1 Title: A Systematic Review of the Association between Sedentary

2 Behavior and Non-Motor Symptoms of Parkinson's Disease

- 3 Aiza Khan ^a, Joy Ezeugwa ^a, Victor Ezeugwu* ^a
- 4 a: Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
- 5 *Corresponding author
- 6 Victor Ezeugwu, PT, MSc, PhD
- 7 Assistant Professor
- 8 Department of Physical Therapy
- 9 <u>ezeugwu@ualberta.ca</u>
- 10

11 Abstract

12 Background

13 Parkinson's disease, known for motor symptoms, often brings early non-motor issues that

14 severely affect patients' quality of life. While there are not many effective treatments, physical

- activity and exercise can help. Yet, another component of the movement intensity continuum
- 16 warrants examination—prolonged sitting or sedentary behavior. Thus, aim of this study was to
- 17 perform a systematic review to investigate the relationship between sedentary behaviour and
- 18 non-motor symptoms, specifically cognitive decline, depression and sleep deficits in Parkinson's
- 19 disease.
- 20 Methods
 21 Conforming to PRISMA guidelines, we reviewed the literature up to February 28, 2023, to
- 22 investigate how sedentary behavior correlates with non-motor symptoms such as cognitive

23	impairment, depression, and sleep disturbances in Parkinson's disease. A systematic search of the
24	literature was conducted via electronic databases including MEDLINE, CINAHL, Scopus,
25	PubMed and PsycINFO. The eligibility criteria for study selection was: (i) If it studied the
26	Individuals with Parkinson's disease with sedentary behaviour(iii) studies investigating the
27	association between sedentary behavior and at least one of the non-motor symptoms, including
28	depression, sleep quality, and/or cognitive impairment. New-castle-Ottawa scale for cross-
29	sectional and cohort studies was used to perform quality assessment of the studies.
30 31	Results Of the 463 publications found, 7 studies met the inclusion criteria. All the studies were
32	observational. Total number of cases across all studies were 980. Collectively, these studies
33	show that prolonged sedentary time is associated with increased cognitive, depressive, and sleep-
34	related problems.
35 36	Conclusion Recognizing sedentary behavior as an independent factor holds pivotal significance. The
37	intricate relationship between sedentary behavior and Parkinson's disease non-motor symptoms
38	necessitates further exploration to potentially enhance therapeutic strategies for those living with
39	the disease.
40	Prospero Registration number: PROSPERO (ID: CRD42023405422) on April 11, 2023

41

42 Key words: Parkinson's disease, non-motor symptoms, Sedentary behavior, Cognition,

43 Depression

44

45 **1.Introduction**

46	1.1 Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting 1 to 2% of
47	adults over age 65 years and 4% of adults over age 80 years (1). PD has been identified as the
48	"fastest growing neurological disorder" between 1990 and 2016, contributing to a significant
49	number of deaths and disabilities globally (2). In 2019, PD was attributed with 5.8 million
50	disability-adjusted life-years (DALYs) across 195 countries, representing an 81% increase since
51	2000 (2). Click or tap here to enter text. Clinically, PD is primarily characterized by motor
52	symptoms such as bradykinesia, resting tremor, rigidity, gait abnormalities, and postural
53	impairment (1). However, it is important to note that a diverse range of non-motor symptoms
54	(NMS) also play a significant role in PD symptomology (3)(4). These NMS include sleep
55	disturbances, sensory deficits, mood disorders including depression, apathy, or anxiety,
56	autonomic nervous system dysfunction (orthostatic hypotension and obstipation), olfactory
57	dysfunction, and cognitive impairment (3)(4). Several studies indicate that NMS often precede
58	motor symptoms and can have a more profound impact on the quality of life of individuals living
59	with PD(5). Mood disorders such as depression and anxiety, as well as pain, fatigue, and
60	cognitive impairment contribute to the disease burden as PD progresses (3)(6).

3

61	Despite their significance, NMS frequently go unrecognized and undertreated, posing a
62	challenge for people living with PD (7). Moreover, NMS in PD may present significant
63	challenges that affect day-to-day functioning and physical activity levels, as many people with
64	PD often struggle to meet the recommended guidelines of 150 minutes per week of moderate-
65	intensity physical activity(8). In other words, activities that are intense enough to breathe heavily
66	and break a sweat. With movement challenges and NMS experienced by people living with PD,
67	moving fast or long enough to reach recommended targets may be hard. As a consequence,
68	people with PD often lead sedentary lifestylesClick or tap here to enter text.(9)(10), which can have
69	adverse short- and long-term effects on their health (11).
70	1.2."Sedentary behavior, characterized by activities in sitting or lying with minimal energy
71	expenditure (12), is more prevalent in individuals with PD compared to age-matched adults (13).
72	-For example, people with PD engage in approximately 10 hours of sedentary behaviors during
73	waking hours, often in longer bouts compared to their age-matched peers without PD (13).
74	Notably, sedentary behavior is a well-established risk factor for chronic diseases such as
75	diabetes, cancer, cardiovascular disease, and negatively affects mental health conditions like
76	stress, anxiety, depression, and dementia (14). Understanding the potential association between
77	sedentary behavior and non-motor symptoms in PD is crucial for identifying underlying
78	mechanisms and improving symptom management (3)(13). Previous studies have shown positive
79	effects of exercise on both motor and non-motor symptoms in PD(15), however exercise and

80	sedentary behaviour are distinct and independent factors (13)(16). Although a potential link
81	between sedentary behaviour and cognitive impairment has been suggested in PD (13), clear
82	associations between non-motor symptoms and sedentary behavior are yet to be established, but
83	determining such links may help in better management of NMS. As the number of PD cases
84	continues to rise globally, understanding and managing NMS are essential for improving the
85	quality of life of individuals with PD (7). Understanding the distinctive associations between
86	sedentary behavior and NMS could inform future interventions for PD (17)(18) (16).
87	In this paper, authors aim to review the literature for studies that highlight the associations
88	between sedentary behavior (other search terms may include sitting/lying or physical inactivity)
89	with non-motor symptoms in individuals living with PD. More specifically, authors will focus on
90	the associations between non-motor symptoms related to mental health such as sleep quality,
91	depression, and cognitive impairments with sedentary behavior in individuals living with PD.

92 2. Methods

93 2.1Protocol and registration

94

In order to report this Systematic review, we used Preferred Reporting Items for Systematic

96 Reviews and Meta-Analyses (PRISMA) statement (19)as shown in S1 Table. The protocol was

97 registered with PROSPERO (ID: CRD42023405422).

98 2.2 Identification of relevant studies

99	A systematic search was conducted to identify all original peer-reviewed articles available on the
100	association of sedentary behavior with non-motor symptoms, including sleep,
101	depression/anxiety, and cognitive decline in Parkinson's disease until February 28, 2023. The
102	search was performed on several databases, including MEDLINE, CINAHL, Scopus, and
103	PubMed and PsycINFO using different combinations of search terms such as non-motor
104	symptom* OR depress* OR anxiety OR mood AND/OR sleep* OR insomnia* OR sleep
105	difficulties OR reduced sleep AND/OR cognitive decline, OR cognitive impairment OR
106	sedentary AND sitting OR bed-ridden OR lying down OR physical inactivity OR lack OR
107	minimal physical-activity, in different combinations with Parkinson's disease.
108	Next, all identified studies were transferred to Covidence software for screening.
109	The eligibility criteria were based on the PI(E)COS (participants, intervention (exposure),
110	context, outcomes, and study design) framework(20). The original peer-reviewed articles were
111	included if they met specific criteria. First, studies were selected if they included participants
112	with PD who exhibited non-motor symptoms at the time of inclusion in the study. Second, the
113	exposure of interest was sedentary behavior, as the primary focus of our study was to identify the
114	association between non-motor symptoms and sedentary behavior. Regarding
115	context/comparators, the comparator criterion was not applicable to our study. Patients from all
116	settings, such as the community or hospitalized, were considered for inclusion in the study. In

terms of outcomes, all the included studies focused on the ass	ociation between sedentary
--	----------------------------

- 118 behavior and at least one of the non-motor symptoms, including depression, sleep quality, and/or
- 119 cognitive impairment. Finally, all types of study designs were included as this is a relatively new
- 120 area of study with limited available data. Therefore, all peer-reviewed articles written in English
- describing original quantitative research were included. Additionally, the reference lists of all
- 122 eligible studies were carefully examined to identify any additional relevant studies.

123 2.3. Selection of relevant studies

- 124 Based on the eligibility criteria mentioned above, two independent reviewers screened the
- 125 articles for selection. At first, the title and abstract screening was performed which was followed
- by the full-text screening. All conflicts between the two reviewers were discussed and resolved
- 127 by the third reviewer and a consensus was reached.

128 2.4. Data Synthesis

- 129 The data from the selected studies were extracted and organized using an Excel spreadsheet and
- 130 Covidence software. The following information was collected: study number, title of study, first
- author, objective(s) of study, study design, year, country, number of participants, exposure
- setting, age, sex/gender, type of non-motor symptoms, type of test for non-motor symptom,
- 133 measurement of sedentary behavior, main outcomes, secondary outcomes, key findings, and
- 134 statistical analysis (available as supplementary material).

135	Due to factors such as small number of studies, variation in study designs of studies and
136	methods, and heterogeneity, it was determined that a meta-analysis may not yield worthwhile
137	results. Therefore, a narrative synthesis was conducted, following Popay' et al.'s instructions ad
138	suggestions (21) A tabulation format was chosen to describe the characteristics of included
139	studies, the characteristics of participants, and the objectives and outcomes related to the
140	association between sedentary behavior and non-motor symptoms. The protocol for the
141	systematic review was registered on PROSPERO (ID: CRD42023405422) on April 11, 2023.
142	2.5. Quality assessment
143	After retrieving the studies that met inclusion criteria, two authors independently assessed the
144	methodological quality of studies using New Castle-Ottawa scale (NOS)(22).
145	For the longitudinal studies Newcastle Ottawa scale for cohort studies was used. For cross
146	sectional studies, quality Appraisal was performed studies Newcastle-Ottawa Scale adapted for
147	cross-sectional studies. Studies scoring 5 or more were considered to be good quality
148	studies(22,23).
149	3. Results
150	Out of 463 articles, 183 duplicate articles were removed, leaving 280 studies. Of these, 243 were
151	considered irrelevant, and 37 studies underwent full-text screening. Finally, 7
152	studies(13)(24)(25)(26)(27)(28)(29) were found eligible for systematic review and included in the
153	data extraction and narrative synthesis. The selection process is summarized in a PRISMA
154	flowchart (Figure 1).

Figure 1. Depicting the PRISMA Steps followed to select articles for the current study.

Table 1 shows the characteristics of the included studies, while Table 2 presents the 156 characteristics of people with PD. All 7 studies selected were observational studies, with three 157 being cross-sectional and three being secondary analyses of longitudinal cohort studies. While 158 one of them was exploratory observational study. Five studies were conducted in the USA, and 159 the remaining two were done in the United Kingdom. Total number of cases across all studies 160 161 were 980 (excluding controls). Notably, all the studies were conducted within the last decade, reflecting the emerging trend in research to better understand the relationship between sedentary 162 behavior and non-motor symptoms in PD. Six studies assessed the correlation of sedentary 163 behavior and cognition, with two studies including an assessment of depression in addition to 164 cognition. Only one study studied the link between sedentary behavior and sleep. The studies 165 were primarily carried out in community settings, except for one that was conducted in a home-166 167 based setting. 168 The studies were further categorized into three groups based on the non-motor symptoms studied as follows: 169 3.1 Sedentary Behaviour and Cognitive Changes in Parkinson's Disease 170 Out of the seven studies, six investigated the impact of sedentary behavior on cognition 171 (13)(27)(26)(24)(25)(28). Three of these studies focused exclusively on cognition(28)(27)(25), while 172 the other three assessed depression and other factors in addition to cognition(13)(26)(24). All the 173 studies were observational studies encompassing different study designs. It was consistently 174 175 reported by all six studies that a sedentary lifestyle was associated with cognitive decline in

176 PD(13)(27)(Timblin et al., 2022) (Timblin et al., 2022)(24)(25)(28). Interesting variations were

177	observed in the aspects of this relationship investigated by the different studies. One study found
178	an association between sedentary behavior and an elevated risk of developing PD-related mild
179	cognitive impairment and dementia(25). Another study noted that as leisure/recreational physical
180	activities declined over time, the risk of developing PD-related dementia increased (25).
181	Similarly, another study reported that sedentary behavior in individuals with PD resulted in
182	overall poor health, particularly worse in those with cognitive decline (28). A study by Troutman
183	et al. reported that sedentary activity negatively affected cognition in general, particularly
184	attention, and also led to reduced cognitive processing and communication, resulting in a poorer
185	quality of life (27). These studies highlighted the cumulative detrimental effects of sedentary
186	behavior and physical inactivity on cognition in PD, subsequently lowering the quality of life of
187	people with PD (13)(24).
188 189	3.2 Sedentary Behavior and Depression/Anxiety in Parkinson's disease Two studies assessed depression in addition to the cognitive impairment in individuals with
190	PD(26)(24). One study reported that depression led to sedentary behavior, which in turn, led to
191	cognitive decline over time(26). This suggests that lack of physical activity might play a role in
192	depression and its eventual impact on cognitive decline(26). Similarly, another study determined
193	that PD patients benefit from being physically active, while long periods of sedentary behaviour
194	may contribute to the etiology of depression(24). Being physically active not only improved

quality of life but may also helped in the prevention and therapy for depression in PD (24).

196 3.3 Sedentary behavior and sleep deficits in Parkinson's disease

- 197 Only one study assessed the association between sleep and sedentary behaviour in PD(29). The
- study reported that individuals with mild PD slept less and were less active compared to a group
- 199 of healthy older adults. Of note, in both groups, less sleep was related to more sedentary
- 200 behaviour (29).

3.4 Factors contributing to Sedentary behaviour in Parkinson's disease.

- It is well-established that motor symptoms typically lead to physical inactivity in PD(30).
- 203 However, it is crucial to highlight here that lack of physical activity is associated with cognitive
- impairment independent of the severity of motor symptoms (25). One study reported an
- association between sedentary behavior and cognitive decline in patients newly diagnosed with
- 206 PD, when motor symptoms are less severe (25). These findings make it difficult to establish
- 207 causation. Moreover, it has been reported that mood and thought disorders such as apathy and
- anxiety may increase the risk of physical inactivity (26). Additionally, factors such as female
- 209 gender, older age, and a decline in overall physical capacity are important determinants of
- 210 sedentary behavior (31).

3.5 Quality Appraisal

- Using the Newcastle-Ottawa Scale, six out of the seven studies received a rating of good quality
- 213 (score > 5), while one study was rated as moderate quality (score < 5), as illustrated in Figures 2a

and 2b. Among the six studies rated as good quality, three were cross-sectional, while theremaining three were longitudinal studies.

Figure 2a. Figure 2.a. Quality Appraisal for longitudinal studies using New Castle Ottawa
Scale:

Study acquiring at least 5 stars, or more is considered good quality. Three main categoriesSelection, Comparability and Outcomes with further subdivisions.

220 Selection 1) Representativeness of the exposed cohort a) Truly representative (one star) b)

221 Somewhat representative (one star) c) <u>No star for</u>: elected group d) No description of the

derivation of the cohort 2) Selection of the non-exposed cohort a) Drawn from the same

community as the exposed cohort (one star) <u>No star for:</u> b) Drawn from a different source c) No

description of the derivation of the non exposed cohort 3) Ascertainment of exposure a) Secure

record (e.g., surgical record) (one star) b) Structured interview (one star) No star for: c) Written

self report d) No description e) Other 4) Demonstration that outcome of interest was not present

at start of study a) Yes (one star) <u>No star if:</u> b) No Comparability 1) Comparability of cohorts

on the basis of the design or analysis controlled for confounders a) The study controls for age,

sex and marital status (one star) b) Study controls for other factors (list) (one star) <u>No star if</u>: c)

230 Cohorts are not comparable on the basis of the design or analysis controlled for confounders

231 Outcome 1) Assessment of outcome a) Independent blind assessment (one star) b) Record

232	linkage (one star) c) <u>No star for:</u> Self report d) No description e) Other 2) Was follow-up long
233	enough for outcomes to occur a) Yes (one star) b) No Indicate the median duration of follow-up
234	and a brief rationale for the assessment above: 3) Adequacy of follow-up of cohorts a) Complete
235	follow up- all subject accounted for (one star) b) Subjects lost to follow up unlikely to introduce
236	bias- number lost less than or equal to 20% or description of those lost suggested no different
237	from those followed. (One star) No star for: c) Follow up rate less than 80% and no description
238	of those lost d) No statement.

*** Figure 2.b.** Quality Appraisal for case-control studies Newcastle-Ottawa Scale adapted for
cross-sectional studies.

Study acquiring at least 5 stars, or more is considered good quality. Three main categoriesSelection, Comparability and Outcomes with further subdivisions.

Selection: (Maximum 5 scores) 1) Representativeness of the cases: a) Truly representative of the
HCC patients (consecutive or random sampling of cases). 1 star b) Somewhat representative of
the average in the HCC patients (non-random sampling). 1 star. No star for: c) Selected
demographic group of users. d) No description of the sampling strategy. 2) Sample size: a)
Justified and satisfactory (≥ 400 HCC included). 1 star. No star for: b) Not justified (<400 HCC
patients included). 3) Non-Response rate a) The response rate is satisfactory (≥95%). 1 Star. No
star if: b) The response rate is unsatisfactory (<95%), or no description. 4) Ascertainment of the

250	screening/surveillance tool: a) Validated screening/surveillance tool. 2-star b) non-validated
251	screening/surveillance tool, but the tool is available or described. 1 star. No star if: No
252	description of the measurement tool. Comparability: (Maximum 1 stars) 1) The potential
253	confounders were investigated by subgroup analysis or multivariable analysis. a) The study
254	investigates potential confounders. 1 tar. No star if: b) The study does not investigate potential
255	confounders. Outcome: (Maximum 3 stars) 1) Assessment of the outcome: a) Independent blind
256	assessment. 2 stars b) Record linkage. 2 stars c) Self report. 1 Star. No star if d) No description.
257	2) Statistical test: a) The statistical test used to analyze the data is clearly described and
258	appropriate. 1 star. No star if: b) The statistical test is not appropriate, not described or
259	incomplete.
260	*: star, -: no star
261	: star, -: no star
262	
263	

4. Discussion

There is substantial evidence that physical activity is highly beneficial for individuals with PD,
potentially delaying or slowing down the disease progression (32)(33). Exercise has also been
demonstrated to improve non-motor symptoms of PD (34). However, it is important to recognize

268	that sedentary behavior is not merely the opposite of physical activity or exercise, but an
269	independent behavior that is associated with adverse health outcomes(13)(14). The unique
270	relationship between sedentary behavior and non-motor symptoms of PD has been suggested by
271	some researchers(13)(35). Yet, a clearer understanding of this relationship is required,
272	considering that the prevalence of PD is increasing, and technological advances may encourage
273	even more sedentary behaviors. Although in recent years, this gap has been highlighted(36). It
274	has been suggested that sedentary behavior and its role in non-motor symptoms is uniquely
275	essential (13). Hence in the context of PD, further understanding of sedentary behavior and its
276	objective measurements would provide another additional dimension, further understanding of
277	which is crucial to determine further gaps that can be filled, subsequently enabling researchers to
278	provide enhanced therapeutic strategies for individuals living with PD.
279	In this study, we specifically examined the association between sedentary behavior and three
280	non-motor symptoms namely cognitive impairment, depression and sleep in the context of PD. A
281	brief discussion on each one of them follows.
282	4.1. Association of Sedentary behavior and Cognition in Parkinson's disease

283 Cognitive impairment is a common, non-motor symptom of PD, with a wide spectrum of

symptoms related to attention, working memory, visuospatial, and executive functioning (37)(38).

285 The symptoms related to impaired cognition may include worsening of attention, problems with,

286	difficulties with (37)(38). The underlying mechanisms contributing to cognitive decline in PD are
287	complex and may involve genetic factors such as α -synuclein toxicity, Lewy body accumulation,
288	synaptic changes, inflammatory process, and neurotransmitter disruptions (17)(37)(38)(39).
289	Pharmacological interventions are typically used to target these changes in order to enhance
290	cognition, however, the overall improvement remains modest(38). In addition to pharmacological
291	strategies, non-pharmacological strategies, such as physical activity, have been shown to
292	improve various biological mechanisms related to cognition in individuals with PD(37)(38). Thus
293	physical activity is a promising approach in improving cognition in PD(40). Importantly, a
294	distinctive and independent association between cognitive impairment in PD and sedentary
295	behavior has also been suggested,(13)(26) however, yet to investigated in depth. We found
296	studies (Table 1) assessing this link and all of them reported a negative impact of sedentary
297	behavior on cognition. Studies have shown that sedentary behavior can be related with poor
298	global cognition, and cognitive decline(26,28). Furthermore, a prolonged sedentary behavior
299	causes a progress in cognitive decline.

4.2. Association of Sedentary Behavior and Depression in Parkinson's disease

Depression is another common non-motor symptom in PD (41). Depression often manifests
before the onset of motor symptoms, though it can occur at any stage of PD (41)(42).
Approximately 40% of patients with PD experience symptoms of depression (42). These
symptoms may include excessive feeling of sadness, helplessness, lack of concentration, loss of

305	interest in previously enjoyed activities, increased exhaustion, irritability, and dysphoria.
306	Diagnosing depression in PD can be challenging due to symptom overlap with PD symptoms,
307	leading to the condition being untreated in some individuals living with PD(41)(42). Depressive
308	disturbances not only cause emotional burdens, but also have a significant negative impact on
309	quality of life(42). Moreover, depression also negatively affects motor symptoms, and worsens
310	cognitive and functional disabilities(24)(42). It is noteworthy that depression along with anxiety
311	are among the non-motor symptoms that are considered to be the most important predictors of
312	quality of life in individuals with PD(24)(43).
313	The pathophysiology of depression in PD is not fully understood(41)(43). Various studies suggest
314	that depression in PD could be related to dysfunction of multiple brain areas, such as subcortical
315	nuclei as well as prefrontal cortex, striatal-thalamic-prefrontal and bitemporal limbic circuits.
316	Also, degenerative changes in neurotransmitter systems of the brain may play a role(41)(43).
317	Psychosocial factors have also been suggested to contribute to the etiology of depression in PD
318	(41)(43)(42). Another factor less studied attributed to depression in PD is sedentary behavior (33).
319	One study evaluating the role of physical activity in PD showed that patients with prolonged
320	sedentary behavior displayed more apathetic behavior as compared to others who are active (33).
321	Other studies have also demonstrated a link between physical inactivity and an increased
322	likelihood of depression in PD (26)(14)(34). In this review, we found only two studies that

assessed the link between depression and sedentary behavior (26)(24). Both studies reported a
potential link between depression and sedentary behavior which may also contribute to cognitive
decline(26)(24).

4.3. Association of Sedentary Behavior and Sleep in Parkinson's disease

327 Sleep-related disorders are highly prevalent in PD (44), and constitute an integral part of

- 328 spectrum of non-motor symptoms of PD (45). These sleep disorders may present earlier in the
- 329 course of disease (44). The etiology of sleep disturbances in PD is multifactorial and may include
- 330 PD-related neurodegenerative processes and medication side-effects(46). A diverse array of

sleep disorders is associated with PD, ranging from poor sleep quality, fragmented sleep,

- reduction in total sleep time, and overall sleep and rapid eye movement behavior disorders (3).
- 333 Sleep disturbances significantly impact the quality of life in individuals with PD and tend to

334 worsen as the disease progresses(46). In addition, sleep problems may also have a negative effect

- 335 on the severity of motor and other non-motor symptoms, making effective treatment crucial
- 336 (3)(46). Various therapeutic interventions are being investigated to improve sleep in PD,
- 337 including exercise and physical activity, which have been shown promising results in improving
- 338 sleep quality(Amara and Memon, 2018. Interestingly, studies have demonstrated an independent
- relationship between reduced sleep and sedentary behavior in PD (29). It has been suggested that
- 340 treating sleep deficits may lead to a decline in sedentary behavior in the early stages of PD (5).
- 341 This indicates the potential bidirectional relationship between sleep and sedentary behavior in

342 PD. Although research on this topic is limited, it has been demonstrated that an independent and

343 unique link exists between sedentary behavior and poor sleep quality(29).

344 **4.4** Limitations

It is important to note that the evidence provided in this paper is not without limitations. A metaanalysis was not performed due to the heterogeneity of methods across the studies. Furthermore, studies included in this paper were collected from peer-reviewed journals via electronic databases. Thus, studies selected for this paper could potentially be subject to publication bias. Finally, data extraction and quality assessment were performed by one reviewer, hence the

350 possibility of conceptual bias can not be excluded.

351 **5. Future Goals and Directions**

352 It is now well-established that non-motor symptoms of PD are a major contributor to the reduced

- quality of life in individuals living with PD(3,39). Despite often preceding the motor symptoms,
- non-motor symptoms have not received sufficient attention and remain undertreated (48).
- 355 Currently, various pharmacological as well as non-pharmacological treatments are being
- investigated for both motor and non-motor symptoms of PD (18). Exercise has emerged as a
- 357 promising non-pharmacological approach for improving not only motor symptoms but also non-
- 358 motor symptoms(14). However, it is essential to recognize that sedentary behavior is an
- independent risk factor for poor health outcomes (16). Individuals with PD often lead sedentary
- 360 lifestyles, making it crucial to assess its specific role in the pathophysiology of non-motor
- symptoms in PD in more depth. (13)Emerging research has highlighted the unique and crucial

role of sedentary behavior in PD(13). For example, it has been demonstrated that individuals with
 PD tend to have longer bouts of sedentary behavior compared to their age-matched controls,
 suggesting a clear change in their pattern of sedentary behavior (49).

365 Despite its potential significance, current data on the role of sedentary behaviour in PD,

366 particularly in the context of non-motor symptoms, is severely limited. Only 7 studies were

367 found relevant to our topic, indicating the need for further investigation in this area. A clearer

368 understanding of the relationship between sedentary behavior and non-motor symptoms may

help to establish better biomarkers of the disease at an earlier stage, leading to more effective

therapies for PD.

Future studies using more objective device-based, larger sample sizes, clear definition of 371 372 sedentary behavior, and improved study designs are warranted as they may provide a better and 373 clearer insight into the consequences of sedentary behavior and its potential implications in the non-motor symptoms of PD. In conclusion, while exercise has shown promise in addressing 374 motor and non-motor symptoms in PD, the specific impact of sedentary behavior on the disease 375 376 remains an important area for further research. Understanding the role of sedentary behavior in PD may open new avenues for therapeutic interventions and lead to improved outcomes for 377 individuals living with the disease. 378

379

380 **References:**

- Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat
 Rev Dis Primers. 2017 Mar 23;3(1):17013.
- Schiess N, Cataldi R, Okun MS, Fothergill-Misbah N, Dorsey ER, Bloem BR, et al. Six Action Steps
 to Address Global Disparities in Parkinson Disease. JAMA Neurol. 2022 Sep 1;79(9):929.
- Chaudhuri KR, Healy DG, Schapira AHV. Non-motor symptoms of Parkinson's disease: diagnosis
 and management. Lancet Neurol. 2006 Mar 1;5(3):235–45.
- Sung VW, Nicholas AP. Nonmotor Symptoms in Parkinson's Disease. Neurol Clin. 2013
 Aug;31(3):S1–16.
- Todorova A, Jenner P, Ray Chaudhuri K. Non-motor Parkinson's: integral to motor Parkinson's,
 yet often neglected. Pract Neurol. 2014 Oct;14(5):310–22.
- Müller B, Assmus J, Herlofson K, Larsen JP, Tysnes OB. Importance of motor vs. non-motor
 symptoms for health-related quality of life in early Parkinson's disease. Parkinsonism Relat
 Disord. 2013 Nov;19(11):1027–32.
- Hermanowicz N, Jones SA, Hauser RA. Impact of non-motor symptoms in Parkinson's disease:
 a PMDAlliance survey. Neuropsychiatr Dis Treat. 2019 Aug;Volume 15:2205–12.
- Bouça-Machado R, Duarte GS, Patriarca M, Castro Caldas A, Alarcão J, Fernandes RM, et al.
 Measurement Instruments to Assess Functional Mobility in Parkinson's Disease: A Systematic
 Review. Mov Disord Clin Pract. 2020 Feb 11;7(2):129–39.
- Bouça-Machado R, Rosário A, Caldeira D, Castro Caldas A, Guerreiro D, Venturelli M, et al.
 Physical Activity, Exercise, and Physiotherapy in Parkinson's Disease: Defining the Concepts. Mov
 Disord Clin Pract. 2020 Jan 11;7(1):7–15.
- 402 10. Ryder-Burbidge C, Wieler M, Nykiforuk CIJ, Jones CA. Life-Space Mobility and Parkinson's Disease.
 403 A Multiple-Methods Study. Mov Disord Clin Pract. 2022 Apr 19;9(3):351–61.
- Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary Time and Its
 Association With Risk for Disease Incidence, Mortality, and Hospitalization in Adults. Ann Intern
 Med. 2015 Jan 20;162(2):123–32.
- Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary
 Behavior Research Network (SBRN) Terminology Consensus Project process and outcome.
 International Journal of Behavioral Nutrition and Physical Activity. 2017 Dec 10;14(1):75.
- 410 13. Ellingson LD, Zaman A, Stegemöller EL. Sedentary Behavior and Quality of Life in Individuals With
 411 Parkinson's Disease. Neurorehabil Neural Repair. 2019 Aug 18;33(8):595–601.

412 413 414	14.	Bélair MA, Kohen DE, Kingsbury M, Colman I. Relationship between leisure time physical activity, sedentary behaviour and symptoms of depression and anxiety: evidence from a population-based sample of Canadian adolescents. BMJ Open. 2018 Oct 17;8(10):e021119.
415 416 417 418	15.	Osborne JA, Botkin R, Colon-Semenza C, DeAngelis TR, Gallardo OG, Kosakowski H, et al. Correction to: Osborne JA, Botkin R, Colon-Semenza C, et al. Physical Therapist Management of Parkinson Disease: A Clinical Practice Guideline From the American Physical Therapy Association. <i>Phys Ther</i> . 2022;102:pzab302. https://doi.org/10.1093/ptj. Phys Ther. 2022 Aug 1;102(8).
419 420	16.	Thorp AA, Owen N, Neuhaus M, Dunstan DW. Sedentary Behaviors and Subsequent Health Outcomes in Adults. Am J Prev Med. 2011 Aug;41(2):207–15.
421 422	17.	Dickson DW, Fujishiro H, Orr C, DelleDonne A, Josephs KA, Frigerio R, et al. Neuropathology of non-motor features of Parkinson disease. Parkinsonism Relat Disord. 2009 Dec;15:S1–5.
423 424	18.	Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the Treatment of Parkinson's Disease: Beyond Dopamine. Front Aging Neurosci. 2020 Jan 31;12.
425 426 427	19.	Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery. 2021 Apr;88:105906.
428 429 430	20.	O'Connor D, Green S, Higgins JP. Defining the Review Question and Developing Criteria for Including Studies. In: Cochrane Handbook for Systematic Reviews of Interventions. Chichester, UK: John Wiley & Sons, Ltd; p. 81–94.
431 432	21.	Popay J, Roberts H, Sowden A, Petticrew M, Arai L, Rodgers M, Britten N, Roen K, Duffy S: Guidance on the conduct of narrative synthesis in systematic reviews.
433 434	22.	Luchini C, Stubbs B, Solmi M, Veronese N. Assessing the quality of studies in meta-analyses: Advantages and limitations of the Newcastle Ottawa Scale. World J Metaanal. 2017;5(4):80.
435 436	23.	Khan A, Feulefack J, Sergi CM. Pre-conceptional and prenatal exposure to pesticides and pediatric neuroblastoma. A meta-analysis of nine studies. Environ Toxicol Pharmacol. 2022 Feb;90:103790.
437 438 439	24.	van Uem JMT, Cerff B, Kampmeyer M, Prinzen J, Zuidema M, Hobert MA, et al. The association between objectively measured physical activity, depression, cognition, and health-related quality of life in Parkinson's disease. Parkinsonism Relat Disord. 2018 Mar;48:74–81.
440 441	25.	Jones JD, Baxter F, Timblin H, Rivas R, Hill CR. Physical inactivity is associated with Parkinson's disease mild cognitive impairment and dementia. Ment Health Phys Act. 2022 Oct;23:100461.
442 443 444	26.	Timblin H, Rahmani E, Ryczek CA, Hill CR, Jones JD. Physical inactivity links depressive symptoms and cognitive functioning among individuals with Parkinson's disease. Neuropsychology. 2022 Sep;36(6):505–12.
445 446	27.	Troutman SBW, Erickson KI, Grove G, Weinstein AM. Sedentary Time is Associated with Worse Attention in Parkinson's Disease: A Pilot Study. J Mov Disord. 2020 May 31;13(2):146–9.

Sulzer P, Gräber S, Schaeffer E, van Lummel R, Berg D, Maetzler W, et al. Cognitive impairment
and sedentary behavior predict health-related attrition in a prospective longitudinal Parkinson's
disease study. Parkinsonism Relat Disord. 2021 Jan;82:37–43.

- Prusynski RA, Kelly VE, Fogelberg DJ, Pradhan S. The association between sleep deficits and
 sedentary behavior in people with mild Parkinson disease. Disabil Rehabil. 2022 Sep
 11;44(19):5585–91.
- Bryant MS, Hou JG, Collins RL, Protas EJ. Contribution of Axial Motor Impairment to Physical
 Inactivity in Parkinson Disease. Am J Phys Med Rehabil. 2016 May;95(5):348–54.
- 455 31. Dontje ML, de Greef MHG, Speelman AD, van Nimwegen M, Krijnen WP, Stolk RP, et al.
 456 Quantifying daily physical activity and determinants in sedentary patients with Parkinson's
 457 disease. Parkinsonism Relat Disord. 2013 Oct;19(10):878–82.
- Bhalsing KS, Abbas MM, Tan LCS. Role of Physical Activity in Parkinson's Disease. Ann Indian Acad
 Neurol. 2018;21(4):242–9.
- 33. Sacheli MA, Murray DK, Vafai N, Cherkasova M V., Dinelle K, Shahinfard E, et al. Habitual
 exercisers versus sedentary subjects with Parkinson's Disease: Multimodal PET and fMRI study.
 Movement Disorders. 2018 Dec;33(12):1945–50.
- 463 34. Domingos J, Família C, Fernandes JB, Dean J, Godinho C. Is Being Physically Active Enough or Do
 464 People with Parkinson's Disease Need Structured Supervised Exercise? Lessons Learned from
 465 COVID-19. Int J Environ Res Public Health. 2022 Feb 19;19(4):2396.
- 466 35. Miura K, Takashima S, Matsui M, Tanaka K. Low Frequency of Leisure-Time Activities Correlates
 467 with Cognitive Decline and Apathy in Patients with Parkinson's Disease. Advances in Parkinson's
 468 Disease. 2014;03(03):15–21.
- 36. Benka Wallén M, Franzén E, Nero H, Hagströmer M. Levels and Patterns of Physical Activity and
 Sedentary Behavior in Elderly People With Mild to Moderate Parkinson Disease. Phys Ther. 2015
 Aug 1;95(8):1135–41.
- 472 37. Aarsland D, Creese B, Politis M, Chaudhuri KR, ffytche DH, Weintraub D, et al. Cognitive decline in
 473 Parkinson disease. Nat Rev Neurol. 2017 Apr 3;13(4):217–31.
- 474 38. Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K, et al. Parkinson
 475 disease-associated cognitive impairment. Nat Rev Dis Primers. 2021 Jul 1;7(1):47.
- 476 39. Grinberg LT, Rueb U, Alho AT di L, Heinsen H. Brainstem pathology and non-motor symptoms in
 477 PD. J Neurol Sci. 2010 Feb;289(1–2):81–8.
- 478 40. Loprinzi PD, Danzl MM, Ulanowski E, Paydo C. A pilot study evaluating the association between
 479 physical activity and cognition among individuals with Parkinson's disease. Disabil Health J. 2018
 480 Jan;11(1):165–8.
- 481 41. Lubomski M, Davis RL, Sue CM. Depression in Parkinson's disease: Perspectives from an
 482 Australian cohort. J Affect Disord. 2020 Dec;277:1038–44.

483 484	42.	Laux G. Parkinson and depression: review and outlook. J Neural Transm. 2022 Jun 4;129(5–6):601–8.
485 486	43.	Ryan M, Eatmon C V., Slevin JT. Drug treatment strategies for depression in Parkinson disease. Expert Opin Pharmacother. 2019 Jul 24;20(11):1351–63.
487 488	44.	Lajoie AC, Lafontaine AL, Kaminska M. The Spectrum of Sleep Disorders in Parkinson Disease. Chest. 2021 Feb;159(2):818–27.
489 490	45.	Kutscher SJ, Farshidpanah S, Claassen DO. Sleep Dysfunction and its Management in Parkinson's Disease. Curr Treat Options Neurol. 2014 Aug 17;16(8):304.
491	46.	Comella CL. Sleep Disorders in Parkinson's Disease. Sleep Med Clin. 2008 Sep;3(3):325–35.
492 493	47.	Amara AW, Memon AA. Effects of Exercise on Non-motor Symptoms in Parkinson's Disease. Clin Ther. 2018 Jan;40(1):8–15.
494 495	48.	Titova N, Chaudhuri KR. Non-motor Parkinson disease: new concepts and personalised management. Medical Journal of Australia. 2018 May 21;208(9):404–9.
496 497 498	49.	Chastin SFM, Baker K, Jones D, Burn D, Granat MH, Rochester L. The pattern of habitual sedentary behavior is different in advanced Parkinson's disease. Movement Disorders. 2010 Oct 15;25(13):2114–20.

499

Table 1

Author, publication year	Country	Study Design	Objective	Non- motor- symptom	Type of Test for Non-Motor symptom	Means of measuring inactivity r	Intervention Duration	Clinical Outcomes
van Uem JMT et all, 2018, (24)	United Kingdom	Cross sectional	To investigate the association between amount of physical activity, severity of depression, cognitive function and quality of life in Parkinson's disease	Cognition, Depression	MMSE for cognition, Geriatric Depression Scale for depression,	Accelerometers on the lower back	3 consecutive days	Long bouts of sedentary behavior should be avoided in Parkinson's diseases. physical activity aids in prevention and treatment of depression and improves quality of life

Ellingson LD et al, 2019,(13)	USA	Cross- sectional	To investigate the relationships between sedentary behaviors and markers of quality of life specific to Parkinson's disease	Cognition	Parkinson's Disease Questionnaire-39 (PDQ-39)	ActiGraph and activPAL Sedentary Behavior Questionnaire	1 week	Sedentary behavior has a negative impact on quality of life, especially in domains of mobility and cognition in Parkinson's disease
Troutman SBW et al, 2020,(27)	USA	Cross- sectional study, Pilot	To investigate the relationship between sedentary time and cognitive performance in individuals with mild- to-moderate Parkinson's disease	Cognition	Montreal Cognitive Assessment (MoCA), Parkinson's Disease-Cognitive Rating Scale (PD- CRS).	Armband accelerometer	7-10 days	Sedentary activity is likely to have a unique associations with cognition, particularly attention, which is more than moderate to vigorous physical activity in individuals with

								Parkinson's disease
Jones JD, 2020,(25)	USA	Secondary analysis using the Parkinson's Progression Markers Initiative, PPMI (a longitudinal cohort study	To investigate the association between participating in everyday physical activity and clinical cognitive outcomes	Cognition	Neuropsychological tests	Physical Activity Scale for the Elderly (PASE	3 years (Subjective self-report questionnaire) No objective measurement	Less activity over the course of the time may increase the risk of mild cognitive impairment and dementia in individuals with Parkinson's disease
Sulzer P,2021,(28)	United Kingdom	Exploratory Observational	To investigate the long term impact of sedentary behavior and cognitive impairment in the home environment and its association to sickness	Cognition	Depression: Geriatric Depression Scale Cognition: Neuropsychological testing	Accelerometers	4.3 years(mean)	Long term sedentary behaviour is associated with overall poor health, may lead to depression, which may cause or worsen the cognitive impairment in

			and death in					Parkinson's
Timblin H,2022 ,(26)	USA	Secondary analysis using the Parkinson's Progression Markers Initiative, PPMI (a longitudinal cohort study	To investigate the long term role physical activity between depressive symptoms and cognition in individuals with Parkinson's disease	Cognition, Depression	Cognition: Neuropsychological testing Depression: Geriatric Depression Scale– Short Form	Physical Activity Scale for the Elderly (PASE)	5 Years (subjective self-report questionnaire) No objective measurement	Individuals who became more depressed, became more physically inactive and gradually developed cognitive decline over 5- years in Parkinson's disease
Prusynski RA, 2022,(29)	USA	Secondary analysis of sleep data gathered during a prospective observational study	To investigate if an association exists between reduced sleep and decreased Physical activity at earlier stages of	Sleep	N/A	(Fitbit Charge HR)	14 days	Increased sedentary behaviour leads to reduced sleep in individuals with Parkinson's disease and healthy old individuals. While sleep

	Pa	arkinson's			and
	di	isease			physical
					activity are
					reduced in
					mild PD as
					compared
					to healthy
					old age
					individuals

513 Characteristics of the Studies Included

Table 2

Author , publica tion year	Non motor symptom studied	Number of Participants (Intervention N)	Setting	Age of patients	Biological sex (Male/Female %)
van Uem JMT et all, 2018, (24)	Depression, Cognition	47	Home	65-74 (mean age 70)	Male 74%, 26% female
Ellingso n LD et al,	Cognition	52	Community	59.9- 75.7(mean age:67.8)	56% were male, 44% female

2019,(13)					
Troutm an SBW et al, 2020,(27)	Cognition	17	Community	50-80 (mean age:65.07)	82% male, 18% female.
Jones JD, 2020,(25)	Cognition	307	Community	40-80 (mean age:61)	65.8 %male,34.2% female
Sulzer P,2021, (28)	Cognition	45 study completed:20.	Community	44-80(mean age: 67.5)	(78%) male 12% females
Timblin H,2022 ,(26)	Depression	487	Community	33-84 (mean age: 61)	65.1% male, 34.1 % females

Prusyns	Sleep	25	Community	69 (mean	not specified
ki RA,				age)	
2022,(
29)					

516 Characteristics of the Patients Included_in the study.

Included studies ongoing (n = 0)Studies awaiting classification (n = 0)

Figure 1

	Study ID(First author an	id Selection				Comparabilit	Outcome			Total
	year0					у				
		Representativene ss of exposed cohort	Selectio n of the non- exposed cohort	Ascertainme nt of exposure:	Demonstratio n that outcome of interest was not present at start of study		Assessme nt of outcome:	Was follow- up long enough for outcome s to occur	Adequac y of follow- up of cohorts	
	Patricia Sulze r, 2021	afe	-	*	*	-	*	*	*	*
	Holly Timblin, 2022	ala	-	-	*	-	*	æ	æ	****
	Rachel A. Prusynski, 2022	*	-	-	7	-	\$	-	*	***
medRxiv prepr (which wa	Jacob D. Jones int doi: https://doi.org/1 s not certified by peer	 0.1101/2023.10.12.2329694 review) is the author/funded lt is made available under 	1; this version p r, who has gran r a CC-BY 4.0 I	osted October 13, 202 ted medRxiv a license nternational license .	 The copyright holde to display the preprint 	r for this preprin in perpetuity.	* t	*	÷	****

Figure 2.a. Quality Appraisal for longitudinal studies using New Castle Ottawa Scale.

Figure 2a

Study ID (First author and Selection					Comparability	Outcome		Total
year0								
	Representativenes	Sampl	Non-	Ascertainment of the		Assessment of	Statistical	
	s of exposed	e size	Respons	screening/surveillanc		the outcome:	test:	
	cohort		e rate	e tool				
Sara B. W.		-	-	0.0	-	0.0	ф.	中中
Troutman,								**
2020								**
Laura D.		-	-	0.0	-	0.0	ф	φφ
Ellingson,201								**
9								*
Janet	*		-	*	-	0.0	*	**
M.T. van								**
Uem, 2019								*

Figure 2.b. Quality Appraisal for case-control studies Newcastle-Ottawa Scale adapted for cross-sectional studies.

medRxiv preprint doi: https://doi.org/10.1101/2023.10.12.23296941; this version posted October 13, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

