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Abstract: 

Background. Subtyping schizophrenia can disentangle heterogeneity and help with treatment decision-

making. However, current schizophrenia subtypes have not demonstrated adequate clinical utility, limited 

by sample size, suboptimal clustering methods, and choice of clustering input. Polygenic scores (PGS) 

reflect the genetic risk of phenotypes including comorbidities and are available before treatment, making 

them candidate clustering input. 

Methods. We derived PGS for schizophrenia, autism spectrum disorder, bipolar disorder type-1, 

depression, and intelligence in 4,915 schizophrenia cases with register linkage. We randomly divided the 

sample into discovery and replication partitions and applied a novel clustering workflow on both: 

preprocessing PGS, feature extraction with uniform manifold approximation and projection (UMAP), and 

clustering with density-based spatial clustering of applications with noise (DBSCAN). After replication, 

we re-performed clustering on the entire sample and evaluated treatment-relevant variables of 

medication and hospitalization (extracted from registers) across clusters. 

Outcomes. We identified five well-replicated PGS clusters. Cluster 1 (26% of entire sample) with 

generally lower PGS, had the least use of antipsychotics (including clozapine), and fewer outpatient visits. 

Cluster 2 (48%) with generally higher PGS, especially schizophrenia PGS, had more prescriptions of 

antipsychotics including clozapine and longer treatment with clozapine. Each featured by specific PGS, 

clusters 3 (high IQ-PGS, 11%), 4 (high ASD-PGS, 8%), 5 (high BIP-PGS, 7%) showed sub-threshold 

level significance in the corresponding phenotypic measures but did not differ significantly in the 

treatment-relevant variables. Solely categorizing the patients with SCZ-PGS did not generate any 

significant patterns in the phenotypic and treatment-relevant variables. 

Interpretation. The results suggest that combinations of PGS of brain disorders and traits can provide 

clinically relevant clusters, offering a direction for future research on schizophrenia subtyping. Future 
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replications in independent samples are required. The workflow can be generalized to other disorders 

and with mechanism-informed PGS. 
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Introduction 

As one of the most serious psychiatric illnesses, schizophrenia causes severely impaired quality of life 

and reduced life expectancy1. It is highly heterogeneous in symptoms, course, and outcomes2, posing 

major challenges for identifying effective treatments for patients. Subtyping of schizophrenia holds the 

potential to disentangle the heterogeneity and offer group-specific treatment.  

Early efforts subtyped schizophrenia based on symptoms, course, and family history3-6, but have not 

reached conclusive clusters or demonstrated adequate utility to guide treatment7. More recent studies 

have adopted a data-driven strategy by applying clustering algorithms to various data types, such as 

symptoms8,9, cognition10-12, social functioning13,14, laboratory measures9, imaging data15, and comorbid 

psychiatric disorders16. However, the separation of clusters was not clear9,16, and replication of the 

clusters was lacking in general. Due to the lack of clinically useful subtyping, patients usually try across 

different types of antipsychotics. Upon nonideal response to the applied treatments, clozapine is used 

and is a marker for treatment-resistant schizophrenia17,18. Although this could be viewed as a treatment-

relevant subtype, it is only available after the exposure to treatments. Subtyping prior to treatment would 

be most beneficial but requires information available before treatment starts. 

The genetic architectures of schizophrenia and other psychiatric disorders/traits have been well-

demonstrated19-21. Genome-wide association studies (GWAS) have increasing sample size and SNP-

heritability19, effectively powering the calculation of polygenic scores (PGS). PGS are essentially 

weighted sums of genetic variants at individual level22 and reflect the genetic underpinnings for complex 

diseases for an individual23,24. However, they are underrepresented in the clustering literature of 

psychiatric disorders. An initiative study has performed hierarchical clustering of schizophrenia using 

PGS25. It identified five clusters in 435 schizophrenia cases from the Clinical Antipsychotic Trials for 

Intervention Effectiveness (CATIE) study—18-month double-blinded trials of six antipsychotics26. The 

largest cluster showed reduced symptoms after receiving the randomized treatment, although the entire 

sample also showed significant improvement after treatment. Unfortunately, limited by the sample size 

and the randomized nature of the design, it is not possible to study the cluster-specific features for each 

treatment. 

Leveraging on a large, genotyped sample with electronic medical records related to treatment, we use a 

novel clustering workflow to cluster schizophrenia based on PGS and validate them with treatment and 

phenotypes. The hypothesis is that different combinations of genetic risks of comorbid and/or cooccurring 

traits could implicate different patient subtypes that show distinct treatment patterns. We derived PGS of 

schizophrenia and relevant traits including autism spectrum disorder (ASD), bipolar disorder type-1 (BIP), 

intelligence quotient (IQ), and major depressive disorder (MDD)27-29. The selection of traits was based on 
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the genetic correlation with schizophrenia30 and sufficient GWAS power19. Cluster-specific patterns were 

found in the use of antipsychotics and hospitalizations. 

Methods 

Samples and genotype data 

We analyzed genotype data from 4,915 schizophrenia patients from the Swedish Schizophrenia Study31. 

The research procedures were approved by ethical committees at the Karolinska Institutet with written 

informed consent provided by the subjects. Our case definition has been extensively validated31. Briefly, 

cases were identified from the Swedish National Patient Register32 as having at least two hospitalizations 

with a discharge diagnosis of schizophrenia and/or schizoaffective disorder, both parents born in 

Scandinavia, and age ≥18 years. The Supplemental Methods contains details for genotyping; briefly, 

DNA samples were extracted from venous blood, genotyped with genome-wide SNP arrays, processed 

using the PGC RICOPILI pipeline (including calculating genotype principal components)33, and imputed 

using the Haplotype Reference Consortium panel34. 

PGS calculation 

We calculated individual PGS based on the most updated European-ancestry GWAS for schizophrenia 

(47,248 cases)35, ASD (18,381 cases)36, BIP (25,060 cases)37, IQ (265,501 subjects)38, and MDD 

(134,361 cases)39. The listed sample sizes had Swedish cohorts removed and, as necessary, we re-

computed summary statistics using METAL40. PGS were calculated using the thresholding method with 

established workflow41. For each set of summary statistics, we selected SNPs with a threshold p-value 

(PT) ≤ 0.1 and performed linkage-disequilibrium clumping (r2 < 0.1 in 1 Mb windows) using the Haplotype 

Reference Consortium panel34. PGS were calculated in PLINK (v1.9) as the sum of dosages of the 

selected SNPs weighted by the effect size from the GWAS (excluding the extended Major 

Histocompatibility Complex region, chr6:25-34 mb). The raw PGS were standardized within each 

genotyping wave to a mean=0 (SD=1). 

PGS-clustering workflow 

Our initial intention was to obtain a replicable clustering, followed by clustering of the entire sample, upon 

well replication, to increase statistical power and validation using electronic medical records (Figure S1). 

To do this, we first randomly divided cases into a discovery partition (N=3,440, 70%) and a replication 

partition (N=1,475, 30%). These partitions did not differ significantly in PGS or any of the phenotypic 

variables used for downstream analyses (Table S1). Each partition was clustered separately. 
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PGS preprocessing: We derived PGS residuals after regressing out the first two ancestry principal 

components and the genotyping waves to account for residual confounding by genetic ancestry and batch 

effects. Multiple studies have shown disproportionate effect of PGS on disease risk, with higher PGS 

having markedly higher disease risk22,31,36,42. Therefore, we converted PGS residuals to quartiles based 

on their distribution in the sample and treated the processed PGS residuals as ordinal variates. We then 

calculated the Gower distance matrix43 of the five processed PGS residuals.  

Feature extraction and visualization: We applied Uniform Manifold Approximation and Projection 

(UMAP) to the Gower distance matrix to extract the data features. This was done independently for the 

discovery and replication partitions. The Gower distance matrix was computed for five PGC (ASD, BIP, 

IQ, MDD, and SCZ as quartiles). UMAP is a dimensional reduction and feature extraction technique to 

improve accuracy in clustering44 and has been widely used in life sciences research45 including population 

genetics46,47. Briefly, after constructing a high-dimensional graph of the input data, UMAP outputs an 

optimized two-dimensional depiction of the data that is as structurally similar to the input data as possible. 

A key feature is that UMAP balances both local (i.e., the existence of clusters in the data) and global 

features of the data (i.e., the relationships between clusters). Moreover, it emphasizes local similarities 

of points in high dimensional space rather than focusing on linear relationships and variance as with (for 

example) principal components analysis. We performed UMAP with the R package umap (v0.2.7.0) and 

kept the first two dimensions for subsequent clustering.  

Clustering: Since UMAP uses local distances to construct its high dimensional representation, it is the 

separation of clusters rather than the distance between clusters that is meaningful48. Therefore, distance-

based clustering methods (e.g., k-means, c-means, or hierarchical clustering) are less appropriate to 

UMAP output. We applied the method Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) which assumes that clusters are defined by regions of high point density separated by regions 

of low point density49. It can find clusters with arbitrary shapes and requires no prior assumptions about 

the number of clusters50. We performed DBSCAN using the R package fpc (v2.2.9).  

Internal validation: Popular validity indices (e.g., the Silhouette method) are useful for globular clusters 

but are less effective for clusters with arbitrary shapes. We used Density-Based Clustering Validation 

(DBCV, implemented in Python), an validation index developed for density-based/arbitrarily-shaped 

clusters.51 DBCV evaluates the within- and between-cluster density connectedness of clustering results, 

and ranges from -1 to 1 with larger values indicating higher validity. 
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Evaluation of replication  

Our first intention was to evaluate whether we could observe similar clustering results in independent 

partitions of the sample. The evaluation criteria were whether the number of clusters and the number of 

cases per cluster replicated between the discovery and replication partitions. The next evaluation criterion 

was whether the defining features of the clusters also replicated (i.e., the pattern of the means of PGS 

per cluster). 

Clinical data from the Swedish national registers  

As shown in the Results, clustering of genetic data in cases in the discovery and replication partitions 

yielded similar results. Our next intention was to evaluate whether the cases assigned to these clusters 

differed with respect to treatment variables and other clinical phenotypes. To maximize statistical power 

to identify such differences, we performed all clustering steps anew in the entire sample and 

(unsurprisingly) found clusters that were highly similar to those in discovery and replication partitions. 

The clinical data were linked for the entire sample from the Swedish national registers32,52 including the 

National Patient Register (inpatient records during years 1973-2018, outpatient during 2001-2018), 

Prescription Drug Register (2005-2018), Military Conscription Register (1967-2010, males only)53, and 

Multigeneration Register (1961-2018). The Conscription Register has a standardized IQ measure (logic, 

verbal, spatial, technical, and overall score) in males at age 18-19 years and standardized by birth year28. 

Our sample of schizophrenia cases was relatively old when most of these registers began (median year 

of birth 1954), and older subjects would have had many treatment contacts not captured in these registers. 

To minimize left censoring, we included cases with birth years ≥1950 for the statistical analyses of the 

evaluation using electronic medical records (N=3,154, 64% of the entire sample).  

Choice of primary measure  

The primary measures. To address the major gap of lacking treatment-relevant validations of proposed 

schizophrenia subtypes, we focused on treatment variables as the primary measures. These included 

antipsychotic use and specialist treatment contacts. For antipsychotic use, we included the number of 

prescriptions of schizophrenia antipsychotics, antipsychotic polypharmacy (defined as simultaneous use 

of at least two antipsychotics for ≥90 days as an indicator of treatment resistance54), and the number of 

prescriptions and treatment time of clozapine54. For specialist treatment contacts, we included the 

inpatient and outpatient psychiatric treatment contacts. These count variables were over-dispersed and 

therefore we defined a binary variable to highlight whether the count of an individual was in the top quartile 

of that count variable.  
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Statistical analysis of primary measures. We adopted a hypothesis-free strategy to explore if the PGS 

clusters captured any treatment-related feature. For each cluster, we compared the treatment variable of 

patients in this cluster to that of patients not in this cluster (adjusting for sex, year of birth, and the five 

ancestry principal components). Generalized linear models were applied to count variables with quasi-

Poisson as link function (given the over-dispersed distribution), and logistic regression was applied to 

binary variables. To account for multiple-testing, we derived FDR-adjusted p-values55 for all tests on the 

primary measures. 

Secondary measures. For clusters that appeared to be featured by specific PGS, i.e., clusters 3-5, we 

examined whether the clinical data were external validators. For example, for a cluster with high BIP-

PGS, we ask the question: did cases in this cluster have higher risk for a diagnosis and/or family history 

of BIP and schizoaffective disorder? We acquired diagnosis of disorders relevant to the feature PGS of 

each cluster from the National Patient Register. Family history reflects genetic/familial predisposition and 

has been shown to relate to disease severity54 and we have previously shown that family history captures 

predisposition information independent of PGS56. We defined family history as lifetime diagnosis in the 

first-degree relatives and derived this information from the National Patient Register and the Multi-

Generation Register. IQ measures could also be relevant and were acquired from the Conscription 

Register.  

Statistical analysis of secondary measures. We applied logistic regression to binary variables and linear 

regression to IQ measures, adjusting for the same covariates as for the primary measures. The per-

cluster-tests were hypothesis-driven by the feature PGS, and the variables were selected based on the 

relevance to the feature PGS. Again, each measure of patients in the cluster of interest was compared 

to that of patients not in the cluster. FDR correction was performed to account for multiple-testing within 

each cluster. 

Results 

Distinct PGS clusters were identified and replicated 

With the goal to explore clinical and etiological heterogeneity of schizophrenia using genetic data, we 

computed multiple PGS in a large set of schizophrenia cases (N=4,915). We included PGS for ASD, BIP, 

MDD, IQ, and SCZ using independent GWAS results. Using these five processed PGS quartilized 

residuals, we identified five clusters in the discovery partition (N=3,440, Figure 1A) that were all 

replicated in the replication partition (N=1,475, Figure 1B). The results in Figures 1A-B are from 

independent, ab initio analyses. The proportions of the clusters were approximately similar in discovery 

and replication partitions (Figure 1C-D). Crucially, the PGS patterns were similar in discovery and 
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replication partitions: cluster 1 had low scores for all five PGS, cluster 2 had high schizophrenia PGS and 

intermediate PGS for ASD, BIP, IQ, and MDD; cluster 3 had elevated PGS for IQ; cluster 4 had high ASD 

and MDD PGS; and cluster 5 had high BIP PGS (Figure 1E-F). The distribution of the PGS per cluster 

also agreed between the discovery and replication partitions (Figure S2).  

 

Figure 1. (A) In the discovery partition (N=3,440 SCZ cases), application of UMAP and DBSCAN identified five clusters. (B) 
Independent, ab initio application of UMAP and DBSCAN to the replication partition (1,475 SCZ cases) also identified five 
clusters. (C-D) The fractions of cases allotted to clusters were relatively similar between the discovery (C) and replication (D) 
partitions. The larger differences were in clusters 2 and 4. (E-F) Mean PGS per trait per cluster in discovery (E) and replication 
(F) partitions The PGS patterns in clusters 1-5 were highly similar in the two partitions. The color coding for clusters was the 
same in panels A-F. Note that the y-axis in (E-F) is the scaled PGS by subtracting mean and dividing by standard deviation 
univariately (i.e., using scale “std” in the plotting function ggparcoord() in R). Abbreviations: ASD=autism spectrum disorder, 
BIP=bipolar disorder type-1, IQ=intelligence quotient, MDD=major depressive disorder, and SCZ=schizophrenia.  

We compared different clustering algorithms using the same discovery set as the input, and UMAP 

presented superior performance in the separation of clusters than previously applied methods including 

principal component analysis, factor analysis, and t-SNE (Figure S3A). The quartilization process of the 

PGS also demonstrated importance in cluster separation (Figure S3B), which was justified by previous 

observations that the top ends of the PGS distributions carry unproportionally larger risks (Methods). 
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Next, we assessed the internal validity and stability of UMAP clustering in the discovery partition given 

its larger size (and thus higher statistical power). The clusters had reasonably good internal validity with 

DBCV=0.31 (DBCV ranged -1 to 1, with larger values indicating better clustering). We then evaluated the 

stability of the clustering during the tuning of the major UMAP parameters (n_neighbor and min_dist) 

in a grid search (Figure S4). The clusters manifested high stability across parameter tuning and high 

agreement in cluster separation across combinations of parameters (Figure S4).  

Clusters in the entire sample resembled PGS features and cluster composition 

The results in the discovery and replication partitions suggest stable and replicable PGS-based clusters 

of schizophrenia, we next applied the PGS workflow anew to all 4,915 schizophrenia cases to maximize 

power. As expected, the resulting clusters were similar to those of the two partitions: cluster 1 (n=1,267, 

26% of the entire sample) had low PGS overall; cluster 2 (n=2,364, 48%) had high PGS overall and the 

highest MDD-PGS and schizophrenia PGS; cluster 3 (n=558, 11%) had the highest IQ-PGS; cluster 4 

(n=470, 8%) had highest ASD-PGS; cluster 5 (n=356, 7%) had the highest BIP-PGS (Figure 2).  

 

Figure 2. Clustering of the entire sample (N=4915). (A) UMAP visualization of PGS clustering and the five clusters identified by 
DBSCAN. (B) Treemap plot showing the relative sizes of each cluster proportional to the area of each rectangle. Cluster 1 
included 1,267 cases (26% of the entire sample); Cluster 2 included 2,364 cases (48%); Cluster 3 included 558 cases (11%); 
Cluster 4 included 470 cases (8%); and Cluster 5 included 356 cases (7%). (C) Mean PGS per cluster per trait. Note that the y-
axis is the scaled PGS by subtracting mean and dividing by standard deviation univariately (i.e., using scale “std” in the plotting 
function ggparcoord() in R). Abbreviations: ASD=autism spectrum disorder, BIP=bipolar disorder type-1, IQ=intelligence quotient, 
MDD=major depressive disorder, and SCZ=schizophrenia.  

Primary measures demonstrated distinct treatment features in two clusters 

Next, we analyzed the treatment variables of the PGS-based clusters. To ensure coverage of the medical 

registers, we focused on patients born after 1950; the cluster composition remained stable after the 

restriction of birth year. Table 1 describes the distribution of demographic variables, the primary treatment 

variables, and other phenotypic variables including diagnosis, IQ, and family history of relevant 

psychiatric disorders in each identified cluster.  
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Table 1: Descriptive data for variables across the five PGS clusters. 

Variable Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 P 

Number (%) in analysis 800 (25%) 1541 (49%) 362 (12%) 231 (7%) 220 (7%) 
 

Year of birth 1961 (7.9) 1961 (8.1) 1962 (8.8) 1961 (7.2) 1961 (7.9) 0.154 

Male sex 490 (61%) 1019 (66%) 218 (60%) 145 (63%) 146 (66%) 0.073 

Primary variables on treatment 

Any CLO 246 (32%) 522 (34%) 121 (34%) 74 (32%) 73 (33%) 0.764 

Any AP or CLO 499 (62%) 1039 (67%) 244 (67%) 143 (62%) 159 (72%) 0.017 

N antipsychotic prescriptions 237 (210.9) 280 (241.8) 263 (221.1) 272 (243.2) 261 (216.9) 0.00081 

Top 25%, N antipsychotic prescriptions 150 (19%) 437 (28%) 85 (23%) 64 (28%) 53 (24%) 0.000017 

Weeks on AP 103 (143.8) 119.9 (153.2) 111.9 (141.4) 110.8 (148.2) 117.6 (144.5) 0.122 

Top 25%, weeks on AP 179 (22%) 400 (26%) 94 (26%) 61 (26%) 55 (25%) 0.391 

N CLO prescription 57 (113.7) 76 (136.5) 65 (120) 76 (134.8) 63 (119.9) 0.013 

Top 25%, N CLO prescription 180 (22%) 408 (26%) 90 (25%) 59 (26%) 54 (25%) 0.342 

Weeks on CLO 93.4 (171) 110.3 (184.8) 101.2 (171.8) 106.5 (183) 95.3 (171.6) 0.25 

Top 25%, weeks on CLO 179 (22%) 407 (26%) 93 (26%) 59 (26%) 51 (23%) 0.278 

N hospitalizations 13 (14.7) 14 (14.5) 12 (14.5) 14 (17.6) 14 (19.1) 0.398 

Top 25%, N hospitalization 196 (24%) 431 (28%) 85 (23%) 55 (24%) 56 (25%) 0.213 

N outpatient visits 17 (18.6) 20 (29.4) 21 (26.6) 18 (23.2) 23 (23.4) 0.013 

Top 25%, N outpatient visits 191 (24%) 410 (27%) 107 (30%) 57 (25%) 67 (30%) 0.151 

Other phenotypic variables 

Any ASD diagnosis 38 (5%) 72 (5%) 18 (5%) 15 (6%) 10 (5%) 0.821 

Any BIP diagnosis 117 (15%) 223 (14%) 64 (18%) 41 (18%) 42 (19%) 0.192 

Any MDD diagnosis 208 (26%) 410 (27%) 103 (28%) 67 (29%) 64 (29%) 0.759 

Any SAD diagnosis 262 (33%) 482 (31%) 126 (35%) 79 (34%) 79 (36%) 0.493 

IQ, total -0.45 (1.03) -0.38 (1.08) -0.22 (1.1) -0.55 (1.12) -0.5 (1.15) 0.183 

IQ, logic -0.02 (1) 0.03 (0.99) 0.17 (0.92) -0.22 (0.96) -0.19 (1.02) 0.0080 

IQ, verbal -0.03 (1) 0.04 (0.98) 0.12 (0.98) -0.13 (0.99) -0.2 (0.99) 0.043 

IQ, spatial -0.02 (0.99) 0.02 (0.99) 0.06 (0.93) 0.06 (0.99) -0.22 (1.04) 0.158 

IQ, technical -0.02 (0.99) 0.02 (0.97) 0.16 (1) -0.13 (1.02) -0.19 (1.01) 0.045 
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Any family history of ASD 33 (4%) 68 (4%) 15 (4%) 10 (4%) 7 (3%) 0.944 

Any family history of BIP 85 (11%) 213 (14%) 33 (9%) 24 (10%) 29 (13%) 0.044 

Any family history of MDD 297 (37%) 587 (38%) 122 (34%) 83 (36%) 86 (39%) 0.572 

Any family history of SAD 39 (5%) 91 (6%) 15 (4%) 13 (6%) 20 (9%) 0.111 

Any family history of SCZ 112 (14%) 248 (16%) 44 (12%) 30 (13%) 34 (15%) 0.275 

Note: Description of phenotypic variables across the five PGS clusters. We restricted the analysis sample to those born in 1950 
or later to ensure register coverage; the proportions of clusters remained stable after the birth year restrictions. The primary 
variables on treatment include medication use and contacts with specialist treatment, and the other phenotypic variables included 
IQ, diagnosis, and family history of relevant psychiatric disorders. We estimated overall p-value across clusters for each variable. 
For binary variables, p-value was acquired from chi-square test; for continuous variables (IQ) and birth year, we acquired p-
value from ANOVA; and for the other variables (which are counts with skewed distribution), we acquired p-value from log-
likelihood ratio test by regressing the variable against clusters in a generalized linear model, with quasi-Poisson as the link 
function. The p-values presented are descriptive. For all 14 primary variables, we next performed regressions and corrected for 
multiple testing. Abbreviations: CLO=clozapine, AP=antipsychotic polypharmacy, ASD=autism spectrum disorder, BIP=bipolar 
disorder type-1, IQ=intelligence quotient, MDD=major depressive disorder, and SCZ=schizophrenia. 

 

The primary variables on treatment were then examined per cluster, by comparing patients in the cluster 

to patients not in the cluster. Cluster 1 (with generally low PGS) had evidence of receiving milder 

treatment. Specifically, patients in cluster 1 tend to have lower risk of ever being treated with antipsychotic 

polypharmacy or clozapine compared to all included patients who were not in this cluster (OR=0.82 [0.69, 

0.97], P=0.023, FDR=0.14, Fig 3.A). They had significantly lower risk of receiving high (top quartile) 

number of prescriptions of antipsychotics (OR=0.64 [0.52, 0.78], P<0.0001, FDR=0.0007, Fig 3.A) and 

clozapine (OR=0.62 [0.44, 0.85], P=0.004, FDR=0.035, Fig 3.A) and, when treated with antipsychotic 

polypharmacy, tend to have shorter treatment period (P=0.040, FDR=0.19, Fig 3.B). In contrast, cluster 

2 (with generally high PGS and especially high MDD- and SCZ-PGS) had more intense treatment as 

indicated by receiving more prescriptions and longer treatment duration. Specifically, patients in cluster 

2 had greater risk of receiving high (top quartile) number of prescriptions of antipsychotic (OR=1.40 [1.19, 

1.66], P<0.0001, FDR=0.001, Fig 3.A) and clozapine (OR=1.76 [1.36, 2.28], P<0.0001, FDR=0.0007, Fig 

3.A) and long (top quartile) treatment duration on clozapine (OR=1.53 [1.17, 1.99], P=0.002, FDR=0.02, 

Fig 3.A). The increased use of clozapine and antipsychotics in cluster 2 is likely to be driven by a subgroup 

(26%) with high PGS for schizophrenia and moderate level of other PGS (Figure S5). In terms of 

specialist contact, patients in cluster 1 also had significantly fewer outpatient visits (P=0.005, FDR=0.040, 

Fig3.B); whereas patients in cluster 2 tend to have more hospitalization (P=0.015, FDR=0.096, Fig3.A) 

and patients in cluster 5 tend to have more outpatient visits (P=0.037, FDR=0.19, Fig3.B). Detailed model 

estimates are presented in Table S2. 
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Figure 3: Clusters 1 and 2 showed distinct treatment features. We present both odds ratios for binary variables including ever 
had certain treatment and in the top quartile of certain measures (in A) and regression coefficients for the count variables (in B); 
the two scales of estimates support each other. (A) Odds ratio for binary variables on the primary treatment variables, including 
use of antipsychotics, clozapine (CLO), and specialist contact. The use of antipsychotics included if the patient had ever used 
antipsychotic polypharmacy (AP), if the patient’s prescription of antipsychotics was in the top quartile, and if the patient’s 
treatment weeks on AP was in the top quartile. Similarly, the use of CLO included if the patient had ever used CLO, if the patient’s 
prescription of CLO was in the top quartile, and if the patient’s treatment weeks on CLO was in the top quartile. Specialist contact 
included the if the patient’s number of hospitalization and outpatient visits was in the top quartile. (B) Regression coefficient for 
count variables on the primary treatment variables, including use of antipsychotics, clozapine (CLO), and specialist contact. The 
use of antipsychotics included the number of prescriptions of antipsychotics and treatment weeks on AP. The use of CLO 
included the number of prescriptions of CLO and treatment weeks on CLO. Specialist contact included the number of 
hospitalization and outpatient visits. We performed tests for 14 traits and 5 clusters (in total 70 tests) and applied FDR correction 
on the p-values. Since the traits are not independent, we preferred FDR over Bonferroni correction which is overly stringent. 
Non-significant findings (p-value>0.05) are more transparent and findings with p-value ≤ 0.05 are opaquer. Asterisks indicate 
significance: *** FDR ≤ 0.001, ** FDR ≤ 0.01, and * FDR ≤ 0.05. Cluster colors are the same as those in Figure 2. Abbreviations: 
CLO=clozapine, AP=antipsychotic polypharmacy. 
 
To examine if the significant observations in clusters 1 and 2 was solely explained by schizophrenia PGS, 

we separated the sample in to four groups only based on the schizophrenia PGS and performed the 

same analysis (Figure S6). Although the groups with the lowest and the highest schizophrenia PGS both 

had similar size (25% of the sample) as cluster 1 (26%, low PGS, Figure 2) and subcluster 2a (26%, 

high PGS, especially high SCZ-PGS, Figure S5), none of them showed any significant difference 

compared to the other clusters, further illustrating the value of using multiple PGS than solely 

schizophrenia PGS for subtyping.  

 

External validity for the other three clusters using secondary phenotype data 

Clusters 3 to 5 were featured by specific PGS; specifically, cluster 3 had highest IQ-PGS, cluster 4 had 

highest ASD-PGS, and cluster 5 had higher BIP-PGS. We therefore examined the phenotypes that were 

related to the feature PGS in these clusters (Table S3). Considering FDR<0.1 as the threshold, patients 
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in cluster 3 (high IQ-PGS) had higher IQ measure in the logic domain (P=0.014, FDR<0.1) than other 

patients. Although at sub-threshold significant level, Cluster 5 (high BIP-PGS) had higher risk for family 

history of schizoaffective disorder (P=0.02, FDR=0.12), and cluster 4 (high ASD-PGS) tend to have lower 

measure in IQ. These observations of phenotypic features reflected PGS features. 

Discussion 

In this study we identified well-separated clusters based on common genetic variants, and we also show 

these clusters have clear clinical implications. Using a novel clustering workflow, we have detected and 

replicated five PGS-based clusters in 4,915 schizophrenia cases. The cluster with overall higher PGS, 

especially schizophrenia PGS, had significantly increased use of antipsychotics, especially clozapine 

(more prescriptions and longer duration) which suggests a treatment-resistant group. We also identified 

a cluster that has overall lower PGS and significantly lower use of antipsychotics including clozapine and 

fewer outpatient visits, which could imply a group with relatively better prognosis. Whereas groups based 

on schizophrenia PGS alone could not reflect any of the observations (as illustrated in previous research54 

and Figure S6). This highlights the clinical potential of using combinations of PGS over a single PGS to 

subtype schizophrenia. Additionally, the rest clusters demonstrated relevance between the feature PGS 

and the corresponding phenotypes. 

The novel clustering workflow in this study is superior in separating clusters. We deem that one reason 

is UMAP’s superior feature extraction capacity. It balances between the preservation of the local distance 

and the global distance, making it competitive to t-SNE (that favors local distance) and principal 

component analysis (that favors global distance)44. Another reason could be that we addressed the 

disproportionate disease risk held by PGS categories. This workflow, however, has its limitations and 

needs to be applied with cautions. PGS was categorized based on their distribution in the sample and is 

therefore relative to the sample. For instance, in a setting where samples were more severe and thus 

had high schizophrenia PGS in general, the clusters from the same workflow may have different features.  

The agnostic PGS used in this study has lent support to the rationale that the various combinations of 

genetic predispositions to psychiatric comorbidity and traits could give rise to the heterogeneity of 

schizophrenia. We further deem that the workflow can be generalized to PGS with mechanistic 

implications. For complex traits like schizophrenia, genes function in networks rather than isolatedly19. If 

the genetic input could capture mechanistic components, clustering may reflect etiologically distinct 

subtypes. So far, a number of functional annotations have been associated with schizophrenia, such as 

evolutionary constrained genomic regions57, brain open chromatin58, and specifically expressed genes in 
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brain cell-types29. Future studies can improve the current workflow by integrating genomic annotations in 

the PGS59. 

Despite the interesting finding, external replications are required in independent samples. A somewhat 

puzzling observation is that cluster 3, with higher IQ-PGS  and observed IQ measures, did not present 

significantly better prognosis compared to cluster 1 (with overall low PGS), although premorbid IQ has 

been reported to associate with lower level of the treatment measures60,61. It is unclear if this is due to 

the small sample size of cluster 3, or mechanistic differences between the two clusters; for instance, the 

mean of BIP-PGS also appears to be higher in cluster 3 than cluster 1. Replicating the workflow in 

independent samples will provide more insights. 

To conclude, PGS has the unique advantage of being available before treatment starts. This study shows 

the potential of using a combination of PGS to highlight subtypes of schizophrenia that have clinical and 

treatment-relevant meanings. Mechanism-informed PGS holds the potential to suggest more etiologically 

distinct subtypes. 
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