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ABSTRACT 40 

Introduction: Type I interferons are cytokines involved in innate immunity against viruses. Genetic 41 

disorders of type I interferon regulation are associated with a range of autoimmune and cerebrovascular 42 

phenotypes. Carriers of pathogenic variants involved in genetic disorders of type I interferons are 43 

generally considered asymptomatic. Preliminary data suggests, however, that genetically determined 44 

dysregulation of type I interferon responses is associated with autoimmunity, and may also be relevant 45 

to sporadic cerebrovascular disease and dementia. We aim to determine whether functional variants in 46 

genes involved in type I interferon regulation and signalling are associated with the risk of 47 

autoimmunity, stroke, and dementia in a population cohort. 48 

Methods and analysis: We will perform a hypothesis-driven candidate pathway association study of 49 

type I interferon-related genes using rare variants in the UK Biobank (UKB). We will manually curate 50 

type I interferon regulation and signalling genes from a literature review and Gene Ontology, followed 51 

by clinical and functional filtering. Variants of interest will be included based on pre-defined clinical 52 

relevance and functional annotations (using LOFTEE, M-CAP and a minor allele frequency <0.1%). 53 

The association of variants with 15 clinical and three neuroradiological phenotypes will be assessed 54 

with a rare variant genetic risk score and gene-level tests, using a Bonferroni-corrected p-value 55 

threshold from the number of genetic units and phenotypes tested. We will explore the association of 56 

significant genetic units with 196 additional health-related outcomes to help interpret their relevance 57 

and explore the clinical spectrum of genetic perturbations of type I interferon. 58 

Ethics and dissemination: The UKB has received ethical approval from the North West Multicentre 59 

Research Ethics Committee, and all participants provided written informed consent at recruitment. This 60 

research will be conducted using the UKB Resource under application number 93,160. We expect to 61 

disseminate our results in a peer-reviewed journal and at an international cardiovascular conference.  62 
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STRENGTHS AND LIMITATIONS OF THIS STUDY 63 

• The UK Biobank is the largest whole-exome sequencing project to date, with marked power to 64 

detect associations from a limited number of rare, functional variants. 65 

• Our study will leverage current knowledge of interferon biology and genotype-phenotype 66 

correlations in Mendelian diseases of type I interferon to test biologically plausible hypotheses. 67 

• The UK Biobank includes phenotypes from multiple sources, which improves classification 68 

accuracy for several health outcomes such as stroke and dementia. 69 

• We will carefully select genes and variants with strong evidence of biological relevance to 70 

optimize the power of our analyses, which is particularly relevant for less common phenotypes 71 

in the UK Biobank such as systemic lupus erythematosus. 72 

• We will increase the specificity of predicted loss-of-function variants by using stringent sample 73 

quality control and filtering criteria.  74 
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INTRODUCTION 75 

Interferons are a family of innate inflammatory cytokines primarily secreted by host cells in response to 76 

viruses (type I: mainly interferon-α and -β; type II: interferon-γ; type III: interferon-). Interferon-77 

stimulated genes are involved in a wide range of processes, namely cellular defence against pathogens, 78 

apoptosis, nucleic acid degradation, and cell-to-cell communication [1]. Defects in type I interferon 79 

homeostasis are associated with autoimmunity, being implicated in the pathogenesis of systemic lupus 80 

erythematosus and other autoimmune disorders such as rheumatoid arthritis, Sjögren’s syndrome, and 81 

scleroderma [2]. Low-grade type I interferon upregulation may also contribute to sporadic 82 

cerebrovascular disease and dementia. Preclinical data suggest type I interferon-related vascular 83 

inflammation is an essential contributor to atherosclerosis and may be involved in cerebral small vessel 84 

disease [3, 4]. Stroke risk is increased after long-term exposure to exogenous recombinant type I 85 

interferon [4, 5], whereas white matter hyperintensities (a radiological manifestation of cerebral small 86 

vessel disease), large vessel disease and stroke are more frequent in people with systemic lupus 87 

erythematosus as compared to the general population [6, 7]. 88 

Genetic type I interferonopathies are a group of rare Mendelian autoinflammatory diseases 89 

hypothesised to be caused by an upregulation of type I interferons. Affected individuals with Aicardi-90 

Goutières syndrome, the first type I interferonopathy described, most frequently present in early 91 

childhood with progressive encephalopathy, skin vasculopathy, and autoimmunity [8], in addition to 92 

prominent white matter hyperintensities, calcifications and large vessel disease (aneurysms, arterial 93 

calcifications, stenoses) on brain imaging [9]. Most, albeit not all (e.g., mutations in IFIH1, STING and 94 

COPA), pathogenic variants associated with type I interferonopathies result in a loss-of-function (LOF) 95 

of key interferon negative regulators inherited as autosomal recessive traits. Carriers of such pathogenic 96 

variants are generally considered asymptomatic, although growing evidence from case series suggests 97 

they may also exhibit high expression of interferon-stimulated genes [10] and have mild 98 
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interferonopathy-related traits [11, 12]. Uncertainty remains, however, as to whether carriers of 99 

pathogenic variants in genes involved in type I interferon signalling and regulation have an increased 100 

risk of interferonopathy-related phenotypes such as autoimmunity, cerebrovascular disease, and 101 

dementia. Moreover, the causal role of type I interferon in sporadic cerebrovascular disease and 102 

dementia has not been comprehensively assessed in a population-based study [13], and whether 103 

findings from preclinical studies and observations in conditions with impaired interferon homeostasis 104 

translate to the general population is unclear. 105 

We will apply a candidate pathway approach to determine whether functional variants in genes 106 

involved in type I interferon regulation and signalling are associated with clinical and neuroradiological 107 

interferonopathy phenotypes in the general population. We hypothesize that a subset of rare functional 108 

variants that result in an upregulation of the type I interferon cascade are associated with core 109 

interferonopathy phenotypes. 110 

 111 

METHODS AND ANALYSIS 112 

We will report our results using guidance from the Strengthening the Reporting of Genetic Association 113 

Studies (STREGA) initiative [14], and present the protocol checklist in Supplemental methods 1. We 114 

present a graphical abstract of our protocol in Figure 1. 115 

 116 

Study population and exome extraction 117 

We will use data from the UK Biobank (UKB), a large population-based cohort of 502,650 participants 118 

mostly of white British ancestry who were aged 40-69 years when recruited from UK patient registries 119 

between 2006 and 2010 (response rate: 5.5%) [15, 16]. We will consider individuals with whole-exome 120 

sequencing based on the final exome data release (July 2022; n=469,807; 93.5% of participants). The 121 

exome was sequenced in two batches composed of the first 50k participants (phase 1) and all other 122 
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samples (phase 2). Participants in the first phase were selected to enrich certain phenotypes, which may 123 

lead to spurious associations given time-varying sequencing coverage if this batch effect is not 124 

controlled (see below). 125 

Genomic DNA samples were sent to the Regeneron Genetics Centre (Tarrytown, New York, 126 

USA) as part of a collaboration with the UKB and stored at -80oC. Genomic libraries with a mean 127 

fragment size of 200 base pairs (bp) were created enzymatically and tagged with barcodes of 10 bp 128 

before capture. Exome was obtained by next generation sequencing using the Illumina NovaSeq 6000 129 

platform (S2 and S4 flow cells for the first and second phase, respectively) and a target-enrichment 130 

probe kit (IDT xGen® Exome Research Panel v1.0) to enable deep and uniform coverage of ~39 Mbp 131 

(19,396 genes).  132 

 133 

Whole-exome sequencing data 134 

We will use the multi-sample project-level VCF (pVCF) files made available by the UKB [17]. To 135 

obtain these joint genotype data, raw sequencing outputs (FASTQs) were initially processed into 136 

sample-level aligned sequences (CRAMs) with a standard protocol (the Original Quality Functionally 137 

Equivalent; OQFE), which maps short sequences to the GRCh38 reference genome with alternate loci 138 

and marks duplicate segments [18]. DeepVariant (v0.10.0) was used to call variants from sample-level 139 

CRAMs and produce variant call data (gVCF) for each participant [19]. This calling approach uses a 140 

deep convolutional neural network to determine the most likely genotype at each locus from the 141 

reference genome, base reads and quality scores [20]. It outperforms existing state-of-the-art tools to 142 

call single nucleotide variants (SNVs) and small insertions or deletions (indels; up to 50 bp by 143 

definition), achieving high overall accuracy (>99.5%) [20, 21]. The variant call data set includes exome 144 

capture targets and their immediate flanking regions (100 bp upstream and downstream of each target). 145 
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Sample-level variants were aggregated into joint genotype pVCF files with a standard analysis pipeline 146 

(GLnexus v1.2.6) [19, 22].  147 

For quality control, we will exclude participants with a mismatch between their genetically 148 

recorded and self-reported sex or with sex chromosome aneuploidy (~0.2%). We will apply a set of 149 

per-variant quality control metrics as previously employed for the UKB exome to analyse variants with 150 

[23]: 151 

i) individual and variant missingness <10%; 152 

ii) Hardy Weinberg equilibrium p-value >10-15; 153 

iii) at least one sample per site with allele balance threshold >0.15 for SNVs and >0.20 for 154 

small indels; 155 

iv) minimum read coverage depth of seven for SNVs and 10 for indels.  156 

We will also use a sequencing depth ≥10x in 90% of samples for our rare variant analysis, to prevent 157 

spurious associations that may result from batch effect [24]. We will resolve haplotype phase with the 158 

Segmented HAPlotype Estimation and Imputation Tools version 5 (SHAPEIT5 v1.0.0), which phases 159 

rare variants from the UKB with high accuracy (switch error rate <5% with minor allele count >5) [25].  160 

 161 

Genes of interest 162 

We will apply a hypothesis-driven candidate pathway approach of type I interferon-related genes by 163 

adapting a previously described methodology [26]. We will consider for inclusion any gene encoding a 164 

protein of interest belonging to one of the three following categories:  165 

1. A negative regulator, positive regulator, or effector along the main signalling pathway of type I 166 

interferon (Figure 2); 167 

2. A protein directly affecting the activity of an interferon regulator or effector (e.g., E3 ubiquitin-168 

protein ligase TRIM21 inhibits interferon regulatory factor 3, a transcription factor that controls 169 
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multiple type I interferon-inducing pathways; both proteins are therefore considered for 170 

inclusion); 171 

3. A protein involved in genetic type I interferonopathies (see Supplemental table 1). 172 

We did not consider regulatory proteins acting beyond the second order of regulation (e.g., regulators 173 

of E3 ubiquitin-protein ligase TRIM21) to adequately balance the need to include important regulators 174 

of type I interferon, while maintaining their specificity to type I interferon signalling. 175 

We will produce a preliminary list of genes from i) recently published reviews on type I 176 

interferon biology and ii) annotations in Gene Ontology [27]. We present herein both completed and 177 

upcoming steps. First, we searched Ovid MEDLINE to identify reviews describing ≥2 proteins of 178 

interest in physiological conditions. We used interferons (of any type to increase the sensitivity of our 179 

search) and regulation as main concepts, in addition to a previously published hedge for reviews (Table 180 

1) [28]. We queried MEDLINE from January 2000 onwards to only include recent reviews, and 181 

conducted our search in English as we expected reviews in other languages to present similar 182 

information. Our strategy yielded 194 records. A single author (BR) will screen records by title and 183 

abstract, and include relevant articles after full-text reading. We will manually add four recent reviews 184 

[8, 9, 29, 30] on genetic interferonopathies to ensure these genes are captured. A single author (BR) 185 

will extract relevant proteins, their corresponding genes, and their presumed functions. 186 

Second, we have queried the Gene Ontology resource to validate and enrich our gene set. Gene 187 

Ontology provides curated gene-specific knowledge with functional annotation and hierarchical 188 

relationships [27, 31, 32]. We extracted a list of 194 genes pertaining to 31 ontology terms relevant to 189 

type I interferon (Supplemental table 2). We will validate presumed gene product function from 190 

reviews and Gene Ontology on the UniProt platform [33] and the National Center for Biotechnology 191 

Information (NCBI) Gene database [34] before assigning their function (e.g., negative regulator) and 192 
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level of action (e.g., downstream to receptors). Discrepancies will be resolved through consensus by 193 

three authors with expertise in interferon biology (BR, SM, DH). 194 

From this preliminary list of genes, we will only include those with ≥1 variant associated with a 195 

Mendelian disease through any effect on protein function to strengthen their biological relevance. We 196 

will search the Online Mendelian Inheritance in Man (OMIM) [35] and the NCBI ClinVar [36] clinical 197 

annotation databases for genotype-phenotype correlations. We will validate that all top 21 type I 198 

interferon-inducible genes in systemic lupus erythematosus are included in our list, and add missing 199 

items [37]. 200 

 201 

Variants of interest 202 

We will include both SNVs and small indels in genes of interest with ≥1 of the following protein 203 

effects: i) LOF, dominant-negative, or gain-of-function (GOF) disease-causing variants through an 204 

autosomal dominant, recessive or X-linked inheritance [38], or ii) predicted LOF variants from 205 

functional annotations. We will define disease-causing variants as those reported in ClinVar (as 206 

pathogenic or likely pathogenic, excluding variants with conflicting interpretations of pathogenicity), 207 

OMIM (as disease-causing), and from discussion with clinical experts in interferonopathies (DH, SM, 208 

YC). The protein-level effect will be determined through comments and linked publications in ClinVar, 209 

descriptions in OMIM or, if undetermined, inferred from resulting phenotype. 210 

We will also define a second set of putative functional variants identified in UKB participants to 211 

increase our statistical power [39]. We will assess the functional impact of these variants on Ensembl 212 

with the Variant Effect Predictor (VEP), an online resource that returns annotations on the effect of 213 

variants on transcripts and proteins [40]. We will interpret variant pathogenicity with the Loss-Of-214 

Function Transcript Effect Estimator (LOFTEE) and the Mendelian Clinically Applicable 215 

Pathogenicity score (M-CAP v1.4). The LOFTEE filtering criteria will be used to annotate non-216 
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missense predicted LOF variants, as it provides a conservative filtering strategy to increase specificity 217 

(e.g., removal of variants predicted to escape nonsense-mediated decay) and was used to annotate 218 

variants in the Genome Aggregation Database (gnomAD; a public resource of ~126k high-quality 219 

exomes from around the world that does not include UKB data) [41] and Genebass (a public resource 220 

of exome-based genotype-phenotype associations within the UKB) [42]. The M-CAP score will be 221 

used to interpret pathogenicity and nominate missense variants for inclusion [43]. This supervised 222 

learning classifier incorporates nine established pathogenicity likelihood scores (namely SIFT and 223 

PolyPhen-2) and achieves substantial reduction in the misclassification rate of known pathogenic 224 

variants (<5%) as compared to other existing methods (26-38%) [43]. We will define predicted LOF 225 

variants as either i) variants that inactivate a protein-coding gene through a premature stop codon, a 226 

shift in the transcriptional frame or an alteration of essential splice-site nucleotides (from LOFTEE), or 227 

ii) missense variants classified as likely pathogenic (from M-CAP). We will apply a minor allele 228 

frequency (MAF) threshold <0.1% in both the UKB and gnomAD to lower the probability of including 229 

benign variants and improve our statistical power. Using a more liberal MAF threshold of <1%, 8.03 230 

million SNVs were identified in ~200k UKB participants, of which 5.4% (~450k) were predicted LOF 231 

variants [23]. In gnomAD, which used LOFTEE without MAF threshold, about 40% of genes had >10 232 

predicted LOF variants [41]. 233 

 234 

Phenotypes of interest 235 

We will test the association of selected variants with a set of 15 clinical and three neuroradiological 236 

phenotypes of interest in the UKB. These phenotypes were selected based on their frequency in the 237 

general population and the UKB, the plausibility of their association with type I interferon 238 

upregulation, and from type I interferonopathy clinical presentations (including Mendelian and 239 

sporadic diseases). The International Classification of Diseases (ICD) diagnostic codes and UKB fields 240 
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for each phenotype are presented in Supplemental table 3. Genes associated with ≥1 phenotype of 241 

interest will be assessed for their association with 196 clinical phenotypes to help interpret their 242 

relevance (Supplemental table 4). We manually grouped ICD-coded diagnoses by pathophysiology to 243 

reduce multiple testing and improve power for less common conditions. As part of the phenome 244 

analysis, we will test two stroke definitions developed by Rannikmäe et al [44] to help explain potential 245 

misclassifications. 246 

Health-related outcomes were captured through self-completed questionnaires followed by a 247 

nurse-led interview on past medical history (at baseline in all and during follow-up for some 248 

participants), as well as data linkage with ICD-coded hospital admissions from National Health Service 249 

(NHS) registries (primary or secondary diagnoses; ICD v9 and v10) and national death registries 250 

(primary and secondary causes of death; ICD v10). Diagnostic codes from primary care (Read codes v2 251 

and v3) are available in a subset of participants (~45.8%). Cancer diagnoses (ICD v9 and v10) are 252 

available through data linkage with national cancer registries. Stroke diagnoses from hospital and death 253 

registries have a high sensitivity (point estimate range: 88-94%) and specificity (>99%) [45]. Most 254 

stroke cases in the UKB are from hospital and death registries, although ~27% are self-reported without 255 

coded diagnosis [44]. Self-reported strokes have a lower sensitivity (79%) but maintain a high 256 

specificity (99%) [46]. In-hospital and death records for all-cause dementia in the UKB have a positive 257 

predicted value of ~85% [47]. 258 

We will define phenotypes in the UKB using algorithmically defined (or adjudicated) outcomes 259 

(v2.0), first diagnostic occurrences, and cancer registries. Algorithmically defined outcomes are custom 260 

diagnostic classification schemes developed by the UKB from self-reports, hospital admissions and 261 

death registries to optimize their positive predictive value. First diagnostic occurrences map clinical 262 

terms from all available sources into ICD v10 codes (apart from cancer registries). Algorithmically 263 

defined outcomes and first diagnostic occurrences will be combined to identify any stroke, ischemic 264 
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stroke, intracerebral haemorrhage, subarachnoid haemorrhage, all-cause dementia, Alzheimer’s 265 

disease, vascular dementia, Parkinson’s disease and myocardial infarction [48]. We chose to combine 266 

these two fields to capture primary care events (not included in algorithmically defined outcomes), 267 

which is expected to increase the number of cases from 0.7% (n=55) for all-cause dementia to 11.4% 268 

(n=1,376) for ischemic stroke. First diagnostic occurrences will be used alone for other non-cancerous 269 

conditions. Data from cancer registries will be used to define malignant neoplasms. 270 

We will define three neuroradiological phenotypes: total white matter hyperintensity (WMH) 271 

volume, total brain (grey plus white matter) volume, and hippocampal grey matter (mean) volume [49]. 272 

Brain magnetic resonance imaging (MRI) scans were obtained in ~42k participants on 3T Siemens 273 

Skyra scanners running VD13A SP4 with a standard Siemens 32-channel radio-frequency receiver 274 

head coil. The UKB MRI quality control pipeline includes a pre-processing step to correct for head 275 

motion and other artifacts followed by automated identification of equipment failure and excessive 276 

artifacts [50]. We will normalize WMH and hippocampal grey matter volumes for head size using the 277 

UKB scaling factor derived from the external surface of the skull. The normalized total brain volume is 278 

available as an imaging-derived phenotype. We will log-transform WMH volumes given their right-279 

skewed (log-normal) distribution.  280 

The total WMH volume of presumed vascular origin per individual was generated by an image-281 

processing pipeline [50] followed by a segmentation algorithm (the Brain Intensity Abnormality 282 

Classification Algorithm tool; BIANCA) using both T1- and T2-weighted/fluid-attenuated inversion 283 

recovery (FLAIR) sequences [51]. The algorithm results in high volumetric agreement (intraclass 284 

correlation coefficient = 0.99) and very good spatial overlap index (dice similarity index = 0.76) with 285 

manual segmentation. Total brain (including the cerebellum and the brainstem, as low as space-based 286 

brain masking allows) and regional brain volumes were extracted using tissue-segmented images 287 

obtained from an automated algorithm (FMRIB’s Automated Segmentation Tool; FAST) [52] and 288 
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passed on to the SIENAX analysis pipeline to accurately measure volumetric phenotypes (relative 289 

mean error in brain volume = 0.4%) [53]. We will use the mean hippocampal grey matter volume (from 290 

right and left hippocampi) as this radiological marker of hippocampal atrophy is associated with 291 

memory loss and progression to Alzheimer’s disease [54]. 292 

 293 

Statistical analyses 294 

Our primary (score-based) analysis will test the association of all selected genes modelled into a rare 295 

variant genetic risk score (RVGRS) with individual phenotypes. We will regress each phenotype on 296 

standardized scores using logistic and linear regressions for binary and continuous outcomes, 297 

respectively. We will adapt a previously described methodology [55] to define our score as the 298 

weighted sum of the number of variants per individual i and gene g (Vi,g), given a set of M genes:  299 

𝑅𝑉𝐺𝑅𝑆𝑖 =∑𝛽𝑔𝑉𝑖,𝑔

𝑀

𝑔=1

 300 

Gene-level weights will be allocated from theoretical variant effects on the type I interferon cascade. 301 

For example, LOF variants in genes encoding negative regulators will receive a positive weight (+1) as 302 

they are expected to upregulate the cascade, whereas those in genes encoding positive regulators or 303 

effectors will receive a negative weight (-1). We chose this conservative weighting method given the 304 

technical limitations of weighting variants from a transcriptomic signature (unavailable in the UKB) or 305 

a proteomic profile (no measurement of type I interferon in the UKB Olink proteomics). 306 

 Our secondary analysis will test gene-level associations with individual phenotypes using the 307 

optimal sequence kernel association test (SKAT-O) framed into SAIGE-GENE+. The SKAT-O test 308 

leverages the advantages of burden tests and SKAT through a linear combination of their test statistics, 309 

the relative contribution of which are estimated by a correlation term [56]. We chose this method to 310 

balance the need to maximise power for genes that have a higher proportion of causal variants 311 

satisfying the burden test assumption, while preserving power for genes that may have fewer causal 312 
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variants (or variants with heterogeneous effects) despite our filtering strategy. The SAIGE-GENE+ 313 

method builds upon SKAT-O to reduce type I error inflation for very rare variants in large biobanks 314 

with unbalanced case-control ratios, reduce computational resources and account for sample 315 

relatedness [57]. We will use a relatedness coefficient cut-off of ≥0.125 (up to third-degree relatedness) 316 

in SAIGE-GENE+, and perform our analyses using the open-source R package SAIGE 317 

(https://github.com/saigegit/SAIGE). We will include the first 10 genetic principal components in the 318 

gene-level (combined with the generalized mixed model approach in SAIGE-GENE+) and RVGRS 319 

models to control for population structure [58], in addition to adjusting for age and sex [59]. We will 320 

also adjust for scanner site in neuroradiological analyses to control for potential technical confounding 321 

[60]. We will run separate gene-level tests for LOF/dominant negative and GOF variants to account for 322 

their anticipated opposite effect directions. As SKAT-O is designed to test the overall gene-trait 323 

association and does not produce effect sizes, variant-level effects will be obtained through separate 324 

logistic and linear regressions to help interpret p-values (as in Genebass). Genetic units with <10 325 

carriers of any variant in the UKB will not be analysed to preserve power. 326 

Our score and individual genes will be tested for their association with each phenotype of 327 

interest (n=18), and those with ≥1 statistically significant association with any phenotype of interest 328 

will be tested for associations across the phenome (n=196). We will interpret statistical significance in 329 

our score-based analysis with a Bonferroni-corrected p-value threshold to account for multiple testing 330 

across phenotypes (phenotypes of interest: 0.05/18=2.78x10-3; phenome: 0.05/196=2.55x10-4). We will 331 

interpret statistical significance in our gene-level analysis similarly, with a more stringent correction to 332 

account for multiple testing across genes and phenotypes (0.05/[# phenotypes x # gene-level units]) 333 

[61]. Our analyses will be conducted on the UK Biobank Research Analysis Platform [62]. We present 334 

our pre-planned sensitivity analyses in Supplemental methods 2. 335 

 336 
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Power calculations 337 

We performed a statistical power analysis for our gene-level tests and phenotypes of interest with 338 

SKAT-O using the SKAT package (v2.2.5) for R. Our results and analysis parameters are presented in 339 

Figure 3 and detailed in Supplemental methods 3. Gene-level tests for lupus and vascular dementia 340 

have the lowest powers overall although they increase to reasonable values in more optimistic 341 

scenarios. Other cardiovascular and inflammatory outcomes have the highest power throughout all 342 

scenarios.  343 

 344 

DISCUSSION 345 

Comprehensive phenotyping of interferonopathy variant carriers may expand the clinical spectrum of 346 

genetic type I interferonopathies and help understand the biological relevance of type I interferon 347 

dysregulation in the general population. Importantly, large population-based assessments of 348 

interferonopathy carriers are lacking. Our study will leverage knowledge of Mendelian diseases of type 349 

I interferon to develop an informed, hypothesis-driven candidate pathway approach to investigate the 350 

frequency and phenotype associations of low-grade type I interferon dysregulation in the UKB. Our 351 

results will help understand the clinical spectrum of genetic type I interferonopathies, and will provide 352 

insights into the role of type I interferon in sporadic conditions. 353 

Recent meta-analyses of genome-wide association studies (GWASs) have strengthened the case 354 

of inflammatory contributors to stroke and dementia. The largest cross-ancestry GWAS meta-analysis 355 

on stroke to date identified 89 independent genomic risk loci, of which two newly reported loci were 356 

located near or within genes involved in type I interferon regulation or signalling (PTPN11 and TAP1) 357 

[63]. A recent large GWAS meta-analysis on Alzheimer’s disease and related dementias identified 33 358 

known and 42 new genomic loci, for which a pathway analysis exposed significant gene sets related to 359 

immunity, including macrophage and microglia activation [64]. The nearest genes of two new lead 360 
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variants, SHARPIN and RBCK1, encode essential components of the linear ubiquitin chain assembly 361 

complex (LUBAC), involved in NF-B activation. Despite these discoveries, GWASs are unable to 362 

identify rarer alleles that may carry important information on the biology of complex traits, while most 363 

variants in genomic risk loci are mapped outside coding regions and have unknown regulatory 364 

functions [65, 66].  365 

 366 

Strengths and limitations 367 

The UKB is the largest whole-exome sequencing project to date, markedly improving power to detect 368 

associations from a limited number of rare, functional variants [67]. Our informed approach will 369 

leverage current knowledge on type I interferon biology to reduce noise and test biologically plausible 370 

hypotheses. This contrasts with prior hypothesis-free phenome-wide association studies using rare 371 

variants in the UKB such as Genebass [42] and PheWAS [68], which did not include clinical 372 

annotations, used uncurated phenotypes, introduced greater multiple-testing burden (~4.5k and ~17k 373 

phenotypes tested in Genebass and PheWAS, respectively), and often used small sample sizes (as few 374 

as 30 cases/phenotype in PheWAS). The UKB also enables phenotyping from multiple sources, 375 

improving the classification accuracy for stroke and dementia as compared to studies using minimal 376 

phenotyping (e.g., case definition from self-reported dementia in relatives) [64]. 377 

Our study, however, will have some limitations. First, we expect that our weighting strategy 378 

based on theoretical knowledge will introduce noise into our score. We were technically unable to 379 

reliably assign empirical weights because of the lack of relevant transcript or protein measurements in 380 

the UKB. We anticipate this noise will be reduced by carefully selecting genes for which variants have 381 

a higher likelihood of functional and clinical consequences. We will also test genes individually as an 382 

alternative that does not mandate weights. Second, we anticipate some degree of residual pleiotropy 383 

through overlapping inflammatory and non-inflammatory pathways despite our careful curation of 384 
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genes to increase specificity to the type I interferon cascade. We will, however, explore the relevance 385 

of pleiotropic effects on our results with a proteomic sensitivity analysis (Supplemental methods 2). 386 

Third, although we will optimize our overall power by carefully selecting clinically relevant genes and 387 

functional variants, our power will likely remain lower for rarer phenotypes. 388 

 389 

ETHICS AND DISSEMINATION 390 

The UKB has received ethical approval from the North West Multicentre Research Ethics Committee, 391 

and all participants provided written informed consent at recruitment. This research will be conducted 392 

using the UKB Resource under application number 93,160. We expect to disseminate our results in a 393 

peer-reviewed journal and at an international cardiovascular conference.  394 
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FIGURE LEGENDS 395 

Figure 1. Graphical summary of the study methodology. 396 

This summary illustrates the three main steps of the study: i) genes of interest will be identified from a 397 

literature review and Gene Ontology, followed by clinical and functional filtering, ii) variants of 398 

interest will be included based on their clinical relevance and functional annotations, and iii) the 399 

association of variants and phenotypes will be tested with a rare variant genetic risk score and gene-400 

level tests. Abbreviations: LOFTEE, Loss-Of-Function Transcript Effect Estimator; M-CAP, 401 

Mendelian Clinically Applicable Pathogenicity score; NCBI, National Center for Biotechnology 402 

Information; OMIM, Online Mendelian Inheritance in Man; OQFE, Original Quality Functionally 403 

Equivalent; pLOF, predicted loss-of-function; SKAT-O, optimal sequence kernel association test; VEP, 404 

Variant Effect Predictor. Created with BioRender.com. 405 

 406 

Figure 2. Overview of the interferon cascade. 407 

Graphical overview of the main steps involved in interferon regulation and signalling. Endogenous 408 

nucleases (blue circle sectors) remove nucleic acids (red confetti) that can trigger interferon production. 409 

Abnormal accumulation of endogenous material through impaired regulation (box 1) and viral nucleic 410 

acids (not shown) can trigger interferon production through linkage to i) toll-like receptor sensors at the 411 

cell membrane surface (not shown) and at endosomes, and ii) cytoplasmic sensors (box 2). Interferons 412 

are sensed by cell surface receptors specific to types I (heterodimer with subunits IFNAR1 and 413 

IFNAR2), II (heterotetramer with two IFNGR1 and two IFNGR2 subunits) and III (heterodimer with 414 

subunits IFNLR1 and IL-10R2) ligands. Signal transduction and intracellular signalling through JAK-415 

STAT activates the transcription of interferon-stimulated genes (box 3). Abbreviations: GAS, gamma-416 

activated sequence; IFN, interferon; IRF, interferon regulatory factor; ISG, interferon-stimulated gene; 417 

ISRE, interferon-stimulated response element; TLR, toll-like receptor. Created with BioRender.com.  418 
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Figure 3. Power calculations for gene-level tests with phenotypes of interest using SKAT-O. 419 

The power calculation assumes an =1.11x10-5, a genetic sampling length of 2,962 bp, a MAF <0.1%, 420 

an empirical optimal correlation coefficient, and sample sizes observed in the UKB. Abbreviations: 421 

AD, Alzheimer’s disease; AF, atrial fibrillation; bp, base pairs; BrV, total brain (grey plus white 422 

matter) volume; CKD, chronic kidney disease; Dem, all-cause dementia; HipV, hippocampal grey 423 

matter volume (average); IBD, inflammatory bowel disease; ICH, intracerebral haemorrhage; IHD, 424 

ischemic heart disease; IS, ischemic stroke; MAF, minor allele frequency; PAD, peripheral artery 425 

disease; RA, rheumatoid arthritis; SAH, subarachnoid haemorrhage; SCTD, systemic connective tissue 426 

disorder; SLE, systemic lupus erythematosus; VascD, vascular dementia; WMHV, total white matter 427 

hyperintensity volume.428 
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TABLES 

 

Table 1. Ovid MEDLINE search strategy. 

Line Entry Records 

Interferon concept 

1 (cytokine* adj (inflammat* or proinflammat*)).tw. 422 

2 IFN*.ti. 15433 

3 Interferons/ 25640 

4 1 or 2 or 3 40607 

Regulation concept 

5 (regulat* or metabolism or biology or function).ti 1191801 

Review design hedge 

6 meta analysis.mp,pt. or review.pt. or search:.tw. 3563440 

Combine concepts 

7 4 and 5 and 6 390 

8 7 not ((exp animal/ or nonhuman/) not exp human/) 357 

9 8 not (case study/ or case report/) 356 

10 limit 9 to dt=20000101-20230110 214 

11 limit 10 to English language 194 

This table presents the search strategy conducted in Ovid MEDLINE on 10 January 2023. Abbreviations: adj, adjacent; dt, create date; exp, 

explode; mp, multi-purpose fields; pt, publication type; ti, text word in title; tw, text word in title and abstract.
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