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ABSTRACT 
Goal and Aims 
To evaluate the performance of 6 wearable devices across 4 device classes (research-grade 
EEG-based headband, research-grade actigraphy, high-end consumer tracker, low-cost 
consumer tracker) over 3 age-groups (young: 18-30y, middle-aged: 31-50y and older adults: 
51-70y).  
 
Focus Technology 
Dreem 3 headband, Actigraph GT9X, Oura ring Gen3 running the latest sleep staging 
algorithm (OSSA 2.0), Fitbit Sense, Xiaomi Mi Band 7, Axtro Fit3. 
 
Reference Technology 
In-lab polysomnography (PSG) with consensus sleep scoring. 
 
Sample 
60 participants (26 males) across 3 age groups (young: N=21, middle-aged: N=23 and older 
adults: N=16). 
 
Design 
Participants slept overnight in a sleep laboratory from their habitual sleep time to wake time, 
wearing 5 devices concurrently. 
 
Core Analytics  
Discrepancy and epoch-by-epoch analyses for sleep/wake (2-stage) and sleep-stage (4-
stage; wake/light/deep/REM) classification (devices vs. PSG).  Mixed model ANOVAs for 
comparisons of biases across devices (within-subject), and age and sex (between-subjects). 
 
Core Outcomes 
The EEG-based Dreem headband outperformed the other wearables in terms of 2-stage 
(kappa = .76) and 4-stage (kappa = .76-.86) classification but was not tolerated by at least 
25% of participants. This was followed by the high-end, validated consumer trackers: Oura 
(2-stage kappa = .64, 4-stage kappa = .55-.70) and Fitbit (2-stage kappa = .58, 4-stage 
kappa = .45-.60). Next was the accelerometry-based research-grade Actigraph which only 
provided 2-stage classification (kappa = .47), and finally the low-cost consumer trackers 
which had very low kappa values overall (2-stage kappa < .31, 4-stage kappa < .33). 
 
Important Additional Outcomes 
Proportional biases were driven by nights with poorer sleep (i.e., longer sleep onset 
latencies [SOL] and wake after sleep onset [WASO]). For those nights with sleep efficiency 
≥85%, the large majority of sleep measure estimates from Dreem, Oura, Fitbit and Actigraph 
were within clinically acceptable limits of 30 mins. Biases for total sleep time [TST] and 
WASO were also largest in older participants who tended to have poorer sleep.  
 
Core Conclusion  
The Dreem band is recommended for highest accuracy sleep tracking, but it has price, 
comfort and ease of use trade-offs. The high-end consumer sleep trackers (Oura, Fitbit) 
balance classification accuracy with cost, comfort and ease of use and are recommended for 
large-scale population studies where sleep is mostly normal. The low-cost trackers, despite 
poor wake detection could have some utility for logging time in bed. 
 
Keywords: performance evaluation, wearable devices, actigraphy, consumer sleep trackers, 
polysomnography, sleep measurement 
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INTRODUCTION 

Increased awareness that sleep is a modifiable lifestyle factor for health and 

wellbeing has contributed to explosive growth in the sales of consumer wearable devices. 

Sales for digital fitness and wellbeing devices were valued at $58.11 billion worldwide in 

2022 and are projected to grow at a compounded rate of ~10% a year for at least 5 years.1 

With many options to choose from, how does one decide on what to buy? Online polls 

conducted by sleep scientists show that both researchers and consumers value devices 

whose performance has been endorsed by experts.2 However, consumers and product 

reviewers often forgo scientific considerations for features, user experience or price.3 Also, 

interest in tracking daily physical activity (~43% of wearable device users) outweighs interest 

in sleep tracking (~19%) for users in the US,4 and physical activity improvements were more 

commonly sustained than diet or sleep.5  Finally, the US Food and Drug Administration and 

other medical regulators presently do not enforce minimal quality standards for consumer 

devices. Together, these market factors remove incentives for manufacturers to refine sleep 

assessment technology beyond that which is sufficient to maintain profitability. This 

contributes significantly to the heterogeneity in sleep quality assessment from different 

devices.  

At the higher end of the market, well-conducted performance evaluation studies have 

shown that some consumer sleep trackers (CST) match or exceed research-grade 

actigraphy in their detection of sleep/wake states.6,7 Such devices can also achieve 

respectable sleep staging performance relative to the gold-standard, polysomnography, 

particularly in healthy participants without disrupted sleep.6,7 This augurs well for efforts to 

collect high-quality data about sleep patterns and interventions designed to maintain or 

improve them. However, there remain valid concerns about the accuracy of some CSTs, 

particularly when they are used in settings involving disordered or disrupted sleep that 

challenge accurate sleep/wake detection.8,9 Differing consumer, manufacturer, and 
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professional interests and expectations would benefit from a fresh, data-informed advisory 

on how best to employ CST to improve sleep, health, and wellbeing.    

 One does not need an alarm clock with the accuracy of an atomic clock to be woken 

up at the right time in the morning, but such precision is necessary for GPS satellites to 

provide safe navigation. Similarly, it is important to recognize that the most appropriate 

device will differ according to its intended use and the characteristics of its user.10 Here, we 

propose three categories of uses/users requiring different levels of accuracy: (1) Those for 

whom accuracy is paramount, for example, clinical trials seeking to establish the efficacy of 

a sleep intervention; or in persons with disordered sleep patterns that may confound non-

EEG based sleep detection11 (e.g., those with prolonged sleep latency, long periods of wake 

after sleep onset, or extended periods of wakefulness without movement); (2) Where 

moderately good accuracy is desired in persons with mostly normal sleep patterns but who 

may have occasional deviations (e.g., those who desire high quality sleep measurement 

over extended durations; large-scale, long-term population health studies on sleep patterns 

that involve mostly healthy sleepers; or corporate sleep health programs that monitor and 

reward healthy sleep patterns); (3) People or organizations who are primarily interested in 

tracking physical activity and are only secondarily interested in sleep, and/or those only 

willing to pay for basic sleep logging, akin to maintaining an automated sleep diary, will 

probably tolerate a lower level of accuracy in sleep assessment.  

 Keeping in mind these use cases, we evaluate the performance of 6 prototypical 

examples of commonly used sleep wearable devices* (both consumer and research-grade) 

in healthy adults without diagnosed sleep disorders, against polysomnography measures in 

line with recommended guidelines.10,12 Devices were selected from 4 categories: (a) A 

research-grade dry-electrode EEG headband† (~USD 1600) that is presently available for 

 
* We use the term ‘wearable devices’ to collectively refer to both research and consumer-grade trackers 
throughout this manuscript. However, when describing performance of individual categories of devices, we refer 
to these as either research-grade (Dreem, Actigraph) or consumer-grade (CST) trackers (Oura, Fitbit, Xiaomi, 
Axtro). 
† As of late August 2023, Dreem was acquired by Beacon Biosignals and it was announced that it will switch to a 
subscription model with differential pricing for clinical trial and academic partners.  
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clinical trial and academic use but is no longer a consumer product, (b) A research-grade 

actigraph (~USD 500) that is primarily used to track physical activity but has also been used 

to measure sleep, (c) Previously evaluated high-end consumer sleep trackers (~USD 300) 

whose algorithms have undergone refinement within the last 5 years and whose 

manufacturers have publicly documented algorithm development efforts;13,14 one wrist-worn 

and one finger-worn, and (d) Two lower-cost (< USD 60) wrist-worn wearables that to our 

knowledge have not undergone significant external evaluation or sleep algorithm refinement. 

To allow for age group comparisons to be made, participants were recruited from young (18-

30y), middle-aged (31-50y) and older (51-70y) adults.  

 Based on the evaluation results, we make recommendations that may help 

researchers, clinicians, consumers, and manufacturers determine which product or 

development path is best for their needs.  

 

METHODS  

Participants and study protocol  

Sixty-six adults aged 20-68 years (M(SD) = 40.2(15.7) y; 29 males; ethnically 

composed of Chinese: 85%, Indian: 8%, Malay: 1%, Others: 6%), consented to take part in 

this study. Inclusion criteria were: those who (1) habitually slept at least 5h/night (between 

the hours of 8 pm and 10 am), (2) had a body mass index (BMI) ≤ 35 kg/m2, (3) did not 

report any pre-existing sleep, neurological or psychiatric disorder, (4) did not report 

excessive daytime sleepiness (Epworth Sleepiness Scale scores > 10)15 or Berlin 

questionnaire scores indicating high risk of Obstructive Sleep Apnea,16 (5) were not on 

wake-promoting agents (e.g. Modafinil), stimulants (e.g. Ritalin) or sodium oxybate, (6) did 

not have active illness (e.g., flu), and (7) were not pregnant. Participants slept overnight in 

our laboratory according to their habitual bedtime and were awoken by a research assistant 

at their habitual wake time, if not already awake. They then completed a post-sleep 

questionnaire 30-60 mins after wake time to assess sleep quality and if anything disturbed 
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their sleep during the night (Supplementary Results – Post Sleep Questionnaire). The 

Institutional Review Board of the National University of Singapore gave ethical approval for 

this work. 

 

Sleep measurement  

Polysomnography (PSG) 

Polysomnography (PSG) was acquired using SOMNOtouch RESP devices 

(SOMNOmedics GmbH, Randersacker, Germany) in a light and temperature-controlled 

sleep laboratory. EEG was recorded at C3 and C4 (according to the international 10–20 

system), referenced to the contralateral mastoids (M2 and M1 respectively). Electro-

oculography (EOG) from the right and left outer canthi, and bipolar submental 

electromyography (EMG1-EMG2) were also recorded. The common ground and reference 

electrodes were placed at Fpz and Cz, respectively. Secondary measurements also included 

electrocardiogram (ECG) readings and finger pulse oximetry for oxygen saturation 

assessment to ascertain the absence of significant sleep apnoea (Supplementary Results – 

Apnoea Scoring). EEG signals were sampled at a frequency of 256 Hz while impedance was 

kept below 10KΩ for EEG, EOG and EMG channels.  

The PSG was scored from "lights off” to “lights on” times, as recorded by sleep 

technicians. Sleep scoring was performed using a hybrid Rechtschaffen and Kales (R&K)17 / 

American Academy of Sleep Medicine (AASM) approach.18 R&K stage 3/4 criteria using 

electrodes C3/C4 were used to define N3 sleep (following AASM guidelines). To minimize 

individual scorer bias, we adopted a consensus scoring approach. Three 

independent scoring systems were used: (1) Neurobit PSG automated scoring (Neurobit 

Inc., New York, USA)19 checked by trained lab staff, (2) Somnolyzer 24x7 

automated scoring (The Siesta Group Schlafanalyse GmbH, Vienna, Austria)20 reviewed by 

experts from The Siesta Group, and (3) U-Sleep webservice automated scoring 

(sleep.ai.ku.dk) which was trained and evaluated on PSG recordings from 15,660 
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participants in 16 clinical studies.21 For each 30s epoch, a consensus score was given based 

on the majority score of the three scorers. If all 3 scorers differed, the scoring system of (1) 

was used. N1 and N2 stages were subsequently combined and labelled as ‘light sleep’ to 

match CST definitions, which do not distinguish between the two, while N3 was relabelled as 

‘deep sleep’. 

 

Wearable Devices  

In total, six wearable devices were evaluated in the current study with five of them 

worn concurrently on any one night. Two of these devices were considered research-grade 

wearables which also provided access to raw data: (a) Dreem 3 EEG-based headband 

(Beacon Biosignals, Inc.; Boston, Massachusetts, USA), and (b) Actigraph GT9X (Actigraph, 

Inc.; Florida, USA) accelerometer-based sensor with sampling rate set to 60Hz, while the 

other four were considered consumer-sleep trackers (CSTs) that utilize multi-sensor 

information, most commonly motion and heart rate: (c) Oura ring Gen 3, running the latest 

sleep staging algorithm Oura Sleep Staging Algorithm 2.0 (OSSA 2.0; Oura Health Oy, Oulu, 

Finland), (d) Fitbit Sense, (Fitbit, Inc., San Francisco, CA, USA), (e) Xiaomi Mi Band 7 

(Xiaomi, Inc., Beijing, China), and (f) Axtro Fit3 band (Axtrosports, Inc., Singapore). All 

participants put on devices (a)-(d), and either the Xiaomi Mi Band 7 or the Axtro Fit3 band 

during the overnight session. The placement of these devices is shown in Figure 1, with the 

three wrist-based wearables (b, d, and e or f) placed on the non-dominant wrist in the same 

physical position across all participants. For brevity, we will refer to each device by its brand 

name (i.e., Dreem, Oura, Fitbit, Actigraph, Xiaomi, Axtro) throughout the rest of the paper. 

Devices were updated to the latest firmware and data were uploaded using the most 

recent app/software versions available, as of Mar 2023. Full details of firmware and 

app/software versions used are listed in Supplementary Table 1. Data from all devices 

except Actigraph were synced and uploaded in the morning to the respective device clouds 

through smartphone apps. Scored hypnograms (30s consecutive sleep staged epochs from 
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device-determined bedtime to wake time) from each respective device vendor were then 

accessed through a web-based API or research portal. For Xiaomi, data were manually 

extracted from the smartphone app itself. Finally, for the Actigraph, triaxial accelerometer 

data were downloaded via a custom dock and aggregated into 1-min epochs for sleep-wake 

scoring using the Actilife implementation of the Cole-Kripke algorithm.22,23 1-min epochs 

were scored from “Lights off” to “Lights on” and subsequently up-sampled to 30s epochs to 

match the resolution of the PSG data.  

 

Time synchronisation of devices 

Accurate synchronization between PSG and the devices being evaluated is critical to 

ensure validity of the performance evaluation. At the start of each sleep session, PSG and 

device internal clocks were synchronized to an internet time server accessed through an 

internet-connected desktop computer (in the case of PSG and Actigraph) or a smartphone 

app (all other wearable devices).  

Recording of TIB, on the Dreem and Actigraph were based on manual starts/stops 

(Dreem) or marked post-hoc (Actigraph) by a member of the research team. TIB was 

automatically detected in CSTs, based on device-specific algorithms. As such, CST 

hypnograms had to be adjusted to match PSG time-in-bed (TIB) based on the recorded 

“lights off” and “lights on” times to enable inter-device comparisons. If the TIB indicated by 

the device was shorter (i.e., device bedtime began after the actual lights-off time or device 

wake time occurred before the actual lights-on time), wake epochs were imputed to match 

the length of PSG TIB. Conversely, if the TIB indicated by device was longer (i.e., device 

bedtime began before the actual lights-off time or device wake time occurred after the actual 

lights-on time), device hypnograms were trimmed to match the length of PSG TIB.  To 

determine whether this additional wake-imputation step materially affected the classification 

results from Oura and Fitbit, epoch-by-epoch analyses were also conducted on epochs 

common to each of these CSTs and PSG.    
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Despite clock synchronization across devices, temporal offsets between PSG and 

some devices were occasionally encountered with Dreem and Fitbit devices. To ensure 

optimal temporal alignment between PSG and the devices, and to provide the most accurate 

epoch-by-epoch (EBE) metrics, each device hypnogram was shifted (up to ±5 min/20 

epochs) relative to the PSG.24,25 For each step in the shift (one epoch), correlation, accuracy, 

specificity, and sensitivity for sleep/wake classification were recomputed. The computation 

that yielded the highest value was used for subsequent analysis of that device’s data. 

Histograms of optimum shift values for Dreem and Fitbit are shown in Supplementary Figure 

1. Note that Oura did not require any shifting (optimum shift = 0s), and that we did not 

perform this step for the Xiaomi or Axtro given the high classification error rate, even before 

the shift. 

 

Sleep Parameters 

Sleep epochs from both PSG and wearable devices were classified into four 

categories: wake, light, deep, and REM sleep. Commonly reported sleep parameters, 

including total sleep time (TST; min of sleep between sleep onset and “lights on”), sleep 

onset latency (SOL; min between “lights off” to first epoch marked as sleep, regardless of 

sleep stage), wake after sleep onset (WASO; min awake between sleep onset and “lights 

on”), sleep efficiency (SE; percentage of TST while in bed from “lights off” to “lights on”) and 

duration spent in the different sleep stages: light sleep, deep sleep and rapid eye movement 

(REM) sleep, were computed. As described earlier, due to automated bed/wake time 

detection in the CSTs, we additionally evaluated discrepancies from these times compared 

to PSG marked “lights off” and “lights on” times. As Xiaomi and Axtro only begin recording at 

sleep onset and terminate at sleep offset (rather than bed/wake time), we compared device-

recorded sleep onset/offsets in Xiaomi and Axtro to PSG-determined sleep onset and 

offsets. 
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Missing data and partial data loss 

Despite following the recommended guidelines of each device, issues with missing 

data and partial data loss occasionally occurred. These issues are summarized in 

Supplementary Table 2. Approximately one-third of participants had poor quality Dreem 

data, and half had either Xiaomi or Axtro data; therefore, we performed analyses in 3 

subgroups to preserve power for inter-device comparisons in the largest subset of devices.  

The analyses were: (1) N = 60 participants with concurrent Oura, Fitbit, Actigraphy and PSG, 

(2) N = 40 participants with concurrent Dreem, Oura, Fitbit, Actigraphy and PSG, and (3) N = 

28/20 participants with concurrent Xiaomi/Axtro, Oura, Fitbit, Actigraphy and PSG data.  

 

STATISTICAL ANALYSIS 

Discrepancy analyses 

To visualise discrepancies between sleep measures recorded from each wearable 

device and PSG, Bland–Altman plots were generated using a standardized framework for 

performance evaluation studies.12 A negative bias represents underestimation by the device 

compared to PSG. Proportional bias, that is, how bias was affected by the magnitude of the 

measure, and homoscedasticity were also assessed. Bland–Altman plots demonstrating 

device-PSG biases for TST, SOL, WASO, SE (2-stage sleep/wake classification) and 

duration spent in the different sleep stages (4-stage sleep stage classification) were 

generated. Subgroup analyses comparing participants with high sleep efficiency (SE ≥ 85%) 

to those with SE of < 85% (due to either long SOL or WASO) were also performed.  

To assess whether measurements from a device differed significantly from PSG, 

one-sample t-tests (against zero) on the device-PSG bias were conducted. In addition, to 

compare if biases differed across devices, separate repeated measures analysis of variance 

(ANOVA) for each sleep parameter with device as the within-subjects factor were also 

conducted. Significant interactions were followed by post-hoc paired t-tests; p-values were 

corrected for multiple comparisons using Bonferroni correction. We also examined whether 
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device-PSG biases in sleep parameters differed by sex and age group. Mixed ANOVAs were 

employed for each sleep parameter bias as the outcome variable, with device (Dreem, Oura, 

Fitbit, Actigraph) as the within-subjects factor, and age group (young adults 18-30y, middle-

aged 31-50y, and older adults 51-70y) or sex (male/female) as the between-subjects factor.  

 

Epoch by Epoch (EBE) Analysis  

EBE analyses – the preferred approach to assess accuracy of binary (2-stage) and 

categorical (4-stage) classification12 were performed on 30s epochs. Sensitivity (ability of 

device to correctly identify ‘sleep’), specificity (ability of device to correctly identify ‘wake’), 

overall accuracy, and F1 score were calculated for each subject following the equations 

below, and then averaged across all subjects to obtain group level values. 

 

Sensitivity: True sleep / (False Wake + True Sleep)  

Specificity: True wake / (True Wake + False Sleep)  

Accuracy: (True Sleep + True Wake) / Total Epochs 

F1: True sleep / (True sleep + 0.5 x (False Sleep + False Wake)) 

 

This process was repeated for evaluating 4-stage classification performance. In 

addition, we also calculated Cohen’s kappa coefficient, which takes into account agreement 

metrics occurring by chance, and prevalence- and bias-adjusted kappa (PABAK), which 

adjusts for imbalances in the relative frequency of occurrence of the different sleep 

stage/wake epochs and bias between PSG and device metrics, using the equations below: 

26 

Kappa = (Po-Pe)/(1-Pe) 

Po: Probability of agreement 

Pe: Probability of disagreement (chance) 

PABAK = (2 Pe - .05)/(1 - 0.5)=2Po-1 
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Kappa values are usually interpreted as follows: ≤ 0 indicates no agreement, 0.01–0.20 none 

to slight, 0.21–0.40 indicates fair, 0.41– 0.60 indicates moderate, 0.61–0.80 indicates 

substantial, and 0.81–1.00 almost perfect agreement.  

In accord with the discrepancy analyses, repeated measures ANOVAs were used for 

EBE analyses on device-PSG agreements of accuracy, sensitivity, and specificity; followed 

by post-hoc paired t-tests; p-values were corrected for multiple comparisons using the 

Bonferroni correction.  

Finally, to inspect sources of misclassification, confusion matrices were constructed. 

These were first generated per subject by dividing values in each cell with the corresponding 

marginal frequency of the reference PSG measure. Next, confusion matrices were averaged 

across all subjects to generate group level matrices.   

Statistical analyses and data processing were performed using SPSS 27.0 (IBM 

Corp., Armonk, New York), MATLAB version R2017b (The Math Works, Inc., Natick, MA) 

and R version 4.1.1 (2021-08-10).  
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RESULTS 

Performance Evaluation of High-End CST (Oura/Fitbit), Actigraphy vs. PSG (N=60) 

60 participants (26 males; mean (SD) age: 38.5 (15.1) y) with acceptable concurrent 

Oura, Fitbit, Actigraph and PSG data contributed to the primary subgroup analysis. PSG-

derived sleep measures for young (18-30y; N = 21), middle-aged (31-50y; N = 23), and older 

age groups (51-70y; N = 16) are presented in Table 1. While TIB and TST were similar 

across the groups, older adults had more WASO and less deep sleep, while young adults 

had longer SOL, leading to lower sleep efficiency in both groups relative to the middle-aged 

group.  

The following results focus on individual device-PSG agreement measures. Further 

details comparing performance between wearable devices are provided in Supplementary 

Results – Post-Hoc Between Device Comparisons.  

 

2-Stage Classification Performance (Discrepancy and EBE Analyses) 

Bland–Altman plots showing device-PSG biases for TST, WASO, SOL, SE and 

sleep-stage analyses are presented in Figures 2 and 3, respectively. Compared to PSG, 

none of the three devices showed significantly different TST (Table 2). Oura slightly 

overestimated SOL by 10.32 min, (t = 4.99, p = .002, Cohen’s d =.43) and underestimated 

WASO by 11.21 min, (t = 2.84, p = .006, Cohen’s d =.36).  Actigraph underestimated SOL by 

9.21 min, (t = 3.27, p < .001, Cohen’s d =.65). 

In contrast to the non-significant biases in TST, standard deviations were wide (> 34 

min) and limits of agreement were proportionally larger for poor sleepers with low SE (< 

85%, i.e. those with longer SOL and/or WASO). When considering only good sleepers with 

PSG-determined sleep efficiencies ≥ 85%, the majority of the datapoints for TST, SOL and 

WASO were within clinically acceptable limits of ± 30 mins (blue points within green shaded 

areas in Figure 2 and blue points in Supplementary Figure 2) for Oura (> 97.14% of points), 

Fitbit (> 80% of points) and Actigraph (> 82.85% of points). The same was observed for SE 
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bias with a majority of datapoints within clinically acceptable limits of ± 5%; Oura (> 82.86% 

of points), Fitbit (> 77.14% of points) and Actigraph (> 57.14% of points). Examples of well 

aligned hypnograms from good sleepers are shown in Supplementary Figure 8 (e.g., 

participant ID: 3,4,17), with one exemplar showcased in Figure 4a. 

With Fitbit and Actigraph, poor sleepers also had significantly higher device-PSG 

discrepancies for TST, WASO, and SE compared with good sleepers (ts  3.34, ps < .002, 

Cohen’s ds  .98), while for Oura this difference only reached statistical significance for 

WASO, (t = 3.27, p = .003, Cohen’s d =.99); with comparable performance for TST and SE 

(ts < 1.72, ps  .097).  

For EBE analyses, although overall accuracies were between 87-91%, devices were 

better at detecting sleep (sensitivity values: 93-95%) than wake (specificity values: 56-73%; 

Table 3). This was evident when inspecting the hypnograms of participants who were lying 

awake with little movement in the middle of the sleep period - the CSTs and motion-based 

Actigraph severely underestimated wake. Examples of such cases are shown in 

Supplementary Figure 8 (e.g., participant ID: 21, 65, 67), with one exemplar showcased in 

Figure 4b. 

Of the non-EEG based wearables, Oura showed significantly better 2-stage 

classification performance with accuracy of 91.1%, kappa of .64, and PABAK of .82 

compared to Fitbit with 89.44% accuracy, kappa of .58, and PABAK of .79, (ts > 5.68, ps < 

.001) and Actigraph with 87.39% accuracy, kappa of .47, and PABAK of .75, (ts > 6.90, ps < 

.001). 

 

4-Stage Classification Performance (Discrepancy and EBE Analyses) 

Light sleep was underestimated by Oura by 14.74 min and overestimated by Fitbit by 

13.34 min (Figure 3 and Table 2). Conversely, deep sleep was overestimated by Oura by 

7.55 min (not significant), while Fitbit underestimated it by 7.25 min. For REM sleep, only 

Oura was significantly different to PSG, where it was underestimated by 8.08 min.  
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For EBE analyses, confusion matrices show that REM sleep classification was the 

best with Oura (82% correctly classified) while the other stages were slightly less accurate 

(74-76% correctly classified). For Fitbit, light sleep was the most accurately classified stage 

(77%) while deep sleep classification was the least accurate at only 57%, which was 

misclassified as light sleep 41% of the time (Supplementary Figure 3). Oura had a 4-stage 

kappa range of .55-.70 compared with Fitbit with .45-.60 kappa values. 

  

Automated Bedtime and Wake Time Detection on CSTs 

As bed and wake times were automatically determined by the CSTs, we compared 

their deviations from “lights off” and “lights on” times marked in the PSG (Table 2).  

Oura appeared to have a more conservative estimation of bedtime with significantly 

delayed bedtime detection compared with Fitbit by 11.1 min, (t = 3.22, p = .002, Cohen’s d 

=.42, Table 2 and Supplementary Figure 4), requiring a longer consolidated immobile period 

to initiate detection of a sleep period. This could have affected the discrepancy and EBE 

analyses independently of sleep/wake classification performance, resulting in overestimation 

of SOL due to wake imputation from “lights off”, and conversely, underestimation of WASO if 

there were occurrences of PSG-defined WASO before device-determined bedtimes. 

Examples of such cases are shown in Supplementary Figure 8 (e.g., participant ID: 11, 16, 

31, 40), with one exemplar showcased in Figure 4c. In addition, 51/60 and 54/60 of points 

lay within ± 30 mins of “lights off” for Oura and Fitbit respectively (Supplementary Figure 4). 

Wake time biases were smaller (1-3 min on average) with no significant difference 

between Oura and Fitbit (t = .98, p = .33). 59/60 and 58/60 of points were within ± 30 mins of 

“lights on” for Oura and Fitbit respectively.  
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Performance Evaluation of Dreem compared with High-End CSTs (Oura / Fitbit), 

Actigraphy and PSG (N=40) 

The second subgroup analysis comprised 40 participants (22 males; mean (SD) age: 

38.03 y (14.74)) who had usable Dreem, Oura, Fitbit, Actigraph and PSG data. Sample sizes 

for the young, middle-aged and older age groups were N = 13, 19 and 8 respectively. 

 

2-Stage Classification Performance (Discrepancy and EBE Analyses) 

Dreem showed, numerically, the lowest TST, SOL, WASO and SE discrepancies with 

PSG compared to Oura, Fitbit, and Actigraph, along with smaller standard deviations (~12-

15 min) and narrower limits of agreement (Table 4 and Figure 5). However, repeated 

measures ANOVA on sleep measurement biases only showed a significant main effect of 

device for SOL, where Dreem significantly outperformed Oura and Actigraph (SOL: F = 9.34, 

p < .001, p2 = .19). Even on nights with highly fragmented sleep, Dreem was able to 

identify wake periods with high accuracy even when the participant appeared to be lying 

awake with little movement (Figure 4b). 

For EBE analyses, Dreem also outperformed the other wearables, with overall 

accuracy of 95.02%, sensitivity of 97.34%, specificity of 78.21%, kappa of .76, and PABAK 

of .9 (Table 5).  

 

4-Stage Classification Performance (Discrepancy and EBE Analyses)  

Dreem significantly underestimated light sleep by 19.8 min and overestimated deep 

and REM sleep by 16.16 min and 7.49 min respectively. However, limits of agreement were 

much smaller with Dreem than with any CST (Table 4 and Figure 6).  

For EBE analyses, Dreem again led 4-stage classification performance with 84%, 

94% and 93% classification accuracy for light, deep and REM sleep, respectively 

(Supplementary Figure 5). Even brief stage transitions were accurately detected leading to 

superior performance of Dreem compared with the non-EEG based CSTs (examples of such 
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cases are shown in Supplementary Figure 8; e.g., participant ID: 5 and 8). Overall, only 

Dreem and Oura achieved kappa values indicating substantial agreement with PSG (kappas 

≥ .60).  

 

Age and Sex Influences on Sleep Tracking Accuracy (N=40) 

2-Stage Classification Performance 

Repeated measures ANOVA on device-PSG biases showed a significant age group 

by device interaction for TST (F = 4.48, p < .001, p2 = .20), SE (F = 3.78, p = .002, p2 = 

.17), and WASO (F = 5.54, p < .001, p2 = .23). Biases for TST, SE and WASO were largest 

in the oldest age group (51-70y; F > 6.56, p < .004, p2 = .26); discrepancies across age 

groups were smallest with Dreem (Figure 7a). Of the non-EEG based devices, discrepancies 

were more homogenous with Oura than with Fitbit and Actigraph, specifically for TST and 

SE biases in the older adults (ts > 3.55, ps < .009). Similar trends were observed in the 

primary subgroup analyses with N = 60 participants (Supplementary Figure 6).  

For sex by device bias interactions, only SOL bias was significant, where Actigraph 

tended to underestimate SOL more in females vs. males (F = 4.48, p < .001, p2 = .196, 

(Figure 7b).   

 

4-Stage Classification Performance   

A significant device by age group interaction was present only for light sleep bias, (F 

= 3.31, p = .015,  p2 = .15) which Fitbit overestimated more in the older compared to the 

younger age group (Figure 7c). 
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Performance Evaluation of Low-Cost Consumer-Based Devices (Xiaomi / Axtro) 

compared with High-End CSTs (Oura / Fitbit), Actigraphy and PSG  

The third subgroup analysis was performed with N=28 (Xiaomi) and N=20 (Axtro) 

participants respectively, after removal of unusable records.  

Both low-cost consumer-based devices significantly underperformed Oura, Fitbit, and 

Actigraph for multiple sleep measurements across both 2-stage and 4-stage classification 

metrics. Device-PSG biases were significantly higher for TST, WASO, SE, as well as light 

and REM sleep for Xiaomi (ts > 3.03, ps < .005, Cohen’s d > .57) and significantly higher for 

WASO, SOL, as well as light, deep, and REM sleep for Axtro, (ts > 2.52, ps < .019, Cohen’s 

d > .51, compared to the other CST devices and Actigraph (Supplementary Table 3,4 and 

Supplementary Figure 7a). 

EBE analyses of these low-cost devices showed similarly poor performance. While 2-

stage classification accuracy for sleep detection (sensitivity) was high (94-95%), these 

devices were very poor at identifying wake (specificity, 33%), resulting in overall low kappa 

scores (< .31). 4-stage classification metrics were also poor, with kappa scores < .33 

(Supplementary Figure 7b). 

Comparisons between device-recorded sleep onset/offsets to PSG-determined sleep 

onset and offsets however showed that Xiaomi provided acceptable estimates, with 25/28 

(89%) of points lying within ± 30 mins of sleep onset, and 27/28 (96%) of points within ± 30 

mins of sleep offset. For Axtro, although the average mean discrepancy appeared to be just 

a few mins, only 12/20 (60%) of points lay within ± 30 mins of sleep onset, and 16/20 (80%) 

of points within ± 30 mins of sleep offset. 
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DISCUSSION 

Performance evaluation of 6 wearable sleep trackers across 4 representative device 

categories supports a stratified approach to selecting a device that integrates technological, 

research and clinical considerations. We first discuss our findings in relation to 2-stage 

sleep/wake classification as there is a wealth of epidemiologic and actigraphy data relating 

sleep duration and sleep disruption (WASO) to indicators of health, wellbeing, and 

mortality.27-29 Our evaluations show that device performance was significantly affected by 

sleep efficiency; this was particularly notable for lower quality devices that have poor wake 

specificity.  Therefore, it is useful to consider good and bad sleepers separately when 

evaluating performance.  We then discuss choices for demanding situations involving users 

who do not have normative nocturnal sleep patterns and users who desire accurate 4-

category sleep staging. 

 

CST and 2-Stage Sleep Tracking  

The largest group of CST users are mainly healthy working age adults between 37-

55 years of age30 who are mid to higher SES individuals keen on maintaining or improving 

sleep health.31 On nights with good sleep (SE ≥ 85%), a majority of the datapoints for TST, 

SOL and WASO were within clinically acceptable limits of ± 30 mins, particularly for the Oura 

ring, with >97% of points meeting this arbitrary threshold generally accepted by clinicians.32-

35 This result is important for proper longitudinal assessment of sleep variability, its effects on 

outcomes of interest, for evaluating the effectiveness of an intervention, or fluctuations in the 

severity of disordered sleep.  

The superior results of the higher quality CSTs relative to the research-grade 

actigraph36 attests to the value of adding heart rate (HR) variability detection to actigraphy in 

CST13,14,37 together with better training data and improved algorithms. A review found that 

later Fitbit models incorporating HR sensing/sleep-staging surpassed earlier accelerometery-

only devices (no HR models: sensitivity: 87-99%, specificity: 10-52%, HR models: sensitivity: 
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95-96%, specificity: 58-69%),38 and also research-grade actigraphy (GT3X: sensitivity: 90-

95%, specificity: 35-46%),36,39 particularly for specificity measures. Importantly, merely 

additional sensors alone does not assure improvement in measurement precision. This is 

illustrated by the poor sleep-wake classification performance of the low-cost devices (Xiaomi 

and Axtro) that incorporate PPG HR detection but are without documented efforts to improve 

sleep assessment and/or proper quality evaluations.  

Consumers should critically appraise claims of ‘high accuracy’ during sleep-wake 

agreement testing conducted by comparing epoch-by-epoch 2-stage classification with PSG. 

As sleep efficiency is over 80-85% in most healthy people, even an inaccurate wearable can 

achieve ‘accuracy’ and ‘sensitivity’ for sleep detection of ≥ 90% simply by assigning ‘sleep’ 

as the default stage. In contrast, ‘specificity’ for identifying wake is the more discriminating 

metric. It ranged from 33% for the low-cost CSTs to 53% for Actigraph, 62% for Fitbit, 70% 

for Oura and 78% for Dreem.  

Specificity is important for identifying fragmented sleep, and high values are difficult 

to achieve when periods of WASO are short and frequent, as in those suffering from sleep 

disorders.40 The low-cost wearables we assessed failed to adequately identify wake periods 

even in relatively healthy older adults. Our results are similar to a recent Xiaomi (Mi Band 5) 

evaluation study, where specificity was 38% and kappa was .27 in participants without sleep 

disorders.41 Such devices would be inadequate for population health studies or clinical 

applications unless all that is required is to identify when an individual went to sleep and 

woke up.42 For this purpose, the Xiaomi device may be deemed fit-for-use as it showed that 

the majority, 25/28 observations were within ± 30 mins of PSG determined sleep onset, 

while 27/28 points were within ± 30 mins of sleep offset.  

The kappa score, which reflects overall agreement between a device and PSG, is 

another useful measure of wearable performance as it accounts for agreement metrics 

occurring by chance. The rank order of kappa scores of the devices we tested followed that 

of the specificity results. Only the Dreem headband and Oura ring achieved kappa values 
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indicating substantial agreement (≥ .60), while kappa scores for Xiaomi and Axtro were poor 

(< .31).  

By analyzing the hypnograms of 60 participants and viewing concurrent data on 5 

devices at a time, we observed that short bouts of wake or sleep tended to be ‘smoothed’ or 

ignored to different extents by each wearable. This likely contributed to the heterogeneity of 

specificity and kappa results. For example, when a person does not transition directly into 

consolidated sleep but fluctuates between wakefulness and light sleep over the course of 

minutes, bedtime detection may be delayed until sleep is more consolidated. This affects 

SOL and TST measures non-uniformly across different devices. During lab testing, and with 

Dreem/Actigraph, bedtime (lights out) and wake time (lights on) timings are user-

triggered/marked by researchers. However with most CSTs, bedtime and wake time 

detections are automated such that sleep staging only commences when consolidated sleep 

is deemed to have started and stops when significant and/or prolonged activity is detected.24 

Oura tended to report later sleep onset‡, after sleep was more clearly consolidated 

compared to Fitbit, and it also terminated sleep early if there was a long WASO period (e.g., 

30 min), while Fitbit would tend to concatenate such separate bouts of sleep and classify 

them as a single main sleep period. 

The quality of sleep assessment showed an interaction between age and device. As 

expected from age-related changes in sleep, the biases for TST and WASO were largest in 

older participants (51-70y) who tended to have poorer sleep. Unsurprisingly, the EEG-based 

Dreem headband had the lowest discrepancy for these measures. Of the non-EEG devices, 

discrepancies were also more homogenous with Oura than with Fitbit and Actigraph. This 

could reflect a greater sample size and age diversity in the training data used to develop 

Oura’s latest sleep staging algorithm OSSA 2.0, which was trained on 326 adolescents and 

 
‡ The positive bias in the Bland-Altman plots for SOL is often related to an artefact of how SOL is defined in lab-
based studies. Delayed detection of sleep onset results in a longer interval between lights off and detected sleep. 
In fact, device measured SOL (as reported on the smartphone app) is typically shorter relative to what is 
determined by PSG. 
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adults across 7 independent datasets and 757 nights of polysomnography recording§. This 

was larger than the training set for an earlier algorithm we evaluated in 202243, and allowed 

for feature normalization that adjusts for inter-individual differences in physiology (e.g., 

nocturnal HR that tends to be higher in older than younger adults).14 By way of comparison, 

the Actigraph’s Cole-Kripke algorithm was refined using data from only 32 men and 9 

women, 23 of whom had sleep or psychiatric disorders.44   

Consistent with a very large-scale survey of sleep patterns in the US, UK, and the 

Netherlands45, our study found edge cases in which young adults had low sleep efficiency 

(and duration) in conjunction with prolonged sleep latency, whereas in the edge cases 

involving older adults, the issue was with sleep continuity and/or earlier awakenings. When 

sleep disturbances were artificially induced in a laboratory, they also affected sleep tracking 

performance, prolonging SOL and lowering SE.6 Overall, the finding that sleep assessment 

is less accurate and more variable in older persons (Figure 7) for non-EEG based systems, 

even at the 2-stage sleep/wake classification is contributed to by inherent issues with 

specificity (wake detection) described earlier. It remains to be seen if market growth among 

older users can drive development of methods to transcend the challenges posed in 

accurately detecting motionless wakefulness in older adults. 

 

4-Stage Sleep Classification Performance 

Although consumers, clinicians and some researchers pay close attention to 4-stage 

(wake, light sleep, deep sleep, and REM) classification performance, these results should 

only be considered after assessment of ‘traditional’ actigraphy measures because they 

depend on accurate 2-stage, sleep/wake classification. Unsurprisingly, the EEG-based 

Dreem headband led 4-stage performance with 85%, 94% and 93% classification accuracy 

for light, deep and REM sleep respectively. Dreem would be the first choice for studying 

people with disordered sleep, for applications such as highly sensitive clinical trials or the 

 
§ Numbers derived from direct communication with Oura. 
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evaluation of sleep interventions with projected small effect sizes, as its high wake detection 

specificity circumvents inaccuracies when assessing participants with low SE. However, the 

headband was not tolerated by at least 25% of participants in our study (38% of records had 

to be excluded for poor quality recordings or when the device was off-head for more than 

10% of the time), must be manually activated to start a recording and has a more complex 

data uploading procedure compared to the non-EEG based CSTs evaluated here. Another 

caveat with Dreem is that for unknown reasons, the temporal alignment of Dreem-staged 

epochs could be offset by as much as 5 min. To obtain the best EBE statistics in comparison 

with PSG, each Dreem recording had to be temporally shifted. Dreem also tended to slightly 

underestimate wake, often misclassifying it as N1/N2.46 

Specificity values for specific sleep stages were overall higher than sensitivity values 

(except for light sleep on Fitbit), particularly for deep sleep. This is because deep sleep 

epochs are the fewest among the different sleep stages, and individual misclassifications 

carry more weight for sensitivity than specificity measures.47 Of the higher quality CSTs, 

REM sleep classification was the best with Oura (82% correctly classified) while other stages 

were only slightly less accurate (74-75% correctly classified). For Fitbit, light sleep was the 

most accurately classified stage (77%) while deep sleep classification only averaged 57%, 

mirroring previous findings in healthy adults (light: 76-81%, deep: 49-53%, REM: 69-

74%).6,48 The lower cost CSTs did not have acceptable 4-stage classification performance 

(kappa < .33) and, therefore, should not be used for any use-cases requiring 4-stage 

classification.   

 

Recommendations for Different Use Cases 

Our evaluations only involved off-the shelf measurements from tested devices. This 

is the most likely scenario for wearable users or sleep scientists operating outside of major 

research groups who have privileged access to raw sensor data, the means to collect and to 

process these signals, machine learning expertise and/or the resources to evaluate 
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optimized methodology against PSG. Without modifications, the EEG-based Dreem 

headband (or its equivalent) is the best system when sleep measurement accuracy is 

paramount, but price, user comfort and convenience may be significant concerns.  

For the second category encompassing most researchers and critical consumers in 

whom sleep is mostly normal and who desire high quality longitudinal sleep measurement, a 

well-validated tracker such as the Oura ring or Fitbit (or their equivalents) is the best device 

of choice. In addition to sleep and activity measurement, these devices also come with built-

in trend tracking features that provide weekly/monthly summaries as well as sleep hygiene 

tips and even digital sleep coaching. Oura additionally allows for firmware locking and 

blocking of feedback from users, features important for longitudinal research/observational 

studies. While the use of a research-grade actigraph like the GT9X provides acceptable 

sleep tracking as an adjunct to physical activity monitoring in research settings, the 

incremental value of having raw accelerometry data without HR sensors may be 

overestimated. Further, as recently demonstrated,23 the equivalence of sleep measurements 

from research-grade actigraphy cannot be assumed.  

Finally, for the third group of users who may only require a lower-cost tracker to help 

log sleep periods over the long-term and not require accurate 2-stage or 4-stage 

classification, the Xiaomi or its equivalent could be a reasonable cost-effective alternative. 

Such devices could serve as reminders to workers who have irregular sleep to improve 

habits and can be deployed on a scale not possible with more expensive devices. Over time, 

as sleep measurement methodology, societal valuation of sleep and pricing models evolve, 

the quality of these devices is likely to improve.  

 

Strengths and Limitations 

We tested 5 devices concurrently to provide direct comparisons across key wearable 

device categories in three equally sized groups of participants of different ages to ensure 

that older participants with typically lower sleep efficiency were included in the assessment.  
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Inter-rater reliability of PSG metrics typically only averages 80-82%49 and is lower 

when assessing people with sleep disorders.50,51 This is important to remember when 

making comparisons between PSG and non-EEG based wearables as the reference 

instrument is in fact, imperfect as well.52 To increase the likelihood that the PSG reference 

was as reliable as possible, we used consensus-based scoring to reduce the likelihood of 

scorer bias affecting the overall results, combining both ML-based and trusted human reader 

approaches.  

While the primary aim of the present work was to validate 2-stage and 4-stage 

classification performance across commonly used sleep trackers, limitations of automatic 

bedtime/sleep period detection constrain performance of algorithms in consumer devices 

(Oura, Fitbit, Xiaomi, Axtro), relative to Dreem and Actigraph, where sleep periods are 

manually started or marked in the recordings. For example, in one participant, sleep was so 

fragmented that no sleep periods were detected, and as such there was no data for the 

sleep algorithm to stage. This automated sleep period detection could also lead to much 

shorter SOL/WASO durations displayed on the smartphone app than those computed from 

“lights off” markers as done in the present work, particularly if sleep periods are only initiated 

once consolidated sleep is detected. However, when considering only classification of 

epochs within the detected sleep period (without imputed wake intervals), specificity and 

sensitivity measures of Oura and Fitbit were still better than Actigraph. Some consumer 

devices allow the user to manually start and stop sleep periods, or to edit them later, but 

care should also be taken to ensure that these bed/wake time markers are interpreted 

consistently across users (e.g., ‘time I got into bed’ vs. ‘time I intended to sleep’.) 

 A lab-based protocol, while well-controlled may not reflect sleep behaviors in the real 

world6 ; for example, engagement with pre- and post-sleep activities (e.g. texting/reading in 

bed) is common with pervasive use of smartphones and tablet devices.53 As such, future 

work will need to evaluate the performance of these devices in settings that reflect real-world 
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sleep behavior as well as collect contextual information that would enable meaningful 

interpretation of the data output.54 

 

CONCLUSION 

 In sum, we provided a thorough evaluation of 4 categories of wearable sleep 

technology in a good number of participants across different ages, using a comprehensive 

array of test measures and have made pragmatic suggestions for device class purchases 

based on different user requirements to balance currently deliverable performance with cost 

considerations.  
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FIGURES 

Figure 1. Sample demographics, device placement for a right-handed participant, devices 
used in the study and their sensors. 
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Figure 2. Bland–Altman plots for TST, WASO, SOL, and SE for Oura, Fitbit and Actigraph 
(N=60). Black dots indicate good sleepers with PSG-determined sleep efficiencies (SE) ≥ 
85% while blue dots indicate poor sleepers with SE < 85%. Green boundaries indicate 
clinically acceptable limits of ± 30-minutes for TST, WASO and SOL or ± 5% for SE. Solid 
grey lines indicate 95% levels of agreement. Dotted lines indicate 95% CIs.  
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Figure 3. Bland–Altman plots for light sleep, deep sleep, and REM sleep for Oura and Fitbit 
(N=60). Solid grey lines indicate 95% levels of agreement. Dotted lines indicate 95% CIs. 
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Figure 4. Examples of well and poorly aligned wearable hypnograms compared to PSG. (a) 
Well-aligned hypnogram from a good sleeper with SE  85%. Apart from Xiaomi, sleep-wake 
and sleep-stage epochs largely aligned with PSG. (b) Participant with a long mid-sleep 
WASO period but who appeared still while awake based on the absence of motion in 
Actigraph. Only the Dreem headband which has EEG sensors accurately detected this 
prolonged wake episode. (c) Delayed bedtime detection in Oura, resulting in overestimation 
of SOL due to wake imputation from “lights off”, and underestimation of WASO as the earlier 
PSG-defined WASO epochs would be classified as SOL rather than WASO. 
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Figure 5. Bland–Altman plots for TST, WASO, SOL, and SE for Dreem, Oura, Fitbit and 
Actigraph (N=40). Black dots indicate good sleepers with PSG-determined sleep efficiencies 
(SE) ≥ 85% while blue dots indicate poor sleepers with SE < 85%. Green boundaries 
indicate clinically acceptable limits of ± 30-minute bias duration for TST, WASO and SOL or 
± 5% for SE. Solid grey lines indicate 95% levels of agreement. Dotted lines indicate 95% 
CIs.  
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Figure 6. Bland–Altman plots for light sleep, deep sleep, and REM sleep for Dreem, Oura, 
and Fitbit (N=40). Solid grey lines indicate 95% levels of agreement. Dotted lines indicate 
95% CIs. 
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Figure 7. Age and sex influences on sleep tracking accuracy. 2-stage classification: 
(a) Significant device by age group interactions were observed for TST, SE and WASO bias, 
whereby Dreem outperformed other devices across age groups, followed by Oura, 
particularly in older adults. (b) For sex by device bias interactions, only SOL bias was 
significant, whereby Actigraph tended to underestimate SOL more in females vs. males. 4-
stage classification: (c) A significant device by age group interaction was present only for 
light sleep bias; where Fitbit tended to overestimate this more in the older compared to the 
younger age group. Multiple comparison corrected p-values: *p < 0.05; **p < 0.01; ***p < 
0.001; # p = .055. †: SOL calculated from PSG “lights off” to detected sleep onset. Blue, red, 
and green bars refer to young (18-30y), middle-aged (31-50y), and older age groups (51-
70y), respectively. 
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TABLES 

Table 1 Demographic characteristics and polysomnography-determined sleep architecture 
of the sample. P-values <0.05 denote measures where metrics differ across age groups. 
 
Measure All Subjects Young Adults 

 
18-30y 

 
(N=21) 

Middle-Aged 
 Adults  
31-50y 

 
(N=23) 

Older Adults 
 

51-70y 
 

(N=16) 

p-
value 

Age 38.47 (15.05) 23.19 (2.27) a,b 37.65 (4.89) a,c 59.69 (6.47) b,c < .001 

TIB (min)  433.90 (48.90) 429.17 (57.17) 426.28 (45.32) 451.06 (40.02) .12 

TST (min)  368.88 (53.48) 368.36 (62.81) 374.09 (40.11) 362.09 (59.47) .68 

WASO (min)  50.03 (39.32)  37.74 (26.99) b 43.11 (27.50) 76.09 (54.69) a,c < .001 

SE (%) 85.20 (9.60) 85.67 (8.78) b 88.02 (6.38) c 80.53 (12.83) b,c .014 

SOL (min)  14.99 (13.72)  23.07 (18.95) a 9.09 (4.49) a 12.88 (9.11) .007 

Deep Sleep 
(min)  

63.89 (29.85)  83.88 (31.29) a,b 57.83 (21.03) a 46.38 (24.62) b < .001 

Light sleep 
(min)  

227.79 (43.14) 213.62 (46.20) 231.48 (39.77) 241.09 (40.79) .16 

REM Sleep 
(min)  

77.20 (27.30) 70.86 (29.41) 84.78 (22.79) 74.63 (29.43) .21 

a 
Young significantly different from Middle-Aged (p < 0.05). 

b 
Young significantly different from Older 

Adults (p < 0.05). 
c
 Older Adults significantly different from Middle-Aged (p < 0.05) 
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Table 2 Discrepancy analyses comparing Oura, Fitbit and Actigraph with PSG (N=60). 
Values represent means and standard deviations of device-PSG biases, with positive and 
negative values denoting over- and underestimation compared with PSG respectively. P-
values <0.05 denote measures where metrics differ across devices. 
 
Measure Oura Fitbit Actigraph p-value 

TST (min) .89 (34.56) b 5.97 (40.66) 8.99 (44.11) b .042 

SE (%) .16 (8.23) b 1.16 (9.24) 1.96 (10.18) b .061 

SOL (min) 10.32 (24.03) ** a,b -.43 (21.91) a,c -9.22 (14.31) *** b,c <.001 

WASO (min) -11.21 (30.56) ** a,b -5.54 (34.68) a,c .23 (40.37) b,c <.001 

Light (min) -14.74 (38.41) ** a 13.34 (48.31) * a N.A. <.001 

Deep (min) 7.55 (30.50) a -7.25 (27.54) * a N.A. <.001 

REM (min) 8.08 (24.21) * a -.13 (25.19) a N.A. .008 

Bedtime (min) 14.28 (25.85) *** a 3.17 (25.89) * a N.A. .002 

Wake time (min) 2.65 (5.98) *** 1.06 (11.09) N.A. .331 

 
Asterisks indicate whether bias is significantly different from zero (one-sample t-test with Bonferroni 
correction for multiple comparisons): *p < 0.05; **p < 0.01; ***p < 0.001 
Letters indicate significant differences in bias between devices:  a Oura significantly different from 
Fitbit (p < 0.05). b Oura significantly different from Actigraph (p < 0.05). c  Fitbit significantly different 
from Actigraph (p < 0.05). 
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Table 3 Epoch-by-epoch (EBE) analyses comparing 2-stage sleep/wake agreement 
between Oura, Fitbit and Actigraph with PSG (N=60). Common-epoch analyses refer to 
analyses constrained to epochs that were present in both CST and PSG (i.e., before wake 
imputation in CST devices).  
  

Accuracy Specificity Sensitivity Kappa f1 

Oura 91.1 (6.67) 73.74 (18.83)  94.83 (3.87)  .64 (.14)  56.33 (11.62) 

Oura 
Common 
Epochs 

91.69 (6.5) 70.00 (17.82)  95.80 (2.16) .60 (.14)  54.88 (11.69) 

Fitbit 89.44 (7.32) 67.77 (20.76) 94.46 (3.87) .58 (.14) 52.82 (13.46) 

Fitbit  
Common 
Epochs 

89.97 (7.36) 64.86 (20.21)  95.29 (2.38) .55 (.14)  51.32 (13.41) 

Actigraph 87.39 (7.55) 56.26 (21.73)  93.80 (4.28) .47 (.14)  45.72 (15.24) 
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Table 4 Discrepancy analyses comparing Dreem, Oura, Fitbit and Actigraph with PSG (N=40). 
Values represent means and standard deviations of device-PSG biases, with positive and negative 
values denoting over- and underestimation compared with PSG respectively. P-values <0.05 denote 
measures where metrics differ across devices based on repeated measures ANOVAs. 
 
 
Measure Dreem Oura Fitbit Actigraph p-value 

TST (min) 3.85 (12.01) * 5.08 (40.31) 10.16 (44.31) 14.51 (47.18) # .21 

SE (%)  .77 (2.82)  1.17 (9.62) 2.18 (10.12) 3.41 (10.85) # .20 

SOL (min) 1.03 (10.04) 11.10 (28.12) * .51 (21.77) -8.24 (12.44) *** <.001 

WASO (min)  -4.88 (15.16) *   -16.18 (34.33) * * -10.68 (38.75) -6.28 (43.64) .11 

Light (min) -19.80 (21.70) *** -15.68 (40.72) * 16.48 (50.10) * 
 

<.001 

Deep (min) 16.16 (17.79) *** 10.65 (25.09) * -4.29 (25.24) 
 

<.001 

REM (min) 7.49 (15.05) ** 10.10 (25.41) * -2.03 (24.38) 
 

.013 

Asterisks indicate whether bias is significantly different from zero (one-sample t-test with Bonferroni 
correction for multiple comparisons). 
Multiple comparison corrected p-values: *p < 0.05; **p < 0.01; ***p < 0.001; # p < .06  
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Table 5 Epoch-by-epoch (EBE) analyses comparing 2-stage sleep/wake agreement between 
Dreem, Oura, Fitbit and Actigraph with PSG (N=40). Common-epoch analyses refer to analyses 
constrained to epochs that were present in both CST and PSG (i.e., before wake imputation in CST 
devices). 
 
Measure Accuracy Specificity  Sensitivity Kappa F1 

Dreem 95.02 (2.91)  78.21 (14.19) 97.34 (2.35) .76 (.12) 58.65 (7.85) 

Oura 90.17 (7.91) 70.41 (20.11)  94.59 (4.96)  .61 (.15)  54.51 (12.71)  

Oura 
Common 
Epochs 

91.18 (7.73) 67.2 (19.1) 96.18 (2.23) .59 (.14) 53.02 (12.7) 

Fitbit 88.74 (8.59) 63.76 (19.67)  94.57 (4.06)  .55 (.14)  50.62 (13.14) 

Fitbit 
Common 
Epochs 

89. 28 (8.69)  60.79 (19.21) 95.41 (2.49) .53 (.15)  48.96 (13.4)  

Actigraph 87.33 (8.67) 53.14 (21.1) 94.57 (3.7)  .46 (.15) 43.66 (14.85) 

 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.23296981doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.12.23296981

