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Abstract: We carry out an analysis of gender differences in patterns of disease diagnosis across 
four large observational health datasets and find that women are routinely older when first 
assigned most diagnoses. Among 112 acute and chronic diseases, women experience longer 
lengths of time between symptom onset and disease diagnosis than men for most diseases 15 
regardless of metric used, even when only symptoms common to both genders are considered. 
These findings are consistent for patients with private as well as government insurance. Our 
analysis highlights systematic gender differences in patterns of disease diagnosis and suggests 
that symptoms of disease are measured or weighed differently for women and men. Data and 
code leverage the open-source common data model and analytic code and results are publicly 20 
available. 

 
One-Sentence Summary: In large populations, across insurance coverage and many conditions, 
women are older than men when diagnosed and experience longer time to diagnosis.  
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Main Text:  
One of the major tenets of clinical medicine is the prompt diagnosis of disease. Armed with a 
timely diagnosis, clinicians can intervene early, potentially curb the progression of disease, and 
in turn prevent long-term health consequences. For patients, obtaining a diagnosis can reduce the 
anxiety and distress related to experiencing unacknowledged or undiagnosed symptomatic 5 
disease. Because the effective diagnosis of a condition depends on recognizing its signs and 
symptoms, accounting for differences in symptom presentations among groups of individuals is 
critical to ensure equitable and timely diagnosis. Other factors, such as access to care, systemic 
racism, and gender bias, can also impact timely receipt of a diagnosis. In this work, we 
interrogate differences in diagnosis patterns between women and men.  10 

A nascent paradigm in clinical research seeks to identify the role of sex and gender1 in medicine 
in an effort to improve healthcare outcomes for all (2, 3). A large body of research has 
documented sex-differences and gender-based disparities across clinical medicine, epidemiology, 
pathophysiology, clinical manifestation, and outcome management (4). The most often-cited 
examples are in cardiology, where literature shows that women and men experience different 15 
symptoms for acute myocardial infarction. Women are less likely to present with chest pain—the 
main presenting symptom for men— but instead report higher rates of fatigue, dyspnea, nausea, 
and other forms of pain (5–7). Because healthcare providers are traditionally trained using 
diagnostic criteria based on presentation in men, they can fail to recognize heart attacks in 
women, which ultimately contributes to decreased survival outcomes for women (8–11). With 20 
these findings in mind, the research community has pushed toward more equal representation in 
clinical science. For example, the National Institutes of Health now require new clinical trials 
contain adequate data from both sexes (12). Despite the importance of this issue and more recent 
body of research associated with it, significant gaps in knowledge persist; for the vast majority of 
outstanding conditions and diseases, gendered differences in disease prevalence, age of onset, 25 
presentation, and treatment remain unknown (13).  

In this study, we systematically characterize differences in patterns of diagnosis among women 
and men for a broad spectrum of diseases and conditions. Our analyses leverage more than 200 
million observational longitudinal records in the United States and span privately-insured claims 
data, government program claims data, and the electronic health record (EHR) data of a large 30 
urban medical center. Specifically, we seek to assess gender differences in diagnosis by 
answering two research questions: 

1. Across all diagnosed conditions in a population, are there differences in condition 
prevalence, risk ratio, increased risk, and age of onset between women and men? To 
address this question, we carry out a population-wide characterization analysis. 35 

2. Across cohorts of patients with the same diagnosis, are there differences in the time to 
diagnosis or diagnostic delay between women and men? Because we leverage disease-
specific sets of condition criteria (i.e., phenotypes) to identify such cohorts when 
addressing this question, we refer to our second analysis as phenotype-specific 
characterization.  40 

 

 
1As defined by the World Health Organization, gender is as a social construct while sex is a biological variable (1). 
We use gendered terms (women, men) throughout this study. Furthermore, because we carry out analyses on large 
healthcare databases that encode gender as a binary variable only, our analysis is limited to this binary definition. 
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Data and analytical strategy 

We perform our analyses on four datasets that cumulatively comprise the de-identified 
longitudinal records of over 200 million Americans. Fig. 1 depicts the analyses carried out on 
each dataset separately. Code for generating phenotype definitions and performing analyses are 5 
publicly available on GitHub (14).  

Datasets 
As part of the Observational Health Data Sciences and Informatics (OHDSI) initiative, clinical 
concepts in each de-identified dataset are standardized using the open science Observational 
Medical Outcomes Partnership (OMOP) common data model, which facilitates synthesis of 10 
disparate observational databases by aligning healthcare data to a uniform set of vocabularies 
(15). All condition codes are mapped to the standard vocabulary, SNOMED-CT. A breakdown 
of gender and demographic information for each source is shown in Table 1. The datasets are as 
follows: 

CCAE: The MarketScan Commercial Claims and Encounters (CCAE) dataset is curated by 15 
Truven Health Analytics, a division of IBM Watson Health (16). The dataset contains fully de-
identified patient-level information for families covered by employer-sponsored commercial 
insurance (17). The data is derived from inpatient and outpatient medical claims as well as 
procedural and outpatient pharmaceutical claims. In total, the full dataset includes records from 
80,947,643 women and 77,441,202 men with 16,454 unique SNOMED-CT condition codes.  20 

MDCD: Medicaid in the United States is a federal program administered by states that helps 
reduce healthcare costs for individuals with limited income under the age of 65 (18). The 
MarketScan Medicaid Multi-State (MDCD) dataset includes healthcare claims data for 
individuals covered by Medicaid in 11 states, with additional demographic data such as race and 
disability status (17). It includes 18,436,044 women and 14,370,843 men with 16,269 unique 25 
SNOMED-CT condition codes. 

MDCR: Medicare in the United States is a federal program that covers healthcare costs primarily 
for individuals over the age of 65 (19). The MarketScan Medicare Supplemental (MDCR) 
dataset covers retirees with employer-sponsored Medicare supplemental insurance, including 
claims from both the Medicare-paid portion as well as the employer-covered portion (17). The 30 
dataset includes information on 5,662,878 women and 4,589,391 men with 15,850 unique 
SNOMED-CT condition codes. 

CUIMC: Columbia University Irving Medical Center (CUIMC) is an academic medical center 
that houses New York-Presbyterian Hospital and Morgan Stanley Children’s Hospital in New 
York City. The EHR contains inpatient and outpatient data. The CUIMC dataset includes 35 
information on 3,758,402 women and 2,971,591 men with 17,587 unique SNOMED-CT 
condition codes. 
Population-wide characterization 

In the population-wide characterization, we aim to systematically capture patterns of condition 
diagnosis among women and men. Each dataset is restricted to patients with at least one year of 40 
continuous observation who had recorded encounters between January 1, 2010 and January 1, 
2020. The presentation of a condition for a patient is defined by the presence of a condition code 
in their longitudinal health record. The earliest occurrence of a code in a patient’s longitudinal 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 16, 2023. ; https://doi.org/10.1101/2023.10.12.23296976doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.12.23296976
http://creativecommons.org/licenses/by-nc/4.0/


 4 

record defines the patient’s onset of diagnosis, with the date of the earliest code determining the 
patient’s age of onset. 

All condition codes are included in the analysis, with the exception of heavily sex-specific 
conditions (e.g., conditions related to reproductive organs, childbirth, and pregnancy; see 
Methods and Table S1 in Supplementary Materials).  5 

The following metrics are computed for each condition in a dataset: (1) prevalence in women 
and in men (e.g., 20% of women and 10% of men have a diagnosis of abdominal pain in their 
record); (2) risk ratio based on prevalence (e.g., 0.5 for men and 2 for women for abdominal 
pain); (3) increased risk (up to -100% for men and +100% for women) to indicate whether 
women or men are more likely to be diagnosed with the condition; and (4) difference in age of 10 
onset to indicate the difference in mean age of onset between women and men (see Population-
wide Characterization in Fig. 1). For additional information about the metrics, we provide 
additional information in the Methods section of the Supplementary Materials.   
Phenotype-specific characterization 

In the phenotype-specific characterization, we explore how long women and men wait between 15 
presentation with relevant symptoms and eventual disease diagnosis. We describe (1) how we 
assess the onset of diagnosis outcomes of interest using clinical phenotypes, (2) how we 
quantify relevant presenting symptoms for these diagnoses, and (3) how we compute the time 
to diagnosis and diagnostic delay metrics. 
Diagnosis Outcomes of Interest: While the population-level characterization enables an 20 
analysis of all aggregated condition codes at scale, condition codes are a noisy proxy for actual 
diagnosis. For the phenotype-specific analyses, disease diagnosis is measured as whether the 
patient’s longitudinal record satisfies a particular disease-specific set of condition criteria (i.e., a 
phenotype). For example, our Crohn’s disease phenotype definition requires a patient record to 
include any mention of the Crohn’s condition concept (SNOMED concept ID 201606) and 25 
descendants in the SNOMED-CT ontology, or alternatively mentions of concepts related to 
regional enteritis of the jejunum, extraintestinal Crohn’s, or complications due to Crohn’s disease 
(as well as these conditions’ various descendants in the SNOMED-CT hierarchy). 

Phenotypes are sourced from the publicly available OHDSI Phenotype Library, which has been 
employed in multiple network studies using EHR and claims data (20, 21). In aggregate, the 112 30 
disease phenotypes cover a broad range of diagnosis outcomes across each ICD-10-CM disease 
chapter except chapters related to pregnancy, childbirth, perinatal conditions, and congenital 
malformations because of their sex-specific nature (Table S4). The phenotypes are further split 
according to the relative acuity of the underlying diagnosis, with different requirements for the 
number of years of continuous observation required prior to diagnosis corresponding to disease 35 
acuity (Table S4). 

Given these phenotype definitions outline the diagnostic criteria for each outcome of interest, we 
define a patient’s diagnosis onset as their time of entry into any phenotype cohort based on their 
longitudinal record. 
Relevant Presenting Symptoms: For the purposes of this paper, we consider the set of all coded 40 
condition occurrences (i.e. investigative clinical findings and other disease diagnoses) that occur 
at least once in a patient’s longitudinal record prior to their cohort entry as potential symptoms 
for a diagnosis. 
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In order to assess when patients first present with relevant symptoms for a given phenotype, we 
first asked clinical experts to manually curate a list of relevant condition codes for a subset of 
disease phenotypes, which we refer to as the clinically-adjudicated relevant symptoms (see 
Supplemental Methods for adjudication details). Because of the large number of disease 
phenotypes assessed, we separately developed a scalable approach for automatically generating 5 
relevant symptom lists, which we refer to as the algorithmically-generated relevant symptoms 
(see Supplemental Methods for generation details). We validated our algorithmically-generated 
symptom lists against the gold-standard set of clinically-adjudicated symptoms and found that 
the algorithmically-generated symptoms are able to consistently and accurately recall the 
majority of the clinically-adjudicated symptoms, supporting our usage of the algorithmically-10 
generated relevant symptoms across our analyses (see Validation of Algorithmically-Generated 
Symptoms in Supplemental Methods and Table S2 for precision/recall/F1 results). 

In all cases, we define the time of onset for a given symptom as the earliest date the symptom is 
recorded within the continuous observation period in a patient’s longitudinal record prior to 
diagnosis. 15 

Metrics for time to diagnosis and diagnostic delay: To capture different temporal aspects of 
diagnosis, we calculate and report (1) symptom-based time to diagnosis (abbreviated TTD) and 
(2) patient-centric diagnostic delay (abbreviated as DD). 

The symptom-based time to diagnosis metric measures how much longer women have to wait 
compared to men that present with the same relevant symptom before receiving the same disease 20 
diagnosis (see left-hand side of the Phenotype-Specific Characterization diagram in Fig. 1). In 
other words, across relevant symptoms in a disease phenotype, we calculate and report the mean 
time to diagnosis differences for women and men presenting with sets of relevant symptoms.  
The patient-centric diagnostic delay metric measures how long individual patients have to wait 
from their first relevant symptom until disease diagnosis (see righthand side of the Phenotype-25 
Specific Characterization diagram in Fig. 1). The diagnostic delay is symptom-agnostic and 
represents when patients could be suspected of having a particular disease diagnosis. To assess 
statistically significant differences in diagnostic delay between women and men, we apply the 
Kolmogorov-Smirnov (KS) to test our null hypothesis that there is no difference in the 
cumulative distributions of diagnostic delay for women and men (see Methods in Supplementary 30 
Materials for more details) (23). 
Results 

Descriptive statistics for each dataset are shown in Table 1, with the total dataset representing 
208,177,994 patients with longitudinal records. The companion website for this study 
(https://even.dbmi.columbia.edu/characterization) provides interactive visualizations of the 35 
results described here to allow researchers to further explore differences in the patterns of disease 
diagnosis between women and men. 
Population-Wide Characterization 

Risk Ratio: Among the two largest claims databases (CCAE and MDCD), the risk ratio 
distributions are asymmetrically distributed and indicate that women are more at risk of 40 
receiving a diagnosis across conditions (Fig. 2, left-most column: in CCAE and MDCD 
respectively, there are 7,327 and 6,992 conditions with risk ratio >1 for women compared to 
5,972 and 5,509 conditions with risk ratio >1 for men). When considering the tails of these risk 
ratio distributions, for conditions where women or men are significantly more at risk (i.e. where 
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women’s risk ratio is greater than 3 or less than 1/3), we find that there are more conditions 
where women in CCAE and MDCD experience a greater risk (Fig. 2, left-most column: in 
CCAE there are 643 conditions where women are more than 3 times at risk than men, compared 
to 416 conditions where men are more than 3 times at risk; similarly, in MDCD, this is 548 
conditions for women vs 309 conditions for men). In the MDCR claims dataset, the risk ratio 5 
distributions show approximately equivalent risk distributions across conditions between women 
and men, while the CUIMC EHR dataset conversely shows that men are more at risk for most 
conditions (e.g. there are 430 conditions where men are more than 3 times at risk, while only 234 
conditions where women are more than 3 times at risk). 
Increased Risk: Distributions of increased risk for all conditions are illustrated by data source in 10 
Fig. 2 (middle column). Increased risk is consistently positive across all claims databases 
(CCAE, MDCD, MDCR), indicating that women are systematically more likely to be diagnosed 
with most conditions across these databases (range: 3.76% to 44.09%). Consistent with the 
previous risk ratio findings, the EHR dataset (CUIMC) displays an opposite trend where men on 
average are 15.70% more likely to be diagnosed with most conditions. 15 

Age of Onset: When examining distributions of differences in age of onset (Fig. 2, right-most 
column), women are older than men when first diagnosed across all conditions and datasets (0.93 
to 4.32 years older on average at onset). Overall age differences are smaller in MDCR because of 
age-censoring, as the dataset only includes patients that are at least 65 years of age who qualify 
for Medicare. When we additionally consider conditions where the mean difference in age of 20 
onset is greater than 10 years, we find a larger number of conditions exist where women are over 
a decade older at diagnosis onset compared to the number of conditions in men (e.g. in CCAE 
there are 327 conditions where women are a decade older than men versus 66 conditions where 
men are a decade older than women, in MDCD it is 1,324 for women and 86 for men, and for 
CUIMC it is 749 for women and 118 for men). Given the older age of patients in the MDCR 25 
dataset, we examined conditions where the mean difference in age of onset was greater than 2.5 
years, and find that in MDCR there were 989 conditions for which women were 2.5 years older 
versus 117 for which men were 2.5 years older.  

Phenotype-Specific Characterization 
Across presenting symptoms, acute and chronic phenotypes, and databases, we find that women 30 
systematically experience longer time-to-diagnoses and diagnostic delays compared to men. For 
the purposes of narrative clarity, figures in the main-text display findings based on the largest 
claims (CCAE) dataset, with additional figures from the other three datasets (MDCD, MDCR, 
and CUIMC) shown in the Supplementary Materials (Figs. S1-6 and Table S5).  

Time to Diagnosis (TTD) Differences: Across datasets, women consistently experience longer 35 
time to diagnoses (TTDs) than men. After matching patients based on the set of algorithmically-
generated relevant symptoms, women with any given relevant symptom are more likely to 
experience a longer time to diagnosis than men with the same symptom (e.g. in CCAE, 86.3% of 
the symptoms for the acute phenotypes led to a later diagnosis for women, 83.2% for the mid-
length chronic phenotypes, and 69.6% for the long-term chronic phenotypes; see Table S5 for 40 
breakdowns across datasets). When we quantify the magnitude of women’s time-to-diagnosis 
differences across relevant symptoms, women consistently experience longer TTDs across 
CCAE, MDCD, and MDCR. Across the relevant symptoms, women in CCAE must on average 
wait 8.0 days longer than men across acute phenotypes, 25.3 days for the mid-length chronic 
phenotypes, and 51.9 days for the long-term chronic phenotypes (see Table S5 for breakdowns 45 
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for each database). In Fig. 3 we visually illustrate mean time to diagnosis differences for each 
individual phenotype assessed in CCAE and note that women consistently experience longer 
TTDs in 110 of the total 112 phenotypes analyzed. Across the other large claims databases, we 
note similar trends in TTD differences (MDCD in Fig. S1: 104 of the 112 phenotypes, MDCR in 
Fig. S2: 107 of the 112 phenotypes), although the trend is less readily apparent for the EHR 5 
dataset (CUIMC in Fig. S3). 

When we assess the mean time-to-diagnosis using clinician-adjudicated relevant symptoms, we 
observe results consistent with the algorithmically-generated relevant symptoms. In both cases, 
across phenotypes assessed, women experience longer time-to-diagnoses than men (Table S3). 
In fact, in all but one phenotype, using the clinician-adjudicated relevant symptoms revealed 10 
even larger differences in time to diagnosis. For additional information about comparisons 
between the clinician-adjudicated relevant symptoms and the algorithmically-generated 
symptoms, see Validation of Algorithmically-Generated Symptoms in the Supplemental 
Methods. 

To allow researchers to explore and expand on our findings, we also publicly present interactive 15 
visualizations that depict the individual distributions of relevant symptoms for each phenotype 
and each dataset (Fig. 4). These online, accessible visualizations notably make it easy to see that, 
across relevant symptoms, phenotypes, and datasets, the time between initial presentation and 
receipt of diagnosis is generally longer for women than for men.  
Diagnostic Delay (DD) Differences: Across the claims datasets (CCAE, MDCD, MDCR), there 20 
are significant gendered differences in diagnostic delay for almost all phenotypes. Considering 
CCAE, there are significant gendered differences in diagnostic delay (DD) for the acute (31 of 
31), mid-length chronic (62 of 65), and long-term chronic (15 of 16) phenotypes with 
significance threshold of p < 0.01 (Fig. 5). Women on average must wait 21.0, 62.9, and 134.0 
days longer than men after their first presentation with any relevant symptom for the acute, mid-25 
length chronic, and long-term chronic phenotypes respectively (Table S5). These trend persists 
across MDCD and MDCR data regardless of phenotype course (i.e., acute vs. chronic), with 
most phenotypes having statistically significant differences with longer observed diagnostic 
delays for women (Figs. S4-S5). The diagnostic delay differences are less readily apparent for 
CUIMC data (i.e., fewer phenotypes were statistically significant, Fig. S6).  30 

Discussion 
By leveraging the OHDSI federated research platform (15) and the OMOP common data model 
(32), this study represents one of the first systematic, comprehensive, large-scale 
characterizations of disease diagnosis differences across genders. Where previous studies rely on 
highly curated, single-disease cohorts which include up to a few thousand patients (24–30), our 35 
systematic characterization considers over 208 million patients across more than a hundred acute 
and chronic diseases. This study’s heterogenous study population includes geographically 
diverse patients covered by both government and private insurance, with longitudinal records 
spanning more than a decade from both claims and EHR datasets. To date, the only comparable 
large-scale characterization of gender differences in diagnosis is limited to a single longitudinal 40 
Danish national health registry study that examines age of onset and prevalence differences (31). 
Taken together, the findings from this study indicate that systematic differences exist in disease 
diagnosis across genders, with these differences persisting across conditions and datasets.  
While we expect sex-specific conditions to be diagnosed differently across genders, our findings 
suggest that women and men are differently diagnosed for a much broader set of conditions. In 45 
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the population-wide characterization, across all datasets women were observed to be at greater 
risk of receiving diagnoses for most conditions in the general population. Despite being more at 
risk, women also were older than men when first diagnosed, aligning with previous findings 
from the longitudinal Danish study (31). In the phenotype-specific characterization, we 
additionally observe staggering differences in time-to-diagnosis and diagnostic delay between 5 
women and men. After examining relevant symptoms leading up to diagnosis, our findings 
indicate that it takes longer for women to be formally diagnosed, even when comparing across a 
common set of relevant symptoms. Likewise, across datasets, women experience significantly 
longer diagnostic delays compared to men. These findings suggest that differences in the 
timeliness of diagnosis are due to more than differential disease presentation, as the analyses use 10 
similar sets of relevant symptoms. Indeed, given that diagnostic criteria are traditionally 
evaluated based on men’s symptom etiology, our analysis is likely a conservative estimate of 
time to diagnosis and diagnostic delay differences (since in cases where women and men differ 
in disease presentation, women may be even less likely to have received access to a diagnosis). 

Overall, the findings have large implications regarding gender bias in medicine, highlighting 15 
how neither previously assumed equality nor assumed differences between women and men are 
necessarily appropriate (33). With women being more at-risk and older when presenting with 
conditions in a population (population-level characterization), but also experiencing longer time 
to diagnoses and diagnostic delays (phenotype-level characterization), our findings raise 
important questions concerning how care delivery is impacted by both genuine biological sex 20 
differences and potential gender biases in care. The consistent nature of these time to diagnosis 
and diagnostic delay differences suggest that critical differences in initial presentation may not 
be fully represented in the claims data. In light of these findings, the potential for encoding 
algorithmic bias in models trained on clinical data also merits special attention, especially as 
artificial intelligence proliferates in medicine. As women are consistently being diagnosed later 25 
than men, even when they present with similar symptoms, there is a genuine risk of erroneously 
and automatically down-weighting the symptoms of women during model training. Further, 
historical patterns of delay and lack of attention to earlier symptom presentation in women may 
also result in learned assumptions of longer lag times in disease progression that further 
exacerbate differences by prioritizing earlier treatment in men. These results suggest that the 30 
individual information in presenting symptoms may be different, and warrants a deeper dive into 
what drives these observed differences. We emphasize that our approach can be easily extended 
to new disease phenotypes or reproduced across datasets, since we make all OHDSI phenotypes 
and analytic code available to the public to foster additional characterizations at scale. 

Our findings should be considered in light of several potential limitations. First, we recognize the 35 
importance of how other demographic factors could be health determinants, and note the 
potential insights that could be additionally afforded by applying an intersectional lens to these 
analyses (e.g., examination along subdivisions of both gender and race). Unfortunately, 
limitations in the data sources did not allow for this type of analysis. Nonetheless, we posit that 
comparison of diagnostic patterns between and among subgroups would find similarly notable or 40 
perhaps even more extreme differences given prevailing literature on inequities in care delivery. 
Second, while systematic and comprehensive, our approach is care setting agnostic and does not 
distinguish between visits in the outpatient or inpatient setting, nor does it stratify by provider 
specialty. Nonetheless, we note that the differences observed are both consistent and staggering, 
and we posit that since these trends exist in aggregate data, they would likely persist irrespective 45 
of care setting. Third, in our phenotype analyses, we used algorithmically-generated relevant 
symptoms to scale our analyses across the numerous phenotypes. As we noted in the results, 
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after extensive validation, using clinician-adjudicated relevant symptoms produced even more 
staggering results than using the algorithmically-generated relevant symptoms. Clinical expertise 
essentially filtered out anomalous symptoms and focused on highly predictive symptoms. Since 
the majority of presenting symptoms had longer time to diagnoses for women, clinical filtering 
focusing on highly predictive symptoms made the findings even more poignant. Finally, we 5 
sought to minimize potential biases attributed to variability in healthcare utilization and access. 
We required all patients to meet the same minimum number of years of continuous observation 
and performed our analyses independently on each data source without aggregation, to preserve 
differences in insurance status (private or government plan) and data provenance (claims or 
EHR). Our analysis found trends in claims data that were consistent regardless of insurance type. 10 
Many of those same trends were also evident in the EHR data, but to a varying degree. 
In conclusion, while we cannot yet causally explain why these differences occur, the presence of 
these consistent, staggering differences in diagnosis patterns suggest that women and men in 
both public and private insurance are differentially diagnosed (and potentially differentially 
treated) after presentation with symptoms. The findings from this paper are the first step toward 15 
systematically identifying sex and gender- disparities in disease diagnosis, and suggest that we 
must further examine these differences and identify on a per-disease basis how and why these 
systematic differences occur.   
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Table 1. Summary statistics and demographic information for the four databases used in the 
study. Figures in the main paper are based on data from the Commercial Claims and Encounters 
(CCAE) database, as CCAE is the largest database by an order of magnitude – additional graphs 
for MDCD, MDCR, and CUIMC can be found in Supplemental Materials. Commercial Claims 
and Encounters (CCAE) and Medicare (MDCR) databases do not have race or ethnicity 5 
demographic information. Data from all sources span January 01, 2010 through January 01, 2020. 

 

 Claims EHR 

Database Commercial 
Claims and 
Encounters 

(CCAE) 

Medicaid 
(MDCD) 

Medicare 
(MDCR) 

Columbia 
University 

Irving Medical 
Center (CUIMC) 

No. of persons 158,388,845 32,806,887 10,252,269 6,747,059 

No.of women 80,947,643 18,436,044 5,662,878 3,758,402 

No. of men 77,441,202 14,370,843 4,589,391 2,971,591 

No. of conditions 16,454 16,269 15,850 17,587 

Age range 
(years) 

1 - 65 1 - 65 65+ All ages 

Black N/A 8,897,511 N/A 380,926 

White N/A 15,828,667 N/A 1,069,661 

Hispanic, Latino N/A 2,396,864 N/A 529,371 

Non-Hispanic, 
Latino 

N/A N/A N/A 992,193 
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Fig. 1. Graphical representation of methods used in the population-level characterization 
(top) and the phenotype-specific characterization (bottom). In the population-level 
characterization, we analyze diseases and conditions that occur in patients with at least one year 
of continuous observation. We calculate condition prevalence in women and men and compute 5 
risk ratios. We also calculate age of onset for each condition among all women and men, then 
estimate the mean difference in age of onset across genders. In the phenotype-specific 
characterization, across 112 phenotype definitions (using Crohn’s disease as an example), we 
aggregate the presenting symptoms prior to diagnosis in 1-, 3-, and 10-year increments for acute, 
mid-length, and long-term chronic conditions, respectively. We assess time to diagnosis for each 10 
presenting symptom across genders, computing the mean differences of the distributions. We also 
assess the diagnostic delay from first relevant symptom to diagnosis. 
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Fig. 2. Population-level distributions showing women’s risk ratios, increased risk, and age of 
onset differences. We visualize the women’s risk ratio distributions for the various datasets (left-
most column), where we see that, in the largest two databases, women are more likely to be more 
at risk (as shown in the differences in counts). Considering the increased risk (middle column) for 5 
all datasets except CUIMC, women were at increased risk for all conditions. When we examine 
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age of onset distributions (right-most column), women are consistently older when first diagnosed 
for all conditions across all datasets. 
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Fig. 3. Mean time to diagnosis (TTD) for women and men across all phenotypes in the 
Commercial Claims and Encounters (CCAE) dataset. Aggregated results show mean TTDs 
broken down by phenotype for CCAE, the largest private-insurance claims database. Each X-axis 
shows the mean TTD difference averaged across TTDs for the top 50 presenting symptoms . 5 
Visualization of TTD illustrates that women are consistently diagnosed later than men when with 
a common set of presenting symptoms, when we consider the same relevant conditions for all 
phenotypes (except in the case of autism, HIV and multi-system inflammatory disorder). This 
consistent trend persists across MDCD and MDCR (Figs. S1, S2), indicating that these findings 
persist regardless of whether a patient had private or government insurance. 10 
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Fig. 4. Mean time to diagnosis (TTD) differences using the top-50 presenting symptoms for 
women and men in a subset of 10-year chronic phenotypes from the Commercial Claims 
and Encounters (CCAE) dataset. Each dot represents the TTD difference between women and 
men for the same matched symptom; a positive difference indicates that women have to wait 5 
longer than men. Note how it takes longer until diagnosis for the vast majority of women’s 
presenting symptoms. Also, when we consider mean TTD  based on the top-50 presenting 
symptoms (shown as the bar graphs), the overall TTD is consistently longer for women than for 
men. These trends persist across databases and phenotypes.  
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Fig. 5. Mean diagnostic delay (DD) for women and men across phenotypes in the 
Commercial Claims and Encounters (CCAE) dataset. Aggregated results show DD for 
women and men after performing Kolmogorov-Smirnov tests to calculate if the difference in 5 
distributions for women and men was statistically significant (based on threshold of p < 0.01). 
Visualizing the DD (i.e., the time from first relevant symptom to time of diagnosis) illustrates 
that, for all significant differences, women have to wait longer from first relevant symptom 
presentation to diagnosis. 
 10 
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