periods, there was no significant reduction in model performance during the

postpartum period (0.74, 0.96, 0.76, 0.74, and 0.75, respectively); however, a noticeable decline in

performance was observed during the PPD and PPD-equivalent time periods(0.52, 0.99, 0.69, 0.52,

and 0.61, respectively) (Figure 4). To further assess potential variations in the classification

performance between the PPD and PPD-equivalent time periods, we carried out a t-test comparing

the average sensitivity, specificity, precision, recall, and F1 score between the PPD and non-PPD

cohorts for these respective time periods. The findings indicated a statistically significant decrease in

sensitivity, precision, recall, and F1 score when predicting the PPD-equivalent time period in the

non-PPD cohort, as opposed to predicting the PPD time period within the PPD cohort (Figure 5). On

the other hand, specificity remained largely unchanged (Figure 5). Collectively, these outcomes

offered a layer of validation to the effectiveness of this approach in identifying PPD, reinforcing the

agreement that personalized models utilizing digital biomarkers can indeed effectively recognize

PPD.
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Figure 4: ML models did not accurately detect the PPD-equivalent time period in women

without PPD.

The sensitivity, specificity, precision, recall, and F1 score of individualized ML models in women

without PPD for predicting the pre-pregnancy (top left), pregnancy (top right), postpartum (bottom

left), and PPD-equivalent (bottom right) time periods. The sensitivity, specificity, precision, recall, and

F1 score were diminished for recognizing the PPD time period compared to the pre-pregnancy,

pregnancy, and postpartum time periods. Data are expressed as mean ± SD.
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Figure 5: Individualized ML models for PPD recognition outperformed those in women without

PPD detecting the PPD-equivalent time period.

The sensitivity, specificity, precision, recall, and F1 score across individual RF models for women in

the non-PPD cohort for the pre-pregnancy (top left), pregnancy (top right), postpartum (bottom left),

and PPD or PPD-equivalent time periods (bottom right). On average, individualized model

performance was not significantly different for sensitivity, specificity, precision, recall, and F1 score for
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predicting the pre-pregnancy, pregnancy, or postpartum time periods between women in the PPD and

non-PPD cohorts. Individualized model performance was reduced for sensitivity, precision, recall, and

F1 score, while specificity did not differ between the PPD and non-PPD cohorts. Data are expressed

as mean ± SD.
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Calories burned during basal metabolism (calories BMR) was the most predictive digital biomarker of

PPD.

In order to elucidate which digital biomarkers were most predictive of the PPD class, we performed

SHapley Additive exPlanations (SHAP) to explain individual predictions for each digital biomarker

across all random forest intra-individual models26. Features were sorted based on their predictive

value for the PPD class within each individual model, and subsequently, the occurrences of each

digital biomarker ranking in the top five across all intra-individual models were tallied, where an

example beeswarm plot for one woman is shown in Supplementary Figure 3. This process aimed to

identify whether any digital biomarkers consistently played a crucial role in predicting the PPD class.

The results displayed that the top five features most frequently ranked in the top five were calories

BMR, average HR, Q1 HR, lightly active minutes, and minimum HR (Figure 6A). Interestingly, calories

BMR ranked in the top five features predictive of the PPD class in 95-100% of the models and was

the number one rated digital biomarker in 80-85% of individualized models (Figure 6A).

To add a layer of robustness to our approach assessing which features were most predictive of

the PPD class, the variable importance of each digital biomarker was also calculated using a

permutation approach27. Consistent with our findings obtained using SHAP, the top five ranking digital

biomarkers for the PPD class were calories BMR, average HR, Q1 HR, minimum HR, and lightly

active minutes (Figure 6B). Calories BMR again ranked in the top five digital biomarkers predictive of

the PPD class 95-100% of the time and ranking number one 95-100% of the time (Figure 6B).
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Figure 6: The variable importance rankings demonstrated that calories burned during the

basal metabolic rate (calories BMR) is the most predictive digital biomarker of the PPD class.
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A: The percentage of women with the top five digital biomarkers ranked among the top five most

predictive features of the PPD class (top left) and the most predictive feature of the PPD class (top

right) based on SHAP.

B: The percent of women with the overall top five digital biomarkers ranked among the top five most

predictive features of the PPD class (bottom left) and the most predictive feature of the PPD class

(bottom right) based on a permutation-based approach of variable importance.

Calories BMR, average HR, Q1 HR, lightly active minutes, and minimum HR most frequently

emerged as the top five digital biomarkers with the highest predictive value for the PPD time period

within the PPD cohort. Calories BMR most often ranked as the number one digital biomarker

predictive of PPD.
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Because of the intriguing observation that calories BMR was highly predictive of PPD across

all models, we sought to better understand its relationship with the PPD class in our models using

SHAP dependence plots to visualize and calculate the Pearson correlation coefficient between the

PPD time period with the pre-pregnancy, pregnancy, or postpartum time periods (see Supplementary

Figures 4A-C for example plots from individual women). Across all individual SHAP dependence plots

of calories BMR filtered in the pre-pregnancy/PPD time periods, our initial observation revealed that

95-100% of women exhibited a significant Pearson correlation coefficient (Figure 7A). Among these,

60-65% displayed a positive relationship, indicating an elevated calories BMR during the PPD period

relative to pre-pregnancy (Figure 7A). Compared to pre-pregnancy/PPD, it was observed that 75-80%

and 85-90% of individualized SHAP dependence plots of calories BMR during pregnancy/PPD and

postpartum/PPD time periods exhibited a significant Pearson correlation coefficient, respectively

(Figure 7A). Of those, 60-65% and 85-90% of women during pregnancy/PPD and postpartum/PPD

demonstrated a negative relationship, respectively, suggesting a decrease in calories BMR is

predictive of PPD relative to pregnancy and postpartum time periods (Figure 7A). SHAP dependence

plots were also generated for individualized models of the other top four digital biomarkers predictive

of PPD (average HR, Q1 HR, minimum HR, and lightly active minutes) in pre-pregnancy/PPD,

pregnancy/PPD, and postpartum/PPD time periods (Figure 7A). Notably, during the

pre-pregnancy/PPD time periods, half of the women exhibited a positive relationship in plots of lightly

active minutes, indicating an increase in lightly active minutes associated with PPD in those models

(Figure 7A). To examine the rise in lightly active minutes relative to other digital biomarkers of motion

(sedentary minutes, fairly active minutes, and very active minutes), we calculated the ratio of the

number of lightly active minutes to each of the three other digital biomarkers across all individuals.

Here, we observed that the average (and standard deviation) ratios of lightly active minutes to

sedentary minutes, fairly active minutes, and very active minutes were 0.35 (0.49), 17.7 (4.92), and

21.72 (5.11), respectively (Supplementary Figure 5).
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For a more comprehensive evaluation of the connection between calories BMR and PPD, we

also crafted SHAP dependence plots from individualized ML models for women without PPD. When

first assessing the number of women with a significant correlation in SHAP dependence plots of

pre-pregnancy/PPD-equivalent, pregnancy/PPD-equivalent, and postpartum/PPD-equivalent time

periods, the results displayed that 75-80%, 70-75%, and 65-70% had a significant relationship,

respectively (Figure 7B). Of those, there were an equal number of women with a positive and

negative relationship in the pre-pregnancy/PPD-equivalent time periods, compared to the PPD cohort

where the majority of women (60-65%) exhibited a positive relationship (Figure 7B). This implies that

among women in the PPD cohort, an escalation in calories BMR corresponds to a higher likelihood of

PPD when compared to the pre-pregnancy time period (Figures 7A and 7B). On the other hand,

within the non-PPD cohort, there is no uniform pattern of association between calories BMR during

the pre-pregnancy and the PPD-equivalent time periods across all women, highlighting the distinctive

nature of our observation. During the pregnancy/PPD-equivalent and postpartum/PPD-equivalent

time frames, 80-85% and 75-80% of women, respectively, exhibited a significant correlation in SHAP

dependence plots between calories BMR and Shapley values (Figure 7B). As anticipated, this follows

a similar pattern to women in the PPD cohort (Figure 7A). These findings implied that a reduction in

caloric intake and BMR is linked to PPD (or PPD-equivalent) time periods in contrast to the

pregnancy or postpartum periods (Figures 7A and 7B).
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Figure 7: The direction of digital biomarkers in ML models for PPD classification was

heterogeneous.
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A: The percent of women in the PPD cohort with a significant Pearson correlation (left) and the net

relationship (right) for the top five overall ranked digital biomarkers for PPD classification.

B: The percent of women in the non-PPD cohort with a significant Pearson correlation (left) and the

net relationship (right) for the top five overall ranked digital biomarkers for PPD-equivalent

classification.

The proportion of women displaying a significant Pearson correlation coefficient between SHAP

values and digital biomarkers varied in both the PPD and non-PPD cohorts. Among those

demonstrating a significant relationship in SHAP dependence plots during the pre-pregnancy/PPD

(and pre-pregnancy/PPD-equivalent) time periods, the correlation pattern for SHAP values and

calories BMR differed: the majority of women exhibited a positive correlation in the PPD cohort, while

there was no uniform pattern amongst women in the PPD-negative cohort. For women in the

pregnancy/PPD and postpartum/PPD (and PPD-equivalent) time periods, the majority of women

demonstrated a negative relationship between SHAP values and calories BMR in both the

PPD-positive and negative cohorts.
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To showcase the effectiveness of our approach employing individualized ML models for PPD

detection, we constructed an ML model using conventional techniques. In this endeavor, we

harnessed the PPD and PPD-equivalent time periods of the PPD and non-PPD cohorts, respectively,

enabling a comparative assessment of our individualized approach compared to conventional

methods using a binomial model for the classification of individuals with or without PPD. By

evaluating model outcomes through metrics such as sensitivity, specificity, precision, recall, and F1

score, we found that the average performance of the individualized model surpassed that of the

cohort-based strategy (Figure 8). Specifically, in the individualized approach, we observed sensitivity,

specificity, precision, recall, and F1 score values of 0.78, 0.95, 0.84, 0.78, and 0.81, respectively, in

contrast to 0.54, 0.55, 0.49, 0.54, and 0.52 for the cohort-based approach (Figure 8).
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Figure 8: Individualized ML models outperformed a cohort-based model for PPD recognition.

The sensitivity, specificity, precision, recall, and F1 score of individualized ML models in women in the

PPD cohort detecting the PPD time period were compared to a cohort-based model for PPD

classification. Data are expressed as mean ± SD.

On average, the sensitivity, specificity, precision, recall, and F1 score were elevated in individualized

ML models using digital biomarkers among women in the PPD cohort, specifically for the PPD time

period, compared to a conventional binomial model designed for PPD or non-PPD classification using

digital biomarkers.
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Discussion

Here, our multifaceted analysis demonstrated that 1) digital biomarkers differed between phases of

pre-, during, and post-pregnancy periods (up to 2 years pre-pregnancy, pregnancy, postpartum, and

PPD) (Supplementary Tables 3-6); 2) personalized N-of-1 ML models using digital biomarkers from

consumer-grade wearables were able to classify PPD and other time periods of pregnancy (Figure 3

and Supplementary Figure 1); 3) a history of depression before or during pregnancy did not impact

individualized ML model performance for PPD recognition (Supplementary Figure 2); 4) calories

BMR, average HR, Q1 HR, lightly active minutes, and minimum HR were the most influential digital

biomarkers in predicting the PPD time period across all individualized models (Figures 6A and 6B);

and 5) individualized ML models for PPD recognition outperformed the traditional cohort-based model

approach (Figure 8). The results presented in this work provide a new opportunity for the potential to

leverage passively collected digital biomarkers from consumer-grade wearables to facilitate early

detection of PPD.

To the best of our knowledge, this is the first study presenting that individualized ML models

using passively collected digital biomarkers from consumer-grade wearables can recognize PPD.

PPD is most commonly diagnosed using the EPDS, which suffers from the following limitations: 1)

postpartum women must attend follow-up visits assessed by care providers for PPD screening, where

the rate of postpartum visits is highly variable; 2) using the EPDS only captures the mental health of a

woman at a single point in time; and 3) the EPDS uses self-reported symptoms, which may not be

representative of a patient’s actual mental health status28–30. For these reasons, the development of

our approach using passively monitored digital biomarkers from consumer wearable technology may

serve as an effective tool for facilitating the detection of PPD in an individualized fashion, especially in

non-clinical settings.

Because of the variation in digital biomarkers detected between women across different time

periods, our limited sample size, and the availability of continuous intra-individual data, our study was
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geared towards an individualized analytic approach (Supplementary Table 2). The observed variability

across individuals is consistent to previous studies that have emphasized the heterogeneous nature

of depression prompting individualized methodologies16,19,31–33. Moreover, ITSA and Tukey HSD

results revealed that digital biomarkers were significantly altered between time periods within each

woman (Supplementary Tables 3-6). Overall, there were numerous individual-level alterations, which

can be explained by the considerable heterogeneity in depressive symptoms19. Collectively, these

data suggest that digital biomarkers were significantly different across time periods within each

person leading us to believe that individualized ML models would be able to accurately discriminate

between PPD and other time periods involved with pregnancy.

Our study also highlights the strength of utilizing individualized N-of-1 ML models using digital

biomarkers for identifying PPD. Our findings underscored the models' ability to differentiate between

distinct pregnancy phases—namely, pre-pregnancy, pregnancy, postpartum, and PPD time periods

(Figure 3 and Supplementary Figure 1). Notably, our approach's validity was confirmed by the

noticeable decrease in model performance during the PPD-equivalent time period for the non-PPD

cohort compared to the PPD time period within the PPD cohort (Figures 4 and 5). This observation

demonstrated the distinct behavioral shifts that are observed during the onset of PPD, effectively

captured by digital biomarkers2. Furthermore, our results did not indicate a significant variation in

individualized model performance across the four pregnancy time periods among women with a

history of depression prior to or during pregnancy (Supplementary Figure 2). This accentuated the

robust capability of individualized models to differentiate between time periods based on the distinct

behavioral characteristics and metabolic shifts linked to PPD post-pregnancy, as opposed to the

behavioral changes exhibited by each woman before pregnancy or during pregnancy. This suggests

that forthcoming technology centered around detecting PPD through digital biomarkers could have

relevance for both individuals with and without a pre-existing history of depression before and/or

during pregnancy. Future studies should be conducted in a prospective framework to validate our

individualized methodology.
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Another crucial finding from our study revealed that the vital digital biomarkers for PPD

classification were calories BMR, average HR, Q1 HR, minimum HR, and lightly active minutes,

where calories BMR was the most predictive feature (Figures 6A and 6B). Therefore, we constructed

SHAP dependence plots to enhance our understanding of the relationship between calories BMR and

PPD. Plots during pre-pregnancy/PPD suggested that elevated calories BMR is predictive of PPD,

which could be attributed to a variety of factors, such as heightened stress levels or metabolic

alterations associated with PPD (Figure 7A)2,34. During pregnancy/PPD and postpartum/PPD time

periods, the relationship between Shapley and actual values of calories BMR flipped, signifying an

increased number of calories BMR was inversely associated with PPD (Figure 7A). The negative

relationship in the context of pregnancy/PPD can likely be derived from the metabolic changes during

pregnancy, resulting in an increased basal metabolic rate35. In the context of postpartum/PPD, we

speculate that the negative relationship is because the median duration between the delivery date

and PPD diagnosis is 83 days, where patients may not have fully returned to their pre-pregnancy

physiological or behavioral patterns, which can take up to six months36. As a result, the relationship

between Shapley values and actual values of calories BMR may reflect this transitional period and

the ongoing postpartum changes experienced by women.

On the other hand, during the pre-pregnancy/PPD-equivalent time periods for women in the

non-PPD cohort, SHAP dependence plots failed to unveil a uniform connection between calories

BMR and the PPD-equivalent time period, likely due to physiological distinctions, lifestyle changes

during pregnancy, and random dissimilarities among women23,37–39. However, the comparison of

SHAP dependence plots across pregnancy/PPD-equivalent and postpartum/PPD-equivalent time

periods for women within the non-PPD cohort exhibited a consistent negative correlation, similar to

what was observed in the PPD cohort (Figures 7A and 7B). This trend is likely a result of the common

occurrence of an increased basal metabolic rate during pregnancy35. In the context of the

postpartum/PPD-equivalent time periods, our utilization of an index date set at 83 days after delivery

– the median number of days after delivery for PPD diagnosis in the PPD cohort – implies that
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women likely have not fully returned to their pre-pregnancy physiological baseline36. This aligns with

the parallel observation seen during the pregnancy/PPD-equivalent time periods, reaffirming the

persisting metabolic effect postpartum.

In the PPD cohort, the SHAP dependence plots for average HR, Q1 HR, and minimum HR

during pregnancy/PPD also demonstrated a negative relationship indicating that higher values of

these digital biomarkers are inversely associated with PPD (Figure 7A). This relationship may be

ascribed to the elevated heart rate commonly observed during pregnancy, which is a physiological

response resulting from vascular remodeling for promoting augmented blood flow to the uterus40–42.

Additionally, there was a positive correlation between the increase in lightly active minutes and the

occurrence of PPD in the pregnancy/PPD time periods, which may be explained by an inverse

relationship between lightly active minutes and fairly active minutes/very active minutes

(Supplementary Figure 5). Specifically, a higher number of lightly active minutes is concomitant with a

decrease in the amount of time spent in fairly active and very active physical activities, aligning with

the well-established understanding that reductions in overall physical activity can contribute to an

increase in depressive symptoms43. In contrast, among women without PPD, a notable correlation

was found solely in the pre-pregnancy/PPD-equivalent time periods concerning minimum HR, where

an elevation in minimum HR was linked to the PPD-equivalent time period (Figure 7B). Although a

subset of women demonstrated a significant correlation in SHAP dependence plots concerning digital

biomarkers of average HR, Q1 HR, or lightly active minutes across pre-pregnancy/PPD-equivalent,

pregnancy/PPD-equivalent, or postpartum/PPD-equivalent time periods, the overall proportion of

women exhibiting such patterns was insufficient to draw definitive conclusions regarding the

relationship between digital biomarkers during the pre-pregnancy, pregnancy, or postpartum time

periods compared to the PPD-equivalent time period (Figure 7B). We postulate that the contrasting

patterns of digital biomarkers among women in the PPD and non-PPD cohorts imply potential

differences in these biomarkers for women who eventually experience PPD. Therefore, it may
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become plausible to utilize ML models during pre-pregnancy or pregnancy time periods to predict a

woman's risk for future PPD onset.

In general, prior investigations have adhered to conventional ML strategies, revolving around

the development of a solitary model. In this paradigm, a model is constructed employing an extensive

patient dataset encompassing individuals exhibiting either continuous outcomes (for

regression-based models) or categorical outcomes. Subsequently, when a new patient is introduced,

the model generates predictions for the patient based on their data and the pre-established model44.

While this approach carries advantages, it is beset by two primary limitations: 1) reliance on an ample

sample size and 2) neglecting to accommodate the diverse and heterogeneous spectrum of

depressive symptoms16. Hence, a captivating domain of exploration has honed in on crafting

intra-individual ML models within the realm of depression. This advancement tackles the constraints

of conventional approaches in two ways: first, it sidesteps the need for an extensive sample size,

given that the model is solely tailored to a single patient's data; and second, it conscientiously

acknowledges the heterogeneous spectrum of depressive symptoms through a focused evaluation of

the unique behaviors exhibited by that specific patient.

The use of individualized models may serve as a superior preference compared to those

formulated using cohort-based methodologies. For instance, a cross-sectional study using traditional

ML models from Fitbit data from healthy adults to predict depression severity only displayed a

moderate AUC range of 0.51-0.66. Moreover, while the results demonstrated commendable

specificity (0.98-1), sensitivity exhibited marked inadequacy (0.03-0.13)45. Another study aimed to

investigate the potential of ML models utilizing digital biomarkers in distinguishing between patients

with unipolar and bipolar depression against healthy controls. However, the most successful model

exhibited an accuracy rate of 0.73 (73%) and a kappa value of 0.44, which doesn't qualify as a

notably high-performing model46,47. Additional investigations have also materialized within a

cohort-based framework; nevertheless, these studies grapple with a noteworthy drawback – they

incorporated patient mood as a predictive feature in their models. Considering that these studies
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aimed to predict the severity of depression, it's unsurprising that these models exhibited heightened

performance levels13,48.

In order to effectively underscore the viability of personalized ML models over cohort-based

methods, our study directly juxtaposed the performance of both approaches (individualized versus

cohort-based ML models) side-by-side. Notably, our findings vividly showcased the superior

performance achieved through the personalized methodology for the PPD class (average sensitivity =

0.78, specificity = 0.95, precision = 0.84, recall = 0.78, F1 score = 0.81) in comparison to conventional

techniques with a cohort-based model (sensitivity = 0.54, specificity = 0.55, precision = 0.49, recall =

0.54, F1 score = 0.52), leveraging digital biomarkers from Fitbit for PPD detection (Figure 8). This

outcome accentuated that individualized models present an encouraging avenue for crafting ML

models aimed at identifying mood disorders.

Although this study provides a strong foundation for using digital biomarkers to classify PPD, it

is not without limitations. First, the study faced constraints due to the restricted number of patients

available, which hindered the implementation of conventional ML techniques. However, due to the

limited sample size, we opted for an individualized approach, which not only addressed the small

sample size but also provided a means to accommodate the inherent variability within individuals19.

Second, the process of phenotyping PPD patients relied on a PPD diagnosis or medication usage,

which could potentially lack specificity in diagnostic codes and miss undiagnosed cases. Third, our

approach assumed a standard pregnancy length of nine months, which may not always align with

individual variations. Fourth, there are several layers of confounding that occur during the different

phases of pregnancy that may indirectly influence digital biomarkers and ML models, especially as it

relates to PPD classification, such as 1) significant hormonal changes that impact physical and

mental states; 2) metabolic changes that occur as a result of pregnancy; 3) increased levels of stress

during pregnancy and the postpartum period; 4) modifications to one’s lifestyle, such as food

consumption, during pregnancy and the postpartum period; and 5) alterations in physical activity

during the postpartum period as a result of birthing complications49–53. Fifth, this study excluded
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patients with chronic conditions to mitigate the potential influence of those conditions on digital

biomarkers. Sixth, sleep data was absent in the AoURP dataset at the time of this analysis, although

it might also hold predictive value for PPD. Furthermore, it may be beneficial for subsequent analyses

to account for features like seasonal variation that may also indirectly influence behavior54.

Overall, the findings from this study suggest it is feasible to characterize PPD in addition to

other time periods of pregnancy using passively collected digital biomarkers from consumer-grade

wearables. The development of individualized models allows for a personalized approach to capture

behavioral differences in the form of digital biomarkers. This research lays a robust foundation for

forthcoming applications aimed at enhancing the early detection of PPD, a condition that is often

underdiagnosed and undertreated. Moreover, on a broader scale, it indicates the exciting potential for

intra-individual ML models to be extended to various health conditions.
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Materials and Methods

Data source and platform:

This study uses the All of Us Research Program (AoURP) Registered Tier Dataset v6. Study analysis

was performed using the AoURP Researcher workbench cloud platform. All computational

phenotyping, data processing, data analysis, and ML were conducted using R. The daily average HR,

standard deviation HR, minimum HR, Q1 HR, median HR, Q3 HR, and maximum HR were calculated

using the Fitbit Heart Rate Level table. The sum of steps was calculated using the Fitbit Intra Day

Steps table. Activity calories, calories BMR, calories out, fairly active minutes, lightly active minutes,

marginal calories, sedentary minutes, and very active minutes were taken from the Fitbit Activity

Summary table.

Measures to protect patient privacy

In compliance with the Data and Statistics Dissemination Policy of the AoURP, counts of less than 20

cannot be presented to mitigate the risk of patient re-identification55. Since the cohort of patients with

PPD presented in this analysis consists of less than 20 patients, percentages were presented as

percent ranges (e.g., instead of presenting 53%, the data was presented as 50-55%). Publication of

results in this manner has been approved by the AoURP Resource Access Board (RAB).

Furthermore, race and ethnicity were not reported due to the limited sample size as requested by the

AoURP RAB.

Computational phenotyping

Identifying women with postpartum depression (PPD)

Women with PPD were identified in the following three-fold approach: 1) selecting women with a

diagnosis of PPD using the condition data; identifying women with a record of 2) pregnancy or 3)
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delivery, who have been diagnosed with depression and/or have antidepressant drug exposure during

the postpartum period.

The first branch of the three-fold approach to creating a cohort of women with PPD was

performed using Observational Medical Outcomes Partnership (OMOP) concept IDs in the Condition

table based on the Observational Health Data Science and Informatics (OHDSI) initiative in

Supplementary Table 756. For both the second and third branches of the method, we first identified

women with a record of delivery (using condition data) or pregnancy (using Condition and Survey

tables) based on concept IDs from previously published work in Supplementary Table 757. Next, the

data was filtered on the earliest record of delivery/pregnancy to capture and analyze digital biomarker

data during the pre-pregnancy period. To estimate the date of pregnancy or delivery (depending on

which was available for that individual), the date observed in the electronic health record (EHR) from

the AoURP was adjusted by adding or subtracting nine months, which is a typical length of

pregnancy58. Our next step was to estimate the window of the postpartum period to monitor

depressive symptoms, which was defined as starting from the date of delivery and spanning 24

months after that date59,60. Consistent with other EHR computational phenotyping studies of PPD,

individuals were also classified as being PPD positive if they had a diagnosis of depression in the

condition table and/or antidepressant drug exposure within the postpartum window61 (Supplementary

Table 7). Specific concepts containing the terms "episode", "remission", "reactive", "atypical",

"premenstrual", "schizoaffective", and "seasonal" were excluded when identifying individuals with a

depression diagnosis since they would not appropriately capture women with a persistent depression

during the postpartum period. If a woman in the PPD cohort showed records of depression diagnosis

and antidepressant drug exposure, we selected the earliest record to be considered the index date.

For women with pregnancy and delivery data available, the index date and data used were based on

the delivery record since this provided an elevated level of confidence in defining the postpartum

period and, subsequently, whether the depression diagnosis/antidepressant drug exposure occurred
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during the postpartum period. Lastly, the final PPD cohort was generated by selecting unique women

from each of the three branches of our approach.

Identifying women without PPD

To establish a cohort of women unaffected by PPD, we applied the identical rationale to the second

and third branches of our PPD phenotyping, as described above. Subsequently, women with records

indicating PPD or depression diagnosis during the postpartum period from the condition table, or any

instances of antidepressant drug usage from the drug exposure table, were excluded.

Data preparation for analysis and individualized ML models

To prepare the data for analysis and individualized ML models using wearable data, we first merged

day-level data from the Fitbit (HR, steps, physical activity, and calories burned; see Supplementary

Table 1 for more information on digital biomarkers) for each individual ranging from two years prior

through 30 days after the index date to capture their behavior before, during, and after pregnancy.

Previous studies have demonstrated that HR, steps, and activity measurements from Fitbit are fairly

accurate and can be used for research purposes62,63. The decision to choose measures related to HR

instead of resting HR was based on the availability of data and the consideration of having enough

measurements for each individual to train ML models. Digital biomarker data was filtered on days of

“compliant” data, which was characterized by 1) at least 10 hours of Fitbit wear time within a day and

2) between 100 and 45,000 steps, as seen in previous studies64. Individuals from the PPD cohort

were excluded from individualized ML models if they possessed less than 50 days of total data.

Statistical analysis

Linear mixed-effects models

The lme4 and lmerTest packages in R were utilized to construct hierarchical linear regression models,

aiming to assess the presence of noteworthy differences among women and examine the relationship
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between each time period and digital biomarker65,66. To assess if there was a significant level of

variation in digital biomarkers between individuals, we processed data to calculate the average value

of each digital biomarker during each time period (e.g., average HR during pre-pregnancy, average

HR during pregnancy, average HR during postpartum, average HR during PPD, etc.) and conducted

linear mixed-effects models with person ID as the random effect. One model was built for each digital

biomarker, where the digital biomarker served as the outcome variable, time period was considered

the independent variable, and person ID was incorporated as a random effect. The presence of

significant variability among individuals was evaluated using the performance package at a

significance level of 0.0567.

Interrupted Time Series Analysis (ITSA), Tukey Honest Significance Differences (HSD) Test, and

digital biomarker directionality assessment between time periods

The Interrupted Time Series Analysis (ITSA) was performed using the its.analysis package in R,

employing a significance level of 0.0568. To compare whether there was a difference in digital

biomarkers during different time periods before, during, and after pregnancy, in addition to when

patients experienced postpartum depression, four time periods were defined for each individual

identified with PPD (pre-pregnancy, pregnancy, postpartum without depression (hereafter referred to

as postpartum), and postpartum with depression (PPD)). For each woman, a model was constructed

for each digital biomarker, with 250 replications used for bootstrapping. The dependent variable was

the digital biomarker value, the “time” parameter was the date, and the interrupting variable was the

time period (pre-pregnancy, pregnancy, postpartum, PPD). The mean and standard deviation were

calculated for each digital biomarker during each of the four time periods for each woman.

Furthermore, a Tukey's Honest Significant Differences (HSD) test was conducted to assess the

statistical significance of the differences in each digital biomarker between each permutation of time

periods (PPD - pre-pregnancy, PPD - pregnancy, PPD - postpartum, postpartum - pre-pregnancy,

postpartum - pregnancy, and pregnancy - pre-pregnancy) within each individual at a significance level
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of 0.0569. Next, the percentage of women exhibiting a significant relationship was calculated for each

digital biomarker in each group comparison (e.g., PPD - pre-pregnancy). To determine the overall

trend in digital biomarker change between pairs of time periods (e.g., PPD and pre-pregnancy, PPD

and pregnancy, PPD and postpartum, etc.), the average difference across all individuals was

computed for each digital biomarker. This average also included non-significant differences, as they

still contributed insights into the directionality of digital biomarkers during those time periods, even if

the differences were not statistically significant. Lastly, a two-sided unpaired t-test at a significance

level of 0.05 was conducted to assess the statistical significance of the net difference compared to

zero, with positive change defined as an average value greater than zero and negative change

defined as an average value less than zero.

Building ML models

Individualized ML models for women in the PPD cohort

Individualized ML models were developed with the objective of determining the potential of digital

biomarkers to differentiate among four distinct pregnancy phases, including pre-pregnancy,

pregnancy, postpartum period without depression (i.e., postpartum), and postpartum period with

depression (i.e., PPD). Therefore, multinomial models were developed with time period as the

outcome with all 16 digital biomarkers as the features in the model (see Supplementary Table 1 for a

list of digital biomarkers included). Initially, our intention was to examine the model's capacity to

discriminate between time periods with and without PPD, thereby constructing binomial classification

models. However, we recognized the presence of repeated measurements (multiple days of data)

during pre-pregnancy, pregnancy, and postpartum time frames. Consequently, due to the repetitive

nature of our outcome measurements, we opted for constructing multinomial ML models to effectively

discern among the four identified time periods, where the PPD time period is treated as both a time

period and diagnosis.
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To build intra-individual models, the data was filtered on each woman, where they were

considered PPD negative ranging from two years prior through 15 days before the index date and

PPD positive 14 days prior through 30 days after the index date. We selected 14 days preceding the

index date as the first day of being positive for PPD, as the criteria for diagnosis states that patients

must display five depressive symptoms lasting two weeks22. The timeframe of 30 days following the

index date was chosen due to the fact that some individuals in the PPD cohort received

antidepressant medication on the day of their diagnosis, which can begin to take effect after about

four weeks of usage70. For each individual, the data were centered and scaled before building models

using three repeats of 10-fold cross-validation using a tune length of five with random forest,

generalized linear models (GLM), support vector machine (SVM), and K-nearest neighbors (KNN), as

these algorithms have been used in previous studies assessing depression with wearables15,71.

Models were built using the Caret package in R and evaluated using a combination of the Kappa

statistic and multiclass AUC (referred to as mAUC), which are standard metrics for classification ML

models24,72–74. Model performance for each time period was further assessed using a confusion

matrix, which calculated sensitivity, specificity, precision, recall, and F1 score74.

Comparing individualized ML model performance between women with a history of depression before

or during pregnancy

To initially ascertain the presence of depression history before or during pregnancy within the PPD

cohort, we determined the date of delivery (utilizing condition data) or the date of pregnancy

(employing condition and survey data) based on the concept IDs detailed in Supplementary Table 757.

Depending on the available data for each woman, the date of pregnancy was calculated by

subtracting nine months from the date of delivery, whereas the date of delivery was calculated by

adding nine months to the date of pregnancy, representing a standard pregnancy duration58. In cases

where both delivery and pregnancy records existed, priority was given to the date of delivery due to

its heightened reliability.
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For the evaluation of individualized ML model performance within the PPD cohort, concerning

women with a history of depression, the cohort was categorized into four subgroups encompassing 1)

no prior depression history; 2) depression prior to pregnancy; 3) depression during pregnancy; and 4)

depression both prior to and during pregnancy. To examine potential disparities in individualized ML

model performance, a two-sided unpaired t-test was conducted with a significance threshold of 0.05.

This analysis was executed to compare the no-depression history group with the groups of women

exhibiting depression pre-pregnancy, during pregnancy, or both prior to and during pregnancy.

Sensitivity, specificity, precision, recall, and F1 score metrics were subjected to this statistical

comparison process.

Individualized ML models for women without PPD

To construct personalized models for women unaffected by PPD, we implemented an analogous

approach to the one used for women in the PPD cohort. It is worth noting that women without PPD

would not have a "fourth" time period (i.e., postpartum with depression in women with PPD), as they

did not experience PPD. In order to ensure comparability and effectively gauge model performance

between women with and without PPD, we devised a PPD-equivalent time period for the non-PPD

cohort, mirroring the PPD time period. Considering that the median time to diagnose PPD was found

to be 83 days following delivery, we ensured uniformity by setting the index date as 83 days after

delivery. This index date was chosen to represent the PPD-equivalent time period for women in the

non-PPD cohort. As we established an index date aligned with that of the PPD cohort, the interval of

14 days prior to the index date was not considered the PPD-equivalent time period for these women,

as they did not actually experience PPD. Subsequently, individualized ML models were constructed in

a manner akin to those in the PPD cohort using the RF algorithm (since this algorithm yielded optimal

results in the PPD cohort), using three repetitions of 10-fold cross-validation and a tuning length of

five. Similar to the approach developed for women in the PPD cohort, model performance was

evaluated using sensitivity, specificity, precision, recall, and F1 score73,74. Models were not assessed
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by mAUC or kappa since model performance was only reduced in the PPD-equivalent time period

and not in the pre-pregnancy, pregnancy, or postpartum time periods compared to those in the PPD

cohort.

Comparing individualized ML model performance for women in the PPD and non-PPD cohorts

For comparing the performance of individualized ML models in the PPD cohort to the non-PPD

cohort, we performed a two-sided unpaired t-test with a significance level of 0.05.

Variable importance

SHAP approach

We used the RF ML models to generate a ranking of digital biomarkers for each individual since they

had the best performance. Following that, Shapley values were computed for each measurement

within each individualized model for the PPD class using the iml package in R75. To determine the

feature ranking within individual models, we computed the average absolute value of Shapley values

across all measurements for each digital biomarker and sorted the rankings from largest to smallest

(see Supplementary Figure 3 for an example beeswarm plot from one woman in the PPD cohort). We

then tallied the number of models in which each biomarker ranked among the top five most predictive

for the PPD class to produce an overall ranking of digital biomarkers. Furthermore, we determined the

most predictive feature of PPD by totaling the number of models in which each digital biomarker

ranked as the top predictor for the PPD class.

Permutation approach

To enhance the robustness of our approach, variable importance was also computed using a

permutation-based method in the Caret package in R74. Subsequently, the features were sorted

based on the magnitude of values assigned for the variable importance regarding the PPD class.

Employing a similar methodology as with SHAP, we tabulated the number of models in which each
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digital biomarker ranked among the top five most predictive for the PPD class, yielding a

comprehensive ranking of digital biomarkers. The frequency with which each feature ranked as the

foremost predictive digital biomarker was also recorded for the PPD class.

SHAP dependence plots

SHAP dependence plots were generated using the gpplot2 package in R76. For each individual, plots

were generated by graphing the Shapley value against the corresponding actual value for the digital

biomarker. Given that the outcome of models was multinomial (pre-pregnancy, pregnancy,

postpartum, or PPD), three separate SHAP dependence plots were generated for each individual

using calories BMR data during PPD with one other time period (i.e., one plot for pre-pregnancy and

PPD (referred to as pre-pregnancy/PPD), one plot for pregnancy and PPD (referred to as

pregnancy/PPD), and one plot for postpartum and PPD (referred to as postpartum/PPD) to more

easily analyze the relationship between calories BMR in a binomial context between PPD relative to

one other time period (see Supplementary Figures 4A-C for an example from one woman for each

time period). This process was repeated for women in the non-PPD cohort in a similar fashion to the

PPD cohort, specifically PPD-equivalent versus pre-pregnancy (pre-pregnancy/PPD-equivalent),

PPD-equivalent versus pregnancy (pregnancy/PPD-equivalent), and PPD-equivalent versus

postpartum (postpartum/PPD-equivalent). The Pearson correlation coefficient and its corresponding

p-value were computed at a significance level of 0.05, followed by calculating the percentages of

women with and without a significant correlation. If a significant correlation was observed, we further

determined its direction (positive or negative) and calculated the percentages of women with a

positive or negative correlation. The overall consensus regarding the relationship was determined by

comparing the percentage of positive and negative correlations for each digital biomarker across all

individuals, thereby identifying which direction had a greater rate. In cases where the percentage of

women with a significant correlation was less than 40%, the direction was not assessed due to the

small sample size, which may not be representative of the population.
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Building an ML model for PPD using a cohort-based approach

For the construction of an ML model assessing whether or not a woman has PPD, our focus was on

utilizing the PPD and PPD-equivalent time periods sourced from both the PPD and non-PPD cohorts.

We proceeded to develop a binomial RF classification model, in which 75% of individuals from each

cohort were designated for the training set, and the remaining 25% were assigned to the test set,

utilizing the Caret package within R74. To ensure the reliability of model performance assessment, we

diligently executed train and test set divisions based on individual person IDs, thereby preventing any

overlap of women between the two sets that could potentially distort results77. The model's target

outcome pertained to a binary classification of whether an individual exhibited PPD or not, relying on

all 16 digital biomarkers as input (refer to Supplementary Table 1 for a comprehensive description of

the employed digital biomarkers). The data was normalized through centering and scaling

procedures. Notably, repeated cross-validation was omitted due to the presence of repeated

measurements stemming from various person IDs. The model's construction integrated a tune length

of five. The evaluation of the models was performed using the same metrics of kappa and AUC (in

this instance, not multiclass since the outcome was binary). Subsequently, a confusion matrix was

generated to calculate sensitivity, specificity, precision, recall, and F1 score24,72–74.

Large language models

ChatGPT (GPT-3.5), developed by OpenAI (https://openai.com/) was used to edit some portions of

the manuscript by offering synonym suggestions, language enhancements, grammar refinements,

and style improvements. It's important to note that all recommendations made by ChatGPT were

meticulously reviewed by the author and were not utilized for generating ideas or content.
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