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ABSTRACT 

Background: Variability in the provision of intensive care unit (ICU)-interventions may lead to 

disparities between socially defined racial-ethnic groups.  

 

Research Question: We used causal inference to examine the use of invasive mechanical 

ventilation (IMV), renal replacement therapy (RRT), and vasopressor agents (VP) to identify 

disparities in outcomes across race-ethnicity in patients with sepsis. 

 

Study Design and Methods: Single-center, academic referral hospital in Boston, 

Massachusetts, USA. Retrospective analysis of treatment effect with a targeted trial design 

categorized by treatment assignment within the first 24 hours in the MIMIC-IV dataset (2008-

2019) using targeted maximum likelihood estimation. Of 76,943 ICU stays in MIMIC-IV, 32,971 

adult stays fulfilling sepsis-3 criteria were included. The primary outcome was in-hospital mortality. 

Secondary outcomes were hospital-free days, and occurrence of nosocomial infection stratified 

by predicted mortality probability ranges and self-reported race-ethnicity. Average treatment 

effects by treatment type and race-ethnicity, Racial-ethnic group (REG) or White group (WG), 

were estimated.  

 

Results: Of 19,419 admissions that met inclusion criteria, median age was 68 years, 57.4% were 

women, 82% were White, and mortality was 18.2%. There was no difference in mortality benefit 

associated with the administration of IMV, RRT, or VP between the REG and the WG. There was 

also no difference in hospital-free days or nosocomial infections. These findings are unchanged 

with different eligibility periods. 

  

Interpretation: There were no differences in the treatment outcomes from three life-sustaining 

interventions in the ICU according to race-ethnicity. While there was no discernable harm from 

the treatments across mortality risk, there was also no measurable benefit. These findings 

highlight the need for research to understand better the risk-benefit of life-sustaining interventions 

in the ICU.  
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INTRODUCTION 

Researchers have repeatedly discovered racial and ethnic disparities in critical illness and end-

of-life care 1,2. An analysis of over 1,000 patients with a history of stroke showed that black patients 

in the cohort were less likely than white patients to use hospice and more likely to have multiple 

emergency department visits, hospitalizations, and intensive treatments in their last six months of 

life 3. While the hypothesized reasons for these types of findings are multifactorial, disparities in 

who receives life-sustaining treatments have also raised the question of subconscious and 

systemic biases 1. In a study of over 17,000 intensive care unit (ICU) admissions, white patients 

received more technological monitoring, laboratory testing, and life-supporting treatments 

compared to black patients on the first day of their ICU stay 4. Another study of over 28 hospitals 

in the United States showed that black patients with pneumonia were less likely to receive 

guideline-adherent antibiotics and more likely to receive mechanical ventilation 5. These 

disparities were highlighted during the COVID-19 pandemic when researchers found that there 

were not only differences in interventions across racial and ethnic groups 6, but also in survival 

outcomes 7,8.  

Uncovering disparities in care is more urgent than ever given the rising popularity of artificial 

intelligence (AI) technology. Now, disparities have the opportunity to cause harm twice: their 

existence can drive inequities in care today and perpetuate bias in AI algorithms tomorrow 9. 

Conducting randomized controlled trials (RCTs) to understand how life-sustaining interventions 

might lead to different outcomes across racial and ethnic groups is both unethical and 

impracticable. These types of research questions are best answered using observational data, 

but there are limitations to databases such as claims registries, which often lack important clinical 

details 10,11. With the development of high-resolution datasets such as MIMIC-IV, we can apply a 

causal inference framework to leverage this real-world data in understanding how different 

patients have been affected by different interventions 12. 

In this study, we provide a causal inference framework for assessing the impact of life-sustaining 

interventions across different racial and ethnic groups in the MIMIC-IV database. MIMIC-IV is one 

of the most widely used datasets in both critical care and machine learning research; it is therefore 

imperative that we understand what potential biases exist in the data. We also provide the code 

for our framework so that other groups can readily assess for potential inequities in critical care 

at their own organizations. 
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METHODS 

This study is reported in accordance with the Strengthening the Reporting of Observational 

studies in Epidemiology (STROBE) statement 13. The language of this paper follows the American 

Medical Association’s reccomendations 14. Data were extracted from the open-access and de-

identified MIMIC-IV using Google's BigQuery software. MIMIC is maintained by the Laboratory for 

Computational Physiology at Massachusetts Institute of Technology (MIT) 15. Approval for the 

study and a waiver of consent was obtained from the Institutional Review Boards as all the data 

is de-identified. MIMIC-IV includes physiologic data collected from bedside monitors, as well as 

other clinical variables and provider documents recorded in the ICU electronic medical record. 

Approximately 70,000 de-identified medical ICU records are archived in MIMIC-IV. 

We hypothesized that treatment allocation of ICU interventions is not equally distributed across 

race-ethnicity leading to differences in outcomes. We suspected that Racial-ethnic patient group 

with sepsis experienced a more harmful use of ICU interventions, especially in less severely ill 

patients. 

 

Cohort Selection 

All patients older than 18 years of age who had sepsis as defined by the sepsis-3 criteria were 

included in the analysis 16. We only included first-time ICU stays, and excluded cases missing 

race or ethnicity information or discharge location. This also includes patients with race “other” as 

this category can comprise patients of all ethnicities. Patients were excluded if they had a length 

of stay (LOS) of less than one day or more than 30 days to ensure a homogenous cohort. To 

avoid immortal time bias, treatment assignment was only possible during an eligibility period of 

the first 24 hours for invasive mechanical ventilation (IMV) and vasopressors (VP), and first three 

days for renal replacement therapy (RRT). Immortal time bias occurs in observational studies 

when there is failure to align start of follow-up, specification of eligibility, and treatment assignment 

leading to a time window during the study where, for inclusion in the cohort, the patients are 

required to be immortal to the event of interest 17. It can lead to erroneous conclusions about the 

effectiveness of treatments or interventions if not properly accounted for in the study design and 

analysis. If treatment was started after this eligibility period the patient was retained in the control 

group, emulating a targeted trial (see eTable 1). 

 

Covariates 
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Patient-level variables were obtained from the database at the time of ICU admission and time-

varying variables were aggregated for the first 24 hours of the stay by taking the maximum, 

minimum, or mean value as appropriate (see eTable 2). We further extracted ICD-10 codes for 

key comorbidities, including hypertension, COPD, asthma, heart failure, stages of chronic kidney 

disease (CKD), and Oxford Acute Severity of Illness Score (OASIS). Patients with a label for 

White (e.g., White, White – Brazilian, White – Russian) were grouped as White (WG), while we 

grouped the remainder as Racial-ethnic patient group (REG) as race-ethnicity is heavily 

imbalanced in MIMIC (i.e., approximately 80% White patients).  

 

ICU admission OASIS scores were used to calculated predicted mortality probability (PMP) to 

give an easily generalizable and externally valid scale 18-20. Patients were categorized in PMP 

quartiles as having low, moderate, high, or very high sepsis severity.  

 

Outcomes 

The primary outcome was in-hospital mortality, including discharge to hospice care. Secondary 

outcomes were hospital-free days by day 28 and combined nosocomial infection (central-line 

associated bloodstream infection, catheter associated urinary tract infection, surgical site 

infection, and ventilator associated pneumonia). In line with recent research, we used the time of 

discharge or death at an odd versus an even hour as a negative control outcome 21, as treatment 

should not affect this random event. 

  

Statistical Analysis 

Statistical analysis was performed using R version 4.2 22 and Python 3.10 23 running on Visual 

Studio Code. We used targeted maximum likelihood estimation (TMLE) models adjusted for 

confounders to compute the average treatment effect (ATE) for each of the interventions, stratified 

by race-ethnicity and predicted mortality range 24. TMLE is a semiparametric framework 

estimating the causal effect of an intervention on an outcome of interest. For counterfactual 

modelling, we used the SuperLearner package, an ensemble machine learning algorithm with 5-

fold cross-validation. The ATE is a marginal effect, meaning it is averaged over the covariates. 

ATE is defined as the difference in outcome should everyone be treated with the invasive 

treatment versus no one being treated, as shown in equation 1: 

𝐴𝑇𝐸 =  𝐸[𝐸[𝑌 | 𝐴 =  1, 𝑊] −  𝐸[𝑌 | 𝐴 =  0, 𝑊]], (eq. 1) 
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Where Y represents the outcome (primary: in-hospital mortality; secondary: hospital-free days by 

day 28 and combined nosocomial infections; negative control: death or discharge at odd hour); A 

the treatment (IMV, RRT, or VP); and W the confounders for adjustment. 

Treatment assignment was assumed to be independent of the outcome (i.e., conditional 

exchangeability assumption). There were no multiple versions of a treatment, as we dichotomized 

all treatments (i.e., consistency assumption). We tabulated the treatments according to race-

ethnicity and predicted mortality range to check whether all strata were eligible to receive a 

treatment (i.e., positivity assumption). 

In a sensitivity analysis, we repeated the calculations changing the eligibility period for RRT from 

3 days to 1 day or 5 days. We consider our work hypothesis generating, which is why we 

abstained from computing p-values and only provided 95% confidence intervals.  
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RESULTS 

After applying our inclusion and exclusion criteria, we were left with a sample size of 19,419 

admissions (see Figure 1). Table 1 shows the baseline characteristics of our cohort stratified by 

race-ethnicity. Median age was 68 years, 57.4% were women, 82% were White. Median length 

of stay (LOS) was 9.5 days and did not differ substantially if patients survived or died. 18.2% of 

patients admitted to an ICU died or were discharged to a hospice (2.7% of all discharges). 

Baseline Charlson comorbidity index (CCI), IMV, and VP use, OASIS and SOFA scores between 

races and ethnicities were evenly balanced. However, there were marked differences in the use 

of RRT (11.2% in the REG, 6.1% in the WG), in prevalence of hypertension, CKD, and age 

(median age 64.5 in the REG, 69 in the WG). All race-ethnicity groups and treatments had a non-

zero probability of occurring in each of the predicted mortality categories showing no indication 

for violation of the positivity assumption (see eTable 3). 

 

Unadjusted Analysis: Primary Outcome 

We started by analyzing the unadjusted probability of a patient receiving a treatment, should they 

died or survived, to identify initial patterns in the data and check consistency of TMLE analysis. 

In patients receiving IMV and VP, the proportion of patients to survive the treatment was 

consistently higher than dying on treatment, albeit differences diminished with increasing illness 

severity (see Figure 2). In patients receiving RRT, the proportion for patients surviving with 

treatment was consistently lower than dying on treatment. These trends were consistent when 

stratifying by race-ethnicity (see eFigure 1). 

 

TMLE: Negative Control Outcome 

In adjusted TMLE modeling, there was no treatment effect in any intervention when discharge or 

death at an odd hour was used as a negative control outcome (see eTable 4 and Figure 3). This 

suggests that residual confounding has been mitigated in our study 21. 

TMLE: Primary Outcome 

We saw no clear distinction between the two racial groups for in-hospital mortality in any of the 

treatments (see Figure 4 and eTable 4). In patients receiving IMV and VP, the confidence 

intervals for the ATE were crossing the null, except for the WG in the predicted mortality range of 

0-6% and 12-21%. For patients under RRT, there was a consistent signal for harm in the lowest 

predicted mortality range of 0-6% with an ATE of 6.0% (95% CI 5.0%-7.0%) in the WG and ATE 

of 5.0% (95% CI 2.0%-7.0%) in the REG, but not in higher predicted mortality ranges. Results 
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were similar in sensitivity analysis with RRT eligibility periods of 1 day or 5 days instead of 3 days 

(see eFigure 2).  

 

TMLE: Secondary Outcomes 

Hospital-free days were similar between the two racial groups, except for patients on RRT in the 

highest predicted mortality range >21% where we observed an ATE of 1.39 mean days (95% CI 

0.66 to 2.12) in the REG and -0.4 mean days (95% -0.77 to -0.04) in the WG (see eTable 4 and 

eFigure 3). Both groups had fewer hospital-free days when subjected to IMV, whereas VP did 

not influence the outcome. For the outcome of combined nosocomial infection, we consistently 

saw an ATE of 0% across all treatments and predicted mortality ranges. 
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DISCUSSION 

Using a causal inference framework to assess critically ill patients with sepsis in the MIMIC-IV 

database, we found no racial-ethnic disparities in the outcomes of patients treated with IMV, RRT, 

and VP. We also provide an open-source causal inference analytic pipeline that researchers can 

use to perform disparity research using electronic health record data.  

 

Health equity is increasingly recognized by policymakers as essential to public health 25,26. In 

December of 2022, the Center for Medicare and Medicaid Services (CMS) proposed tying 

reimbursements to health equity outcomes 27, highlighting the importance of organizations having 

a way to measure health equity. The Centers for Disease Control and Prevention (CDC) cites 

measurement as one of the key pillars of advancing health equity, alongside population-level 

strategies and policy changes 28. Several frameworks have been proposed for describing the 

social determinants of health that lead to disparities 29,30, but organizations need an out-of-the-

box tool they can easily and repeatedly use to assess measure health equity. Causal inference 

on high-resolution electronic health record data offers a robust method of detecting test and 

treatment disparities that are not explained by clinical factors and if present, quantifying their effect 

sizes on patient outcomes. We employed TMLE to investigate whether outcomes from IMV, RRT 

and VP vary across race-ethnicities after adjusting for time-varying clinical confounding, and our 

proposed framework is both free and easy to use, and can be run on a personal computer. TMLE 

is a semiparametric estimator offering several compelling properties. It is based on the targeted 

minimum loss-based estimation and machine learning algorithms to minimize the risk of model 

misspecification 31. As TMLE is doubly robust, if either the outcome regression or the exposure 

mechanism is consistently estimated, it will yield unbiased estimates, and when both the 

treatment and exposure are estimated consistently, the TMLE estimator is asymptotically efficient. 

Additionally, its estimates will always stay within the bounds of the original outcome, thus making 

it more robust to outliers and spare data resulting in more reliable results. Finally, since TMLE 

fully incorporates machine learning, it is also a very attractive choice for analyzing complex 

observational data with a large number of variables and potentially complex relationships 32. While 

TMLE offers the most mature package for R users, researchers could also use one of the many 

causal inference packages available in python 33. 
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Assessing data for potential disparities is also important as datasets are increasingly utilized to 

build AI algorithms. Major companies including Google, Microsoft, and PwC have acknowledged 

that causal inference is an important framework for reviewing data and have updated their 

software packages to include tools for counterfactual modeling 34-36. Our open-source causal 

inference analytic pipeline is important not just for hospital quality metrics but also for researchers 

to identify biases in their datasets prior to developing models for prediction, classification and 

optimization. 

 

Interestingly, our analysis found that all three of the treatments we assessed—IMV, RRT, and 

VP—did not lead to significant benefit in mortality outcomes across all race-ethnicities. There was 

a signal for potential harm in some patients treated with RRT, suggesting that critically ill patients 

may benefit while less ill patients may be harmed. Several recent study findings have shown that 

a “less is more” strategy may be beneficial in critical care 37 and further research is needed to 

understand which populations benefit most from life-sustaining interventions. This was beyond 

the scope of our current study, but sharing our repository publicly allows our analysis to be 

replicated and extended by researchers interested in exploring this question. 

 

Limitations 

One of the limitations to our study is the categorization of patients into two broad racial-ethnic 

groups. We used this strategy due to the effective sample size once analysis is stratified across 

illness severity. In addition, the goal of this study was to demonstrate a framework for evaluating 

health disparities regardless of the axis of demography being investigated. Important differences 

in culture, ancestry, and lived experiences are lost when patients are aggregated into less precise 

groups, whether the comparison is for white vs. non-white, binary vs. non-binary, low- vs. high-

income. Although we found no striking differences in treatments and outcomes between our two 

groups, disparities may be present in smaller subgroup analyses if the sample size had been 

larger. Even though MIMIC-IV contains 76,943 ICU stays and delineates 33 options for the race 

and ethnicity categories, power was not be enough to draw causal inferences on subpopulations. 

Furthermore, 17% (i.e., 3,983 out of 23,401) of patients in the dataset are categorized as “other,” 

highlighting the challenges of acquiring accurate demographic data at the bedside, particularly in 

a critically ill population. Further diversity, equity, and inclusion (DEI) efforts are needed at both 

the institutional and research level to improve our ability to collect and analyze disaggregated 

racial ethnic data 38. Other subgroup analyses, such as evaluating differences in treatments and 
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outcomes across sex and gender identity, preferred language, and education and health literacy 

can also add to our understanding of how social determinants of health may lead to disparities.  

 

CONCLUSIONS 

Causal inference enables us to explore the sources and drivers of disparities in healthcare, 

providing an opportunity for equality improvement initiatives or mitigate bias in AI algorithms. We 

provide an open-source analytic framework that allows healthcare providers, researchers, and 

policy makers to leverage a causal inference framework for health disparity and data science 

research.   

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.23296933doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.12.23296933


14 

REFERENCES 

1. Soto GJ, Martin GS, Gong MN. Healthcare disparities in critical illness. Critical care 
medicine. 2013;41(12):2784-2793. 

2. Johnson KS. Racial and ethnic disparities in palliative care. J Palliat Med. 
2013;16(11):1329-1334. 

3. Ornstein KA, Roth DL, Huang J, et al. Evaluation of Racial Disparities in Hospice Use and 
End-of-Life Treatment Intensity in the REGARDS Cohort. JAMA Netw Open. 
2020;3(8):e2014639. 

4. Williams JF, Zimmerman JE, Wagner DP, Hawkins M, Knaus WA. African-American and 
white patients admitted to the intensive care unit: is there a difference in therapy and 
outcome? Critical care medicine. 1995;23(4):626-636. 

5. Mayr FB, Yende S, Linde-Zwirble WT, et al. Infection rate and acute organ dysfunction 
risk as explanations for racial differences in severe sepsis. JAMA. 2010;303(24):2495-
2503. 

6. Nguyen KH, Thorsness R, Hayes S, et al. Evaluation of Racial, Ethnic, and Socioeconomic 
Disparities in Initiation of Kidney Failure Treatment During the First 4 Months of the 
COVID-19 Pandemic. JAMA Netw Open. 2021;4(10):e2127369. 

7. Sze S, Pan D, Nevill CR, et al. Ethnicity and clinical outcomes in COVID-19: A systematic 
review and meta-analysis. EClinicalMedicine. 2020;29:100630. 

8. Magesh S, John D, Li WT, et al. Disparities in COVID-19 Outcomes by Race, Ethnicity, 
and Socioeconomic Status: A Systematic-Review and Meta-analysis. JAMA Netw Open. 
2021;4(11):e2134147. 

9. Nicoletti L, Bass D. Humans are biased. Generative AI is even worse. 2023. 
https://www.bloomberg.com/graphics/2023-generative-ai-bias/?srnd=graphics-
v2&utm_source=www.healthcareainews.com&utm_medium=newsletter&utm_campaign
=healthcare-s-hidden-gold. Accessed June 16, 2023. 

10. Martino S, Elliott M, Haas A, et al. Trends in Racial, Ethnic, Sex, and Rural- Urban 
Inequities in Health Care in Medicare Advantage: 2009–2018. 2021. 
https://www.cms.gov/files/document/trends-inequities-medicare-advantage-2009-
2018.pdf. 

11. Desai RJ, Matheny ME, Johnson K, et al. Broadening the reach of the FDA Sentinel 
system: A roadmap for integrating electronic health record data in a causal analysis 
framework. NPJ Digit Med. 2021;4(1):170. 

12. Pirracchio R, Hubbard A, Sprung CL, Chevret S, Annane D, Rapid Recognition of 
Corticosteroid Resistant or Sensitive Sepsis C. Assessment of Machine Learning to 
Estimate the Individual Treatment Effect of Corticosteroids in Septic Shock. JAMA Netw 
Open. 2020;3(12):e2029050. 

13. von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) statement: guidelines for reporting observational 
studies. PLoS Med. 2007;4(10):e296. 

14. Colleges AMAaAoAM. Advancing Health Equity: Guide on Language, Narrative and 
Concepts. Vol 21:587460:pdf:10/21: American Medical Association; 2021:54. 

15. Goldberger AL, Amaral LA, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: 
components of a new research resource for complex physiologic signals. Circulation. 
2000;101(23):E215-220. 

16. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus 
Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801-810. 

17. Vail EA, Gershengorn HB, Wunsch H, Walkey AJ. Attention to Immortal Time Bias in 
Critical Care Research. Am J Respir Crit Care Med. 2021;203(10):1222-1229. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.23296933doi: medRxiv preprint 

https://www.bloomberg.com/graphics/2023-generative-ai-bias/?srnd=graphics-v2&utm_source=www.healthcareainews.com&utm_medium=newsletter&utm_campaign=healthcare-s-hidden-gold
https://www.bloomberg.com/graphics/2023-generative-ai-bias/?srnd=graphics-v2&utm_source=www.healthcareainews.com&utm_medium=newsletter&utm_campaign=healthcare-s-hidden-gold
https://www.bloomberg.com/graphics/2023-generative-ai-bias/?srnd=graphics-v2&utm_source=www.healthcareainews.com&utm_medium=newsletter&utm_campaign=healthcare-s-hidden-gold
https://www.cms.gov/files/document/trends-inequities-medicare-advantage-2009-2018.pdf
https://www.cms.gov/files/document/trends-inequities-medicare-advantage-2009-2018.pdf
https://doi.org/10.1101/2023.10.12.23296933


15 

18. Ladha KS, Zhao K, Quraishi SA, et al. The Deyo-Charlson and Elixhauser-van Walraven 
Comorbidity Indices as predictors of mortality in critically ill patients. BMJ open. 
2015;5(9):e008990. 

19. Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure 
Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group 
on Sepsis-Related Problems of the European Society of Intensive Care Medicine. 
Intensive Care Med. 1996;22(7):707-710. 

20. Johnson AE, Kramer AA, Clifford GD. A new severity of illness scale using a subset of 
Acute Physiology And Chronic Health Evaluation data elements shows comparable 
predictive accuracy. Critical care medicine. 2013;41(7):1711-1718. 

21. Bosch NA, Teja B, Law AC, Pang B, Jafarzadeh SR, Walkey AJ. Comparative 
Effectiveness of Fludrocortisone and Hydrocortisone vs Hydrocortisone Alone Among 
Patients With Septic Shock. JAMA Intern Med. 2023;183(5):451-459. 

22. Team RC. R: A language and environment for statistical computing. Vienna, Austria: R 
Foundation for Statistical Computing; 2022. 

23. Python reference manual [computer program]. Centrum voor Wiskunde en Informatica 
Amsterdam; 1995. 

24. Gruber S, Laan MJvd. tmle: AnRPackage for Targeted Maximum Likelihood Estimation. 
Journal of Statistical Software. 2012;51(13). 

25. Services USDoHaH. Health Equity and Health Disparities Environmental Scan. 2022. 
https://health.gov/sites/default/files/2022-04/HP2030-
HealthEquityEnvironmentalScan.pdf. 

26. Team SDoHW. World Health Day 2021: It’s time to build a fairer, healthier world for 
everyone, everywhere. Health equity and its determinants. 2021. 
https://www.who.int/publications/m/item/health-equity-and-its-determinants. 

27. Services CfMM. CMS Proposes Policies to Improve Patient Safety and Promote Health 
Equity. 2023; https://www.cms.gov/newsroom/press-releases/cms-proposes-policies-
improve-patient-safety-and-promote-health-equity. Accessed May 29, 2023, 2023. 

28. Liburd LC, Ehlinger E, Liao Y, Lichtveld M. Strengthening the Science and Practice of 
Health Equity in Public Health. J Public Health Manag Pract. 2016;22 Suppl 1:S1-4. 

29. Dover DC, Belon AP. The health equity measurement framework: a comprehensive model 
to measure social inequities in health. Int J Equity Health. 2019;18(1):36. 

30. Health COoM. The CMS Framework for Health Equity (2022-2032). 2022. 
https://www.cms.gov/about-cms/agency-information/omh/health-equity-programs/cms-
framework-for-health-equity. 

31. van der Laan MJ, Rose S. Targeted Learning: Causal Inference for Observational and 
Experimental Data. Springer New York; 2011. 

32. Schuler MS, Rose S. Targeted Maximum Likelihood Estimation for Causal Inference in 
Observational Studies. Am J Epidemiol. 2017;185(1):65-73. 

33. Yao L, Chu Z, Li S, Li Y, Gao J, Zhang A. A Survey on Causal Inference. ACM 
Transactions on Knowledge Discovery from Data. 2021;15(5):1-46. 

34. Microsoft. Responsible AI. 2023; https://responsibleaitoolbox.ai. Accessed June 16, 2023, 
2023. 

35. PwC. Responsible AI Toolkit. 2023; https://www.pwc.com/gx/en/issues/data-and-
analytics/artificial-intelligence/what-is-responsible-ai.html. Accessed June 16, 2023, 
2023. 

36. Google. Tensorflow Responsible AI. 2023; https://www.tensorflow.org/responsible_ai. 
Accessed June 16, 2023, 2023. 

37. Auriemma CL, Van den Berghe G, Halpern SD. Less is more in critical care is supported 
by evidence-based medicine. Intensive Care Med. 2019;45(12):1806-1809. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.23296933doi: medRxiv preprint 

https://health.gov/sites/default/files/2022-04/HP2030-HealthEquityEnvironmentalScan.pdf
https://health.gov/sites/default/files/2022-04/HP2030-HealthEquityEnvironmentalScan.pdf
https://www.who.int/publications/m/item/health-equity-and-its-determinants
https://www.cms.gov/newsroom/press-releases/cms-proposes-policies-improve-patient-safety-and-promote-health-equity
https://www.cms.gov/newsroom/press-releases/cms-proposes-policies-improve-patient-safety-and-promote-health-equity
https://www.cms.gov/about-cms/agency-information/omh/health-equity-programs/cms-framework-for-health-equity
https://www.cms.gov/about-cms/agency-information/omh/health-equity-programs/cms-framework-for-health-equity
https://responsibleaitoolbox.ai/
https://www.pwc.com/gx/en/issues/data-and-analytics/artificial-intelligence/what-is-responsible-ai.html
https://www.pwc.com/gx/en/issues/data-and-analytics/artificial-intelligence/what-is-responsible-ai.html
https://www.tensorflow.org/responsible_ai
https://doi.org/10.1101/2023.10.12.23296933


16 

38. Liang PS, Kwon SC, Cho I, Trinh-Shevrin C, Yi S. Disaggregating Racial and Ethnic Data: 
A Step Toward Diversity, Equity, and Inclusion. Clin Gastroenterol Hepatol. 
2023;21(3):567-571. 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.23296933doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.12.23296933


17 

EXHIBITS 

Table 1: Baseline information on the study cohort  

  
Racial-ethnic group 

(N=3,496) 

White group 

(N=15,923) 

Overall 

(N=19,419) 

Racial-ethnic group    

  Asian 659 (18.8%) 0 (0%) 659 (3.4%) 

  Black 2,027 (58.0%) 0 (0%) 2,027 (10.4%) 

  Hispanic 810 (23.2%) 0 (0%) 810 (4.2%) 

  White 0 (0%) 15,923 (100%) 15,923 (82.0%) 

In-hospital mortality 664 (19.0%) 2,866 (18.0%) 3,530 (18.2%) 

Discharge to hospice 102 (2.9%) 417 (2.6%) 519 (2.7%) 

Elective admission 325 (9.3%) 2,740 (17.2%) 3,065 (15.8%) 

Vasopressors started in eligibility 

period 
1,337 (38.2%) 7,299 (45.8%) 8,636 (44.5%) 

Mechanical ventilation started in 

eligibility period 
1,514 (43.3%) 7,036 (44.2%) 8,550 (44.0%) 

Renal replacement therapy started in 

eligibility period 
390 (11.2%) 974 (6.1%) 1,364 (7.0%) 

Central line-associated bloodstream 

infection 
3 (0.1%) 11 (0.1%) 14 (0.1%) 

Catheter-associated urinary tract 

infection 
4 (0.1%) 17 (0.1%) 21 (0.1%) 
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Racial-ethnic group 

(N=3,496) 

White group 

(N=15,923) 

Overall 

(N=19,419) 

Surgical site infection 11 (0.3%) 45 (0.3%) 56 (0.3%) 

Ventilator-associated pneumonia 23 (0.7%) 60 (0.4%) 83 (0.4%) 

Nosocomial infections combined 39 (1.1%) 125 (0.8%) 164 (0.8%) 

Age categorical (years)    

  18 - 44 514 (14.7%) 1,206 (7.6%) 1,720 (8.9%) 

  45 - 64 1,234 (35.3%) 4,943 (31.0%) 6,177 (31.8%) 

  65 - 74 756 (21.6%) 3,950 (24.8%) 4,706 (24.2%) 

  75 - 84 638 (18.2%) 3,600 (22.6%) 4,238 (21.8%) 

  85 and higher 354 (10.1%) 2,224 (13.9%) 2,577 (13.3%) 

Age overall (years)    

  Median (IQR) 64.5 (52.0, 76.0) 69.0 (59.0, 79.0) 68.0 (57.0, 79.0) 

Sex    

  Female 1,808 (51.7%) 9,331 (58.6%) 11,139 (57.4%) 

  Male 1,688 (48.3%) 6,592 (41.4%) 8,280 (42.6%) 

OASIS    

  Median (IQR) 32.0 (27.0, 39.0) 32.0 (27.0, 38.0) 32.0 (27.0, 38.0) 

SOFA score    

  Median (IQR) 5.00 (3.00, 8.00) 5.00 (3.00, 8.00) 5.00 (3.00, 8.00) 
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Racial-ethnic group 

(N=3,496) 

White group 

(N=15,923) 

Overall 

(N=19,419) 

Length of stay (days)    

  Median (IQR) 9.73 (5.77, 16.8) 9.06 (5.71, 15.6) 9.54 (5.72, 15.7) 

Length of stay, if survived (days)    

  Median (IQR) 9.77 (5.85, 17.0) 8.83 (5.76, 15.5) 9.56 (5.78, 15.6) 

Length of stay, if died (days)    

  Median (IQR) 9.27 (4.74, 16.2) 9.41 (4.72, 16.6) 9.38 (4.72, 16.6) 

Charlson comorbidity index categorical    

  0 - 3 752 (21.5%) 2,966 (18.6%) 3,718 (19.1%) 

  4 - 6 1,161 (33.2%) 6,587 (41.4%) 7,748 (39.9%) 

  7 - 10 1,279 (36.6%) 5,338 (33.5%) 6,617 (34.1%) 

  11 and above 304 (8.7%) 1,032 (6.5%) 1,336 (6.9%) 

Charlson comorbidity index continuous    

  Median (IQR) 6.00 (4.00, 8.00) 6.00 (4.00, 8.00) 6.00 (4.00, 8.00) 

Hypertension present 2,424 (69.3%) 10,480 (65.8%) 12,904 (66.5%) 

Congestive heart failure present 1,229 (35.2%) 5,420 (34.0%) 6,649 (34.2%) 

COPD present 809 (23.1%) 3,804 (23.9%) 4,613 (23.8%) 

Asthma present 47 (1.3%) 214 (1.3%) 261 (1.3%) 
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Racial-ethnic group 

(N=3,496) 

White group 

(N=15,923) 

Overall 

(N=19,419) 

Chronic kidney disease stage ≥ 3 

present 
670 (19.2%) 1,665 (10.5%) 2,335 (12.0%) 

Legend: Racial-ethnic patient group includes Asian, Black, Hispanic, Latino, etc. 

Abbreviations: IQR; interquartile range; COPD, chronic obstructive pulmonary disease; OASIS, Oxford Acute Severity of Illness Score; SOFA, sequential organ 

failure assessment 
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Figure 1: Study cohort selection flow chart 

 

Abbreviations: LOS, Length of stay 
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Figure 2: Distribution of patients across predicted mortality ranges, per invasive treatment. 

 

Abbreviations: RRT, renal replacement therapy 
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Figure 3: TMLE derived average treatment effects for change in probability of discharge or death at an odd hour vs. even hour of any 

given day as negative control outcome over predicted mortality categories.  

 

Abbreviations: ATE, average treatment effects; TMLE, targeted maximum likelihood; RRT, renal replacement therapy 
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Figure 4: TMLE derived average treatment effects for change in probability of death over predicted mortality categories with RRT 

eligibility period of 3 days.  

 

Abbreviations: ATE, average treatment effects; TMLE, targeted maximum likelihood; RRT, renal replacement therapy 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.23296933doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.12.23296933


25 

Supplementary Material 

Evaluating equitable care in the ICU:  

Creating a causal inference framework to assess the impact of life-sustaining 

interventions across racial and ethnic groups 
 

Author List: 

Tristan Struja, MD, MSc, MPH, tstruja@mit.edu – 2, 4* 

João Matos, BSc, jcmatos@mit.edu – 2, 5* 

Barbara Lam, MD, barbaradlam@gmail.com – 11 

Yiren Cao, irene.yiren.cao@gmail.com – 3 

Xiaoli Liu, PhD, xiaoliliubuaa@gmail.com - 8, 2 

Yugang Jia, PhD, MPH, yugang@verily.com – 2 

Christopher M. Sauer, MD MPH PhD, sauerc@mit.edu- 2,9,10 

Helen D’Couto, MD, hdcouto@bidmc.harvard.edu – 1 

Irene Dankwa-Mullan, MD MPH, idankwamullan@gmail.com – 7 

Leo Anthony Celi, MD, MS, MPH, lceli@mit.edu – 1, 2, 3 

Andre Kurepa Waschka, PhD, waschka_ak@mercer.edu – 6 

 

* equally first authors 

 

Author Affiliations: 

1. Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA 

2. Laboratory for Computational Physiology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 

Cambridge, MA, USA 

3. Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA 

4. Medical University Clinic, Kantonsspital Aarau, Aarau, Switzerland 

5. Faculty of Engineering of University of Porto, Porto, Portugal 

6. Mercer University, Macon, GA, USA 

7. Milken Institute School of Public Health, The George Washington University, Washington DC, USA 

8. Center for Artificial Intelligence in Medicine, The General Hospital of PLA, Beijing, China 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.23296933doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.12.23296933


26 

9. Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Germany 

10. Institute for Artificial Intelligence in Medicine, University Hospital Essen, Germany 

11. Department of Medicine, Division of Hematology and Oncology and Division of Clinical Informatics, Beth Israel Deaconess 

Medical Center, Boston, MA, USA 

 

Corresponding Author: 

Tristan Struja, MD, MSc, MPH, ORCID 0000-0003-0199-0184 

Email: tstruja@mit.edu 

Laboratory for Computational Physiology, Massachusetts Institute of Technology, Cambridge, MA, USA 

 

Conflicts of Interest: 

None of the authors have any conflicts of interest relevant to this work. YC and YJ are currently also affiliated with Verily life science, 

SSF, CA. 

 

Manuscript Information 

Key words: Sepsis, TMLE, MIMIC-IV, Outcomes Assessment, Health Services, Critical Care, Health discrepancies  

Version: July 14, 2023 

Supplementary material: 4 tables, 3 figures 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.23296933doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.12.23296933


27 

Supplemental Online Content 

eTable 1 Comparison between target trial and the observational study of the effectiveness of invasive treatments in patients with 

sepsis 

eTable 2 Variables used in the analysis to adjust the TMLE models 

eTable 3 Positivity of mortality for every mortality probability, treatment, and race-ethnicity, to check for violations of the positivity 

assumption 

eTable 4 Primary and secondary outcomes using targeted maximum likelihood estimation 

eFigure 1a Distribution of patients across predicted mortality ranges, per invasive treatment for Racial-ethnic group only 

eFigure 1b Distribution of patients across predicted mortality ranges, per invasive treatment for White group only 

eFigure 2a TMLE derived average treatment effects for change in probability of death over predicted mortality categories with an 

eligibility period for RRT of 1 day instead of 3 days 

eFigure 2b TMLE derived average treatment effects for change in probability of death over predicted mortality categories with an 

eligibility period for RRT of 5 days instead of 3 days. 

eFigure 3 TMLE derived average treatment effects for change in mean hospital-free days over predicted mortality categories 

 

This supplemental material has been provided by the authors to give readers additional information about their work. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.23296933doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.12.23296933


28 

eTable 1: Comparison between target trial and the observational study of the effectiveness of invasive treatments in patients with 

sepsis (adapted from Hernán MA, NEJM 2021).  

Approach Target Trial Observational study 

Eligibility criteria Patients with their first stay with least 24 hours stay fulfilling 

sepsis-3 criteria and ≥18 years of age and known ethnicity 

Same as for target trial 

Treatment strategies Initiation of mechanical ventilation, RRT, or vasopressors 
within the first 24 hours (72 hours for RRT) of ICU admissions 

Same as for target trial 

Treatment assignment Intention-to-treat and per-protocol effects without blinding Based on observed data  

Outcomes Primary: in-hospital death or discharge to hospice 

Secondary: hospital-free days by day 28, nosocomial 

infections (CLABSI, CAUTI, SSI, VAP) 

Same as for target trial 

Follow-up From treatment assignment until hospital day 30 Same as for target trial 

Estimation Intention-to-treat and per-protocol effects Intention-to-treat effect 

Abbreviations: RRT, renal replacement therapy; CLABSI, central-line associated bloodstream infection; CAUTI, catheter associated urinary tract infection; SSI, 

surgical site infection; VAP, ventilator associated pneumonia 
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eTable 2: Variables used in the analysis to adjust the TMLE models. 

Variable Description 

Treatment  

Treated Patients receiving IMV (any invasive ventilation), RRT (any acute continuous renal replacement 

method), or VP ((nor-)epinephrine, phenylephrine, or vasopressin) within the eligibility period of the 

first 24 hours (72 hours for RRT) of their ICU stay  

Controls Patients receiving no IMV, RRT, or VP during their ICU stay, or after the end of the eligibility period 

Outcomes  

Primary: In-hospital death or 

discharge to hospice  

As provided by dataset 

Secondary: Hospital-free days by 

day 28, nosocomial infection, 

RBC transfusion within 1st 24h 

Secondary: hospital-free days by day 28 calculated by 28 minus length of stay, set to 0 in case of 

death 

Nosocomial infections (CLABSI, CAUTI, SSI, VAP), ascertained by billing codes, see below 

CAUTI ICD-10 code T83.511 

CLABSI ICD-10 code T80.211 

SSI ICD-10 code T81.4 

VAP ICD-10 code J95.851 

Covariates  

Age At admission 

Sex As provided by dataset 

Ethnicity 0 if Racial-ethnic group (self-reported), 1 if White 

Insurance As provided by dataset, Medicare/Medicaid or other 
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Year group As provided by dataset, bi-yearly bins 

Elective admission Admission categorized as ‘ELECTIVE’, or ‘SURGICAL SAME DAY ADMISSION’ 

Surgery during admission As provided by the OASIS score 

Coding status Binary, full code on admission and upon discharge 

SOFA SOFA score on admission with each of its subcomponents 

Charlson comorbidity index As provided by dataset 

Fluids Sum of the volume administered during the whole ICU stay 

Vital signs  Respiratory rate, heart rate, mean blood pressure, temperature, and SpO2; Mean during the first 24 
hours 

Laboratory values Minimum value during the first 24 hours: Sodium, pH, paO2, fibrinogen 

Minimum value during the whole stay: Cortisol, hemoglobin 

Maximum value during the first 24 hours: Glucose, potassium, INR, lactate, paCO2 

Hypertension ICD-10 codes I11.X-I16X and I.70X 

Congestive heart failure ICD-10 codes I50.X, I11.0X, I27.X, I42.X, I43.X, I51.7X 

COPD ICD-10 codes J41.X-J47.X 

Asthma ICD-10 codes J84.1X 

Coronary artery disease ICD-10 codes I20.X-I25.X 

Chronic kidney disease ICD-10 codes N18.1X-N18.6X 

Diabetes type ICD-10 codes E08.X-E11.X, and E13.X 

Connective tissue disease ICD-10 codes L94.0X, L94.1X, L94.3X, M05.X, M06.X, M08.X, M12.0X, M12.3X, M30.X-M31.3X, 
M32.X-M35.X, M45, M46.1X, M46.8X, or M46.9X 

Pneumonia on admission ICD codes J09.X, J1X.X, J85.X, or J86.X if listed among top 3 diagnoses by billing department 
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Urinary tract infection on 
admission 

ICD codes N30.0X, or N39.0X if listed among top 3 diagnoses by billing department 

Biliary tract infection on admission ICD codes K81.X, K83.0X, or K85.1X if listed among top 3 diagnoses by billing department 

Skin infection on admission ICD codes L0X.X if listed among top 3 diagnoses by billing department 

Abbreviations: IMV, invasive mechanical ventilation; RRT, renal replacement therapy; VP, vasopressor; CLABSI, central-line associated bloodstream infection; 

CAUTI, catheter associated urinary tract infection; SSI, surgical site infection; VAP, ventilator associated pneumonia; SOFA, Sequential Organ Failure Assessment; 

OASIS, Oxford Acute Severity of Illness Score; COPD, chronic obstructive pulmonary disease 
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eTable 3: Positivity of mortality for every mortality probability, treatment, and race-ethnicity, to check for violations of the positivity 

assumption. 

Primary Outcome 

Mortality 
Survived Died 

Predicted Mortality 

Ranges (%) 
0 - 6 

(N=4,165) 

7 - 11 

(N=4,575) 

12 - 21 

(N=4,003) 

> 21 

(N=3,146) 

0 - 6 

(N=329) 

7 - 11 

(N=688) 

12 - 21 

(N=911) 

> 21 

(N=1,602) 

Treatment         

Invasive mechanical 

ventilation 

410  

(9.8%) 

1,701 

(37.2%) 

2,269 

(56.7%) 

2,449 

(77.8%) 

13  

(4.0%) 

164 

(23.8%) 

355 

(39.0%) 

1,189 

(74.2%) 

Renal replacement 

therapy 

165  

(4.0%) 

193  

(4.2%) 

211 

(5.3%) 

330  

(10.5%) 

41 

(12.5%) 

56  

(8.1%) 

94 

(10.3%) 

274  

(17.1%) 

Vasopressor(s) 
1,466 

(35.2%) 

1,761 

(38.5%) 

1,849 

(46.2%) 

1,801 

(57.2%) 

78 

(23.7%) 

211 

(30.7%) 

397 

(43.6%) 

1,073 

(67.0%) 

Race-ethnicity         

Racial-ethnic group 
761  

(18.3%) 

811  

(17.7%) 

691 

(17.3%) 

569  

(18.1%) 

63 

(19.1%) 

122 

(17.7%) 

164 

(18.0%) 

315  

(19.7%) 

White group 
3,404 

(81.7%) 

3,764 

(82.3%) 

3,312 

(82.7%) 

2,577 

(81.9%) 

266 

(80.9%) 

566 

(82.3%) 

747 

(82.0%) 

1,287 

(80.3%) 
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eTable 4: Primary and secondary outcomes using targeted maximum likelihood estimation. 

Average treatment effect* 
(95% CI) 

Predicted Mortality Ranges (%) 

  
0 - 6 7 - 11 12 - 21 > 21 

Treatment Outcome  
per Race-
Ethnicity 

REG WG REG WG REG WG REG WG 

Invasive 
mechanical 
ventilation 

In-hospital  
mortality 

2.0% 
 (0.0% to 4.0%) 

-2.0% 
 (-3.0% to -1.0%) 

1.0% 
 (-1.0% to 3.0%) 

0.0% 
 (-1.0% to 1.0%) 

-2.0% 
 (-5.0% to 1.0%) 

-3.0% 
 (-4.0% to -1.0%) 

-2.0% 
 (-5.0% to 2.0%) 

3.0% 
 (1.0% to 4.0%) 

Hospital  
free days  

-0.57 
 (-1.05 to -0.08) 

-0.43 
 (-0.64 to -0.23) 

-1.07 
 (-1.62 to -0.53) 

-0.56 
 (-0.83 to -0.3) 

-0.37 
 (-1.09 to 0.35) 

-0.07 
 (-0.39 to 0.26) 

-0.13 
 (-0.86 to 0.59) 

-0.91 
 (-1.38 to -0.44) 

Nosocomial  
infections 

0.0% 
 (0.0% to 0.0%) 

0.0% 
 (0.0% to 0.0%) 

0.0% 
 (0.0% to 1.0%) 

0.0% 
 (0.0% to 1.0%) 

Odd hour 
discharge or 

death 

2.0% 
 (-7.0% to 3.0%) 

0.0% 
 (-3.0% to 3.0%) 

1.0% 
 (-1.0% to 4.0%) 

1.0% 
 (-3.0% to 4.0%) 

RRT In-hospital  
mortality 

5.0% 
 (2.0% to 7.0%) 

-2.0% 
 (-5.0% to 2.0%) 

-2.0% 
 (-4.0% to 0.0%) 

6.0% 
 (5.0% to 7.0%) 

5.0% 
 (2.0% to 7.0%) 

0.0% 
 (-1.0% to 1.0%) 

-1.0% 
 (-5.0% to 3.0%) 

3.0% 
 (2.0% to 4.0%) 

Hospital  
free days  

-0.87 
 (-1.47 to -0.26) 

-1.84 
 (-2.05 to -1.63) 

-0.1 
 (-0.63 to 0.42) 

-0.39 
 (-0.63 to -0.16) 

1.39 
 (0.66 to -0.16) 

-0.79 
 (-1.09 to -0.49) 

1.39 
 (0.66 to 2.12) 

-0.4 
 (-0.77 to -0.04) 

Nosocomial  
infections 

0.0% 
 (0.0% to 0.0%) 

0.0% 
 (0.0% to 1.0%) 

0.0% 
 (-1.0% to 0.0%) 

0.0% 
 (0.0% to 1.0%) 

Odd hour 
discharge or 

death 

3.0% 
 (-3.0% to -9.0%) 

-4.0% 
 (-10.0% to 2.0%) 

-5.0% 
 (-11.0% to 0.0%) 

-3.0% 
 (-7.0% to 1.0%) 

Vaso- 
pressors 

In-hospital  
mortality 

2.0% 
 (-1.0% to 4.0%) 

-2.0% 
 (-3.0% to -1.0%) 

0.0% 
 (-3.0% to 2.0%) 

0.0% 
 (-1.0% to 1.0%) 

-3.0% 
 (-6.0% to 0.0%) 

1.0% 
 (-1.0% to 2.0%) 

2.0% 
 (-2.0% to 7.0%) 

1.0% 
 (-1.0% to 3.0%) 

Hospital  
free days  

-0.11 
 (-0.63 to 0.41) 

0.76 
 (0.54 to 0.98) 

-0.06 
 (-0.66 to 0.53) 

0.1 
 (-0.17 to 0.36) 

0.31 
 (-0.55 to 1.16) 

0.02 
 (-0.43 to 0.48) 

-0.48 
 (-1.56 to 0.59) 

-0.43 
 (-1 to 0.13) 

Nosocomial  
infections 

0.0% 
 (0.0% to 0.0%) 

0.0% 
 (0.0% to 0.0%) 

0.0% 
 (0.0% to 0.0%) 

0.0% 
 (-1.0% to 0.0%) 

Odd hour 
discharge or 

death 

0.0% 
 (-3.0% to 3.0%) 

2.0% 
 (-1.0% to 5.0%) 

0.0% 
 (-3.0% to 3.0%) 

-1.0% 
 (-4.0% to 2.0%) 
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Legend: *Average treatment effect is in percentages of increase in outcome if treated for binary outcomes, and in absolute mean days for continuous outcomes. 

Predicted mortality was calculated from OASIS score. 

Abbreviations: CI, confidence interval at 95%; OASIS, Oxford Acute Severity of Illness Score 
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eFigure 1a: Distribution of patients across predicted mortality ranges, per invasive treatment for Racial-ethnic group only. 

 

eFigure 1b: Distribution of patients across predicted mortality ranges, per invasive treatment for White group only. 

 

Abbreviations: RRT, renal replacement therapy  
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eFigure 2a: TMLE derived average treatment effects for change in probability of death over predicted mortality categories with an 

eligibility period for RRT of 1 day instead of 3 days. 

 

eFigure 2b: TMLE derived average treatment effects for change in probability of death over predicted mortality categories with an 

eligibility period for RRT of 5 days instead of 3 days. 

 

Abbreviations: TMLE, targeted maximum likelihood estimation; ATE, average treatment effects; RRT, renal replacement therapy  
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eFigure 3: TMLE derived average treatment effects for change in mean hospital-free days over predicted mortality categories.  

 

Abbreviations: ATE, average treatment effects; TMLE, targeted maximum likelihood; RRT, renal replacement therapy 
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