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Abstract 

 

Despite advances in precision oncology, clinical decision-making still relies on limited 

parameters and expert knowledge. To address this limitation, we combined multimodal real-

world data and explainable artificial intelligence (xAI) to introduce novel AI-derived (AID) 

markers for clinical decision support. 

 

We used deep learning to model the outcome of 15,726 patients across 38 solid cancer entities 

based on 350 markers, including clinical records, image-derived body compositions, and 

mutational tumor profiles. xAI determined the prognostic contribution of each clinical marker 

at the patient level and identified 114 key markers that accounted for 90% of the neural 

network’s decision process. Moreover, xAI enabled us to uncover 1,373 prognostic 

interactions between markers. Our approach was validated in an independent cohort of 3,288 

lung cancer patients from a US nationwide electronic health record-derived database. 

 

These results show the potential of xAI to transform the assessment of clinical parameters 

and enable personalized, data-driven cancer care.  
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Introduction 

 

Despite the vast amount of multimodal clinical data currently available for each patient in 

modern healthcare, the promise of personalized medicine has yet to be realized. Every year, 

numerous studies are published on individual prognostic markers in oncology. However, most 

of these single-marker studies do not provide sufficient insight into the complex interplay of 

patient- and tumor-specific variables that determine a patient’s prognosis.1 As a result, many 

of the proposed tools are not used in clinical practice or do not consider the patient’s entire 

clinical data reflecting the unique disease context.2,3 A promising strategy to overcome this 

limitation is to integrate clinical data from multiple sources, such as medical history, laboratory 

test results, imaging data, and omics analyses.1,4 Advances in machine learning and the 

increasing availability of digitally accessible data made it possible to model complex 

relationships between prognostic markers on a large scale.1,5–9 Together with recent methods 

for understanding the decision-making of such models, referred to as explainable artificial 

intelligence (xAI), this makes it possible to assess individual patient prognosis and unravel the 

contribution of each parameter.10–14 

In this study, we leveraged these advances by proposing an approach for decoding prognostic 

hallmarks based on large-scale real-world data. We modeled patient outcomes using a deep 

neural network and applied the xAI method layer-wise relevance propagation (LRP) to 

disentangle how each piece of clinical information contributed to an individual patient’s 

prognosis.5,12 Our dataset comprises multimodal data from 15,726 patients across 38 cancer 

entities undergoing systemic treatment. The data include clinical examination, laboratory tests, 

clinical records, computed tomography imaging (CT)-derived body composition, and genetic 

data. Until now, many existing clinical predictors have been cancer-entity specific and not 

designed to incorporate cross-cancer associations. However, genetic findings from pan-

cancer studies are challenging this strict classification. Available data suggest that similarities 

between patients extend beyond the histological tumor type, leading to an increasing number 

of basket trials that include patients with different cancer entities.15–20 

Training our deep-learning approach on a pan-cancer dataset enabled the neural network to 

learn prognostic relationships that extend across cancer entities. This facilitates the 

development of a comprehensive model that reveals clinically relevant biomarker signatures 

without any prior knowledge. As a result, our approach can aid clinicians in prioritizing critical 

patient-specific information and optimizing therapeutic strategies. At the cohort level, the 

modularity of our approach allowed us to assess how the importance of each clinical marker 

varied in different disease contexts and between arbitrary patient groups. A striking application 

is the development of explainable Kaplan-Meier (xKM) plots that illustrate the evolution of 

marker importance during disease progression. We confirmed the reproducibility and validity 

of this xAI approach on an external real-world dataset comprising 3288 lung cancer patients 

from a US nationwide, electronic health record-derived, de-identified database. 

 

The growing abundance and accessibility of real-world data is increasingly revealing its 

potential for clinical application, paving the way for more precise and personalized treatments. 

In this study, we move further and demonstrate the ability of xAI to decode patient outcomes 

and provide tailored treatment guidance based on multimodal real-world data. 
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Results 

 

 

Cohort definition. 

 

We retrospectively evaluated data from 150,079 cancer patients with available medical 

records treated at the West German Cancer Center of the University Hospital Essen, one of 

Germany's largest academic comprehensive cancer centers. Of these, 15,726 patients who 

received systemic cancer treatment between 1 April 2007 and 22 July 2022 (median: 

November 2016) were included in the final analysis (Suppl. Fig. 1). The most frequent cancer 

entities were lung cancer (n=4,320), sarcoma (n=1,578), and breast cancer (n=1,223; for 

details see Suppl. Table 1). Metastatic status (M status) was available in a structured format 

at baseline for 7,965 patients. Of those, 5,606 patients were treated for metastatic disease 

(M1), and 2,359 patients received systemic therapy for localized or locally advanced cancers 

(M0). In 5,395 patients, body composition was automatically assessed from abdominal CT 

images taken before treatment initiation.21,22 In total, we included 350 parameters in our 

analysis, consisting of different modalities and both patient- and tumor-specific parameters 

(see methods for a detailed description of the parameters). 

 

 
Figure 1: Overview of the xAI-based workflow for decoding treatment outcomes at the patient and cohort level. 

Following the collection of multimodal pan-cancer data, each patient’s risk score is predicted by deep learning and 

enables patient stratification. xAI then decomposes the patient risk into the individual contributions of each marker. 

This enables treatment guidance at the patient and cohort level. 
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Models trained on multimodal pan-cancer data accurately predict survival and 

treatment outcomes. 

 

Two neural networks were trained to predict overall survival (OS) and time-to-next-treatment 

(TTNT) for each patient based on their medical profile at the time of first in-house systemic 

treatment. We demonstrated the reliability of the neural networks by performing a five-fold 

cross-validation. For each fold, two neural networks were trained (80% of samples), validated 

(10% of samples), and tested (10% of samples) for the prediction of OS and TTNT, 

respectively. 

 

The survival model achieved an average concordance index (C-index) on the pan-cancer 

dataset of 0.762 (range across folds: 0.758-0.764) for OS prediction and 0.711 (range: 0.702-

0.718) for TTNT prediction across all cancer entities (Fig. 2A). When the model performance 

was tested independently for each cancer entity with at least 20 patients in each fold’s test 

set, the predictive performance varied. For OS, the highest C-index was achieved for ocular 

cancers (0.804, range: 0.771-0.860), while the highest C-index prediction of TTNT was 

achieved for rectal cancers (0.756, range: 0.644-0.800).  

 

Training models on the pan-cancer dataset, as opposed to exclusively training on single 

cancer entities, significantly improved model performance for both OS (mean C-index: 0.75 

vs. 0.72, p<0.001) and TTNT (mean C-index: 0.70 vs. 0.68, p<0.001). Only in melanoma 

patients, the mean results (mean C-index for OS: 0.74 vs. 0.75, mean C-index for TTNT: 0.69 

vs. 0.7, p-value>0.05) were better when the training was performed on the melanoma cohort 

compared to training on the pan-cancer cohort. The advantage of the pan-cancer model over 

the single-entity models was particularly striking for cancer entities with low patient numbers 

(Fig. 2A). This suggests that the pan-cancer model used prognostic information shared by 

different cancer entities to provide meaningful predictions even for patients with rare cancers. 

 

After training on a large and granular real-world pan-cancer dataset, both neural networks for 

predicting OS and TTNT were able to stratify patients from the test sets into distinct cross-

cancer risk groups (Fig. 2B). 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.12.23296873doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.12.23296873
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 
 

Figure 2: Prediction of prognosis following training on pan-cancer real-world data. 

A: Concordance index for predicting overall survival (OS) and time-to-next-treatment (TTNT) in five-fold cross-

validation. The dashed line indicates the prediction result over all cancer entities and folds. Box plots show 

prediction results for individual cancer entities with at least 20 patients in the test set of each fold after training the 

neural network on all cancer entities (red) or the specific cancer entity (yellow). Cancer entities are ordered from 

left to right by ascending patient numbers. 

B: Kaplan-Meier plots for overall survival and time-to-next-treatment in the pan-cancer dataset for patients of the 

combined test sets (7,861) patients. Patients were stratified into five risk groups according to the risk predicted by 

the neural network. 

 

 

xAI reveals the complex relationships between markers and prognosis. 

 

After developing reliable outcome prediction models, we applied xAI to unravel how clinical 

information of individual patients influences the neural networks in assessing prognosis. We 

chose the xAI method layer-wise relevance propagation (LRP) because it allows for the 

computation of robust explanations at low computational cost for individual patients.12 LRP 

computed for each patient the risk contribution (RC) of every clinical parameter, such as 

laboratory markers or comorbidities, to the predicted favorable or unfavorable outcome. This 

results in ‘AI-derived’ (AID) markers with two dimensions, the original marker value and its 

LRP-assigned RC. A positive RC indicates a contribution to an adverse outcome and a 

negative RC indicates a contribution to a favorable outcome. 

 

By analyzing the AID markers across all patients, it was possible to investigate how the neural 

network evaluated the relationship between the marker and its contribution to the patient’s risk 

(Fig. 3A). For example, increasing age and elevated CRP strongly contributed to predicting 
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an unfavorable prognosis. In contrast, high fT3, high PD-L1 TPS, and higher CT-derived 

abdominal muscle volume contributed to predicting a favorable prognosis. 

We validated the results for a subset of markers using external data from 3288 patients with 

non-small cell lung cancer (NSCLC) provided by Flatiron Health. Upon applying our approach 

to the external dataset, we found a strong correlation between the linearized slopes of RCs on 

the internal and external datasets (Pearson’s r=0.9, p<0.001, Suppl. Fig. 2). Thus, xAI 

predicted a comparable impact of markers on patient risk in both datasets. To confirm if the 

fundamental results of LRP matched conventional models, we examined the simplified 

linearized effect predicted by xAI against a standard Cox Proportional Hazards model. Our 

analysis revealed that the relationships computed on the internal and external datasets 

strongly correlated to the hazard ratios of each marker (internal dataset: Pearson’s r=0.93, 

p<0.001, external dataset: Pearson’s r=0.97, p <0.001, Suppl. Fig. 3).  

 

Notably, the RC of a marker varied widely even when different patients had the same marker 

value. By utilizing LRP, it becomes possible to explain some of the variance in RC by marker 

interactions (Fig. 3B). We observed how the RC of CRP varied depending on the values of 

additional ‘secondary’ parameters. Out of 8,294 examined marker pairs, 1,373 (16.6 %) 

showed significant interactions according to a mixed-effects model. For example, high CRP 

levels were assigned a high RC, particularly when platelet counts were low (Δ RC slopes: -

0.07, p<0.001). CRP had less influence on the predicted risk when the platelet count was high. 

While the prognostic significance of elevated CRP levels and platelet counts is known, the 

exact interaction has not yet been described.23 The impact of blood urea nitrogen (BUN) on 

the RC of CRP was less pronounced (Δ RC slopes: 0.03, p<0.001). Here, a higher CRP level 

was associated with a particularly high RC in patients with high BUN levels. In contrast, the 

RC of CRP was independent of aspartate aminotransferase (AST) (Δ RC slopes: -0.006, 

p=1.0). For results on TTNT, see Suppl. Fig. 4. 

 

The statistically significant interactions between the features present in the internal and 

external datasets showed a high level of similarity in the external dataset (Pearson's r=0.59, 

p=0.021. Suppl. Fig. 5). To confirm that the fundamental interaction results observed with xAI 

were consistent with conventional models, we examined the simplified linearized effect over 

the LRP-assigned RC against a mixed-effects Cox Proportional Hazards model. 

Here, the direction of interactions derived from xAI matched the interactions observed with the 

Cox regression models in the internal and external datasets (r=0.91, p=0.03 and r=0.69, 

p=0.009, Suppl. Fig. 6). Based on these results, we concluded that the LRP approach was 

highly reproducible across various datasets as well as consistent with established statistical 

models that simplify relationships. However, the xAI approach's full potential extends beyond 

this and enables nonlinear RC assignments for individual patients, taking into account their 

unique disease context.  
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Figure 3: Contribution of clinical markers to the prediction of OS.  

A: Marker risk contribution (RC) on the OS prediction. Each point represents one marker value for one patient 

versus the LRP-assigned RC (y axis) to the patient's prognosis. Marker values are standardized. 

B: The risk contribution of CRP depended on the value of other markers. The left plot shows the standardized CRP 

level and LRP-assigned RC for all patients. The right three plots depict the patients for whom the three selected 

markers platelet count, urea nitrogen, and AST were in the highest or lowest 10% quantile. 
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AI-derived (AID) markers for patient-level treatment guidance. 

 

AID markers, the combination of a marker value with its LRP-assigned risk contribution, 

enhance the clinical information available to healthcare professionals by incorporating the 

contextual risk associated with each marker. A ‘clinician's guide’ can clearly present the AID 

marker profile of individual patients. 

 

In Fig. 4, we show representative results that illustrate a potential real-world use case of the 

‘clinician’s guide’ for four different patients. In patient 1, age, BMI, body weight, and fT3 values 

contributed unfavorably to the overall prognosis, while the high lymphocyte and platelet counts 

were assigned a favorable (negative) RC. The patient's prognosis deteriorated with impaired 

breathing, aphagia, pain, and an advanced T and M stage. Among the different distant 

metastases, liver metastases were identified as particularly unfavorable compared to lung and 

bone metastases. Overall, the neural network therefore predicted a highly adverse outcome 

for this patient based on all available data. In patient 2, lymphocytopenia and older age 

particularly contributed to a poor prognosis. However, this patient had few comorbidities, with 

pleural effusion having the strongest unfavorable impact. The absence of liver metastases and 

the treatment with pembrolizumab were assigned a favorable RC, and the overall risk was 

considered intermediate. Notably, patient 3 had elevated CRP levels, which is conventionally 

associated with a potentially dangerous patient condition requiring increased monitoring. 

However, xAI does not consider this parameter to be detrimental in this particular case. As 

shown before, this may be due to this patient’s high platelet and low urea nitrogen levels. 

Patient 4 showed medium visceral adipose tissue (VAT), contributing favorably, and low 

subcutaneous adipose tissue (SAT), contributing adversely. With few comorbidities and no 

metastases, the overall prognosis was favorable. 
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Figure 4: Clinician’s guide showing the contribution of each marker to overall risk at the patient level. 

Representative results of four patients are presented. The x axis indicates the marker’s risk contribution towards 

higher (right/positive) or lower (left/negative) risk. Colors indicate the presence (black) or absence (white) of cancer 

entities, comorbidities, metastasis locations, and systemic treatment. For markers with ordinal or continuous scales, 

the point color indicates the marker value for the respective patient. For continuous markers, marker values are 

standardized. The predicted overall patient risk is displayed at the bottom. Body composition markers: Abdominal 

volumes of visceral adipose tissue (VAT), total adipose tissue (TAT), subcutaneous adipose tissue (SAT), 

intermuscular adipose tissue (IMAT), muscle, bone. 
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Evaluation of established scoring systems. 

 

Our results illustrated the limitations of single marker-based outcome prediction and 

emphasized the importance of prognostic parameters to be considered in the disease context 

characterized by other markers. In clinical routine, however, it is common to rely on a few 

scoring systems, such as the TNM stage, to assess prognosis and guide treatment. Based on 

these scoring systems, patients are usually rigidly categorized, regardless of fundamental 

differences such as sex, nutritional status, or comorbidities. 

 

To evaluate the dependency of a score on this disease context, we analyzed the correlation 

between the score and the LRP-assigned RC (Suppl. Fig. 7). For Eastern Cooperative 

Oncology Group performance status (ECOG PS) (r=0.87), M stage (r=0.92), and N stage 

(r=0.76), higher scores correlated with higher computed RC on average, indicating a 

consistent influence on the prognosis independent of other markers. The weak correlation of 

tumor grade (r=0.02) and T stage (r=0.07) with their RC suggested that they should be 

interpreted in the context of additional markers. 

 

 

Assessment of marker importance at the cohort level 

 

In a multimodal real-world dataset reflecting clinical care, there are expected to be both 

sideline markers of low prognostic relevance and critical markers that are highly relevant 

across patients. To measure the marker importance (MI) in a cohort, we calculated the 

absolute value of the RC in consistency with other methods in the field.13 We found that 90% 

of LRP scores were assigned to the 114 most important markers out of 350 (Suppl. Fig. 8A). 

Across all patients, the most important markers for the prediction of OS were C-reactive 

protein level (CRP, mean MI: 0.071), free triiodothyronine (fT3, mean MI: 0.066), ECOG PS 

performance status (mean MI: 0.061), M stage (mean MI: 0.058) and LDH (mean MI: 0.055, 

see Suppl. Fig. 9A). These results are consistent with previously reported findings.24–27  

 

Estimating the contribution of a particular comorbidity or intervention to a patient’s overall 

prognosis is difficult as each is a rare event. LRP can assess the influence of comorbidities, 

defined by ICD codes, and medical interventions, defined by the German operation and 

procedure classification system (OPS), in the disease context (Suppl. Fig. 10A). Due to the 

scarcity of each comorbidity, MI was not informative here, which is why we report the mean 

RC of affected patients. The comorbidities that contributed the most to the prediction of a poor 

outcome were pain (mean RC: 0.064), respiratory abnormalities (mean RC: 0.064), ascites 

(mean RC: 0.056), secondary malignant neoplasm of the respiratory or digestive tract (mean 

RC: 0.048), and pleural effusion (mean RC: 0.046). Notably, some diagnoses contributed 

favorably to the overall prognosis (e.g., heart failure, gastritis, and duodenitis). The 

interventions that were assigned the highest RC were ureteral stenting (mean RC: 0.074), 

which may indicate a stenotic process, and meningeal reconstruction (RC: 0.049). 

 

For results on TTNT, see Suppl. Fig. 8B, 9B, and 10B. 
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Cross-cohort comparison of prognostic markers. 

 

Model training on a pan-cancer dataset and sample-wise explanations obtained by LRP 

allowed us to investigate how the MI of a marker differed between patient subgroups (Fig. 5). 

In several cases, we confirmed well-established relationships between markers and cancer 

entities. 

 

In our results, CA19-9 had the highest MI in cancers of the small intestine, pancreas, and 

biliary tract.28,29 The presence of liver metastases was most relevant for cancers of the thyroid 

gland, rectosigmoid junction, and additional digestive tract cancers.30,31 Bilirubin emerged as 

an essential marker for liver, pancreatic, or biliary tract cancers, while fT3 and fT4 were most 

important in thyroid, testicular, and brain cancers.32–34 Prostate-specific antigen (PSA) had the 

highest MI in prostate cancer, followed by the locally adjacent entities bladder and testicular 

cancer. Abdominal muscle volume, as determined by CT-based body composition analysis, 

was most impactful in vulvar, uterine, and testicular cancers. HbA1c was most important in 

cancers of the pancreas, the liver, and in melanoma. The tumor marker CEA had the highest 

MI in cancers of the rectosigmoid junction, the colon, and the thyroid, while the ECOG PS was 

particularly important for pancreatic, prostate, and liver cancers. Interestingly, AST had very 

high MI for urethral cancer, followed by liver and ocular cancer (mainly uveal melanoma). 

 

For results on TTNT, see Suppl. Fig. 11. 
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Figure 5: The relationship between mean marker importance (MI) of selected markers and cancer entities. The x 

axis shows the MI on a logarithmic scale. The three cancer entities with the highest marker MI are annotated for 

each marker. Body composition markers: Abdominal volumes of visceral adipose tissue (VAT), total adipose tissue 

(TAT), subcutaneous adipose tissue (SAT), intermuscular adipose tissue (IMAT), muscle, bone. ECOG PS had the 

highest MI in pancreatic, prostate, and liver cancers, whereas fT3 was particularly important for thyroid, testicular, 

and brain cancers. 

 

 

Explainable Kaplan-Meier plots (xKM) visualize the evolution of marker importance 

during disease progression. 

 

Having examined the cancer entity-specific impact of markers on prognosis, we further 

explored their varying importance for prognostication during disease progression. Ordering 

the deceased patients according to OS, we could follow the LRP-assigned marker importance 

along a pseudo timeline and observed distinct changes over the course of treatment (Fig. 6). 

ECOG PS, CRP, and LDH levels were highly prognostic markers throughout disease 

progression across all cancer entities. The prognosis of patients with a short OS was strongly 

influenced by total serum protein concentration, which may reflect the relevance of organ 

dysfunction at this stage of the disease, particularly of the liver and kidneys. The coagulation 

parameter prothrombin time and oxygen saturation were highly prognostic in patients with long 

OS but contributed much less to the prognosis of patients with short OS. M stage had an 

overall decisive marker importance, which decreased for disease stages with short OS. 

 

Our modular approach allowed us to generate explainable Kaplan-Meier (xKM) plots of patient 

subgroups with different prognoses. We identified parameters that separated prognostic 

subgroups in a given cancer entity. In lung cancer, arterial oxygen saturation had the highest 

MI for most patients, but for patients with short survival protein expression and CRP became 

even more critical. Metastasis (M stage) generally had higher MI than lymph node metastasis 

and tumor stage. Interestingly, the importance of metastasis decreased during disease 

progression and was overtaken by T stage and N stage in patients who survived only a few 

months. LDH had exceptionally high MI in testicular cancer and melanoma, which is well 

known in the literature.35,36 The MI of the latter increased during disease progression. In the 

liver, the MI of AST, total protein, GGT, prothrombin time, and LDH increased during disease 

progression. ALT was less important for patients who survived more than one year. 

 

Next, we examined the prognostic impact of cancer-specific biomarkers (Suppl. Fig. 12). PD-

L1 TPS was the most important cancer-specific marker for lung cancer prognosis, which aligns 

with the efficacy of immune checkpoint inhibitor therapy.37 In head and neck cancer, the tumor 

marker SCC had a high marker importance that increased during disease progression. In liver 

cancer, the tumor marker AFP was of high MI throughout disease progression, but CA19-9 

and CA125 became more important towards the end of life. 

 

xKM plots for OS can be viewed interactively online at xkaplanmeier.streamlit.app. 

 

For results on TTNT, see Suppl. Fig. 13 and Suppl. Fig. 14. 
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Figure 6: Explainable Kaplan-Meier (xKM) plots depicting the importance of diagnostic markers during disease 

progression. Black lines represent Kaplan-Meier plots, while the colored lines visualize the change in marker 

importance (MI) for patients with different survival times. MI lines are scaled between zero and one. Only deceased 

patients were included in this analysis. 
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Discussion 

 

Personalized medicine requires a comprehensive characterization of individual patients, which 

cannot be achieved by conventional scoring systems based on limited sets of markers.1,4 

Despite the extensive routine diagnostic data available for each patient, current clinical tools 

only include small subsets of these parameters in a limited number of cancer entities.2,3 

Previous studies have started to show the potential of utilizing multimodal data to predict 

individual patient prognosis using public databases.7,8,17 In this study, we utilized multimodal 

routine clinical data from 15,726 patients with solid cancers undergoing systemic treatment at 

a large comprehensive cancer center to uncover the complex mechanisms that determine a 

patient’s prognosis. By incorporating a wide range of parameters and cancer entities, we 

developed powerful prognostic models for OS and TTNT prediction. We found that the models 

benefited from training on patients of both the same and different cancer entities, resulting in 

the successful stratification of patients into cross-cancer risk groups. This is consistent with 

the growing trend to guide treatment based on predictive biomarkers across cancer entities.18–

20 Using xAI, our study provided a comprehensive understanding of the factors contributing to 

a treatment outcome. Without using any prior knowledge, xAI characterized how each patient’s 

prognosis was determined by their individual marker profile and identified CRP, fT3, M status, 

and ECOG performance status as the most important factors across all patients. While xAI 

methods have already demonstrated their reliability for various tasks in and outside of the 

medical field, we have verified our results on an independent cohort of NSCLC patients. Our 

results showed excellent reproducibility between datasets and were highly consistent with 

conventional methods. 

 

In the medical domain, xAI has previously been applied to validate the model performance or 

assess feature importance across cohorts.17,22,38 Few studies have made use of patient-wise 

xAI explanations.17 Here, we built on xAI to contextualize complex multimodal patient data and 

systematically reveal the underlying mechanisms driving a patient’s disease progression. We 

leveraged the potential of xAI for patient-level explanations and developed AI-derived (AID) 

markers with dual dimensions, the original marker value and the xAI assigned risk contribution. 

This approach has practical implications, as it can guide clinicians in identifying patient 

characteristics that contribute most to adverse outcomes and therefore require special 

attention. The application is not limited to cancer patients and may be particularly interesting 

in emergencies where rapid treatment decisions are critical. By systematically comparing 

these AID markers among patients, we found that the marker importance varied widely across 

cancer entities and during disease progression, which we visualized using explainable Kaplan-

Meier (xKM) plots. Our findings show that prognostic associations are not static and that 

different markers may be critical depending on the cancer entity and the individual disease 

setting. Prognostic tools based on predefined parameters and assessment criteria are 

therefore insufficient to capture the complex prognostic relationships and may lead to 

inaccurate prognostic estimates. In contrast to traditional statistical methods, xAI can build on 

all available data to assess the complex setting of individual patients. In clinical practice, 

medical data from various sources, including multi-omics data, are becoming more widely 

accessible for research purposes.4,39 xAI methods can be a viable solution to facilitate data 

analysis for routine clinical care and research, provided that common pitfalls are addressed. 

 

Confounding is one of the most common challenges in retrospective real-world data analysis. 

We aimed to reduce confounding effects caused by correlating input features by applying 
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dropout regularization not only to the neural network weights but also to the input.40 In a real-

world data setting, confounding can also be introduced by documentation. For instance, 

gastritis or duodenitis are not expected to positively impact the patient’s prognosis. However, 

the documentation of these non-cancer comorbidities may have suggested the absence of an 

acute life-threatening condition. Also, selection bias should be considered in real-world data 

studies. In this proof-of-concept study, we enrolled only patients receiving systemic cancer 

therapy. While this cohort provides well-structured treatment data, it is more likely to include 

patients with advanced disease. Particular caution is also needed when interpreting the RC 

assigned to the different treatments, as the non-randomized selection of treatments may lead 

to statistical bias.  

In clinical trials, randomization prevents certain forms of confounding and bias. Real-world 

studies combined with xAI will therefore not replace RCT but may generate new data-driven 

hypotheses and inform RCT design.41 Due to the versatility of our approach, it can be applied 

to virtually any dataset containing clinical parameters and endpoints in future studies. Further 

image, text, or omics data could be integrated seamlessly. Since it is not limited to real-world 

data, RCT designed for specific clinical settings could also directly integrate our xAI 

framework.  

 

In summary, we demonstrate a novel xAI-based approach for large-scale multimodal data 

analysis of prognostic relationships in a real-world setting. Given the increasing influence of 

multi-omics and image data on patient management and therapy selection, xAI approaches 

hold great potential for precision medicine. 
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Methods 

 

 

Study design: 

 

Electronic health records from 150,079 cancer patients treated at University Hospital Essen 

were retrospectively evaluated. Of these, we included 15,726 patients who underwent 

systemic cancer treatment at University Hospital Essen between 1 April 2007 and 22 July 

2022 in this study. Overall survival (OS) was defined as the time from initiation of systemic 

treatment to death from any cause. Time to next treatment (TTNT) was defined as the time 

from initiation of systemic treatment until initiation of next line of systemic treatment or death 

from any cause. Patients for whom no date of death was available were censored at the date 

of the last follow-up. The study was approved by the Ethics Committee of the Medical Faculty 

of the University of Duisburg-Essen (No. 21-10347-BO). 

 

 

Data acquisition: 

 

All medical data were retrieved from the smart hospital information platform (SHIP) of 

University Hospital Essen. In SHIP, medical data is stored in FHIR format and can be collected 

based on specific queries. The various subsystems at Essen University Hospital, e.g., for 

laboratory values or electronic medication administration, automatically transfer the data to 

SHIP. First, all patients with solid tumors were collected based on ICD codes (C00-C75). Then, 

patients who received intravenous or oral cancer treatment documented in SHIP were 

selected. Further inclusion criteria were: Initiation of systemic therapy since 1 April 2007 and 

a minimum age of 18 years at the initiation of cancer treatment. A detailed overview of the 

patient enrollment process can be found in the supplementary material (Suppl. Fig. 1). 

 

For the resulting cohort of 15,726 patients, further clinical data were retrieved from SHIP. To 

ensure a balance of the most recent data with the fewest missing values in our dataset, we 

defined different time windows for querying the parameter sets relative to the start of systemic 

cancer treatment. Listed below are all of the queried parameter sets used to create our 

dataset, along with the time windows where applicable: 

 

● Systemic cancer treatment (first recorded in SHIP): For each patient, the substances 

of the first line of therapy administered in our cancer center were retrieved. The data 

originate from our electronic medication administration system. In total: 48 parameters. 

 

● Demographics: Age, sex, height (in total: Three parameters) 

 

● Body composition (max. two months before treatment): In addition to weight and BMI, 

we included abdominal body composition, which was automatically obtained from CT 

images, to accurately assess the physical condition of patients. We retrieved 

abdominal CT images with a maximum interval of two months before treatment 

initiation and used a deep learning model to automatically measure muscle, bone, and 

different fat volumes (subcutaneous, visceral, intermuscular, and total adipose 

tissue).21 The collected markers were divided by the number of abdominal CT slices to 

ensure patient comparability. In total: Eight parameters. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.12.23296873doi: medRxiv preprint 

https://www.zotero.org/google-docs/?lf8dFL
https://doi.org/10.1101/2023.10.12.23296873
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

● Cancer entity (C0-75): For each patient, exactly one cancer entity was queried for 

which they were receiving treatment. In total: 60 parameters 

 

● Prior diagnoses (any before treatment): We selected all ICD-10 codes (except C0-C75) 

that were present in at least 200 patients. In total: 68 parameters 

 

● Prior medical interventions (any before treatment): We used the German operation and 

procedure classification system (OPS) to identify prior medical interventions. We 

selected all OPS codes that were present in at least 200 patients. In total: 50 

parameters 

 

● Staging (max. one year before treatment): T, N, and M status were obtained from tumor 

board documentation. In total: Three parameters 

 

● Metastasis localization (any before treatment): Tissue affected by metastasis, if any. 

In total: Nine parameters 

 

● Clinical parameters (max. two weeks before treatment): Oxygen saturation, body 

temperature, heart rate, systolic and diastolic blood pressure. In total: Five parameters 

 

● ECOG PS (max. three months before treatment): ECOG PS was obtained from tumor 

board documentation. In total: One parameter 

 

● Laboratory parameters (max. two weeks before treatment): We selected all parameters 

that were present in at least 20% of patients (62 parameters), plus nine others (mainly 

tumor markers) that we considered particularly relevant for subgroups. In total: 71 

parameters 

 

● Pathology: Cancer subtype beyond ICD-10 classification, histologic tumor grade, 

immunohistochemical results, and somatic tumor mutations. In total: 22 parameters 

 

● Smoking status: Smoking status (smoker/ non-smoker) and, if available, pack-years of 

smoking. In total: Two parameters 

 

The endpoints OS and TTNT were automatically extracted from SHIP. 

 

 

Data preprocessing: 

 

Outliers, defined as >3 standard deviations from the mean, were removed for continuous 

parameters. Continuous parameters were prestandardized to zero mean and unit variance. 

Categorical scores were encoded on an ordinal scale (e.g., ECOG PS as 0-4, metastasis as 

0-1). Diagnoses (ICD codes), cancer entities, interventions (OPS codes), and systemic cancer 

treatments were one-hot encoded (0=not present, 1=present). This resulted in a total of 350 

parameters for the final dataset. For further analysis and description of differences between 

cancers, the cancer representations were summarized into more general cancer entities 

(Suppl. Table 1). To account for missing values while simultaneously keeping the ability to 
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explain the present clinical markers, we applied feature expansion: 𝑥 →  (𝑥, 1 − 𝑥). Missing 

values were set to (0,0).42 This has been used previously in comparable biomedical 

settings.43,44 Feature expansion was only applied to features that had missing values. There 

were no missing values for ICD and OPS codes, systemic treatments, cancer diagnoses, age, 

and sex. 

 

 

External Flatiron Health dataset: 

 

This study used the nationwide Flatiron Health electronic health record (EHR)-derived de-

identified database. The Flatiron Health database is a longitudinal database, comprising de-

identified patient-level structured and unstructured data, curated via technology-enabled 

abstraction.45,46 During the study period, the de-identified data originated from approximately 

280 cancer clinics (~800 sites of care). The study included 3,288 patients diagnosed with 

advanced non-small cell lung cancer (NSCLC) from 01 January 2011 to 10 November 2022. 

The majority of patients (82.7%) originate from community oncology settings. The data are de-

identified and subject to obligations to prevent re-identification and protect patient 

confidentiality. Patients with a birth year of 1937 or earlier may have an adjusted birth year in 

Flatiron datasets due to patient de-identification requirements.  

 

For subsequent analysis in this study, extreme outliers were discarded manually before 

outliers, defined as >3 standard deviations from the mean, were removed for continuous 

parameters. Further preprocessing of the data was performed analogously to the internal 

dataset. This resulted in a total of 18 parameters for the final validation dataset. 

 

 

Model architecture: 

 

To model treatment outcomes, we used the coxph architecture similar to DeepSurv and the 

training regime from the pycox survival library.5,47 

 

Each parameter (potentially feature-expanded) was used as an input to a fully connected 

neural network with one hidden layer and a hidden width of 10 times the input neurons. 

Thus, we decided to follow an early-fusion approach since (1) all markers are 1-dimensional 

and reasonably independent from each other (unlike, for example, pixels of an image or DNA 

sequences used in other studies) and (2) early fusion is particularly suitable for allowing 

interactions between markers.48 

 

 

Model Training: 

 

Using five-fold cross-validation, we trained, for each fold, two neural networks (OS, TTNT) on 

80% of the data to predict the proportional hazard risk score for the overall survival (OS) and 

time to next treatment (TTNT), respectively. We used the training algorithm supplied by the 

pycox library.47 The remaining 20% of data was split randomly into a validation set (10%) to 

early-stop the model and a test set (10%) for the computation of the concordance index. 

Cancer entities were balanced between training and validation/test sets for each fold. 
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Models were trained for up to 50 epochs with a learning rate of 0.01 using the Adam optimizer. 

We used the default early stopping algorithm supplied by pycox. After the training process was 

early stopped, the learning rate was reduced to 1/10 of the previous learning rate and the 

model was trained for another 50 epochs. This was repeated down to a learning rate of 1e-4. 

We used a dropout rate of 0.5 and a batch size of 1024. To reduce the effect of correlations 

between input parameters on the relevance explanation, we applied input dropout at a rate of 

0.5 during training.40 The concordance scores between predicted risk and ground truth were 

calculated for each fold using the pycox library. The identical training, validation, and test splits 

were used when neural networks were trained on individual cancer entities compared to 

training on the pan-cancer dataset to ensure comparability. Concordance results were 

discarded if the test set consisted of less than ten samples or if the test samples did not have 

at least five events. 

 

 

Explaining ML Predictions: 

 

To explain the model’s predictions, we used layer-wise relevance propagation (LRP), a 

method for xAI that leverages the neural network structure of the model to compute 

explanations robustly and efficiently.12 LRP starts with the prediction (the value obtained at the 

output of the neural network) redistributes it backwards, layer after layer, by means of 

propagation rules, and collects the explanation in the input layer. A physical analogy to the 

LRP propagation is water flowing through a network of pipes. In this physical network, the 

amount of water injected at the output equals the amount observed at the input. 

 

More formally, let j and k be indices for neurons in two consecutive layers and 𝑎𝑗 and 𝑎𝑘 be 

their respective activations. In a typical neural network, including the DeepSurv network 

considered in this work, two consecutive layers are related generically by the equation: 

 

𝑎𝑘 = ⍴(∑

0,𝑗

𝑎𝑗𝑤𝑗𝑘) 

 

In this equation, the sum runs over all neurons in the given layer plus a neuron with constant 

activation 𝑎0 = 1. The variable 𝑤𝑗𝑘 is the weight connecting neuron 𝑗 to neuron 𝑘. We then 

backpropagate using the generalized LRP-gamma rule, similar to previous works.43,44 This rule 

propagates from one layer to the layer below using the equation: 

 

𝑅𝑗 =  ∑𝑘
𝑎𝑗⁺.(𝑤𝑗𝑘 + 𝛾𝑤𝑗𝑘⁺)+ 𝑎𝑗⁻.(𝑤𝑗𝑘 + 𝛾𝑤𝑗𝑘⁻)

∑0,𝑗 𝑎𝑗⁺.(𝑤𝑗𝑘 + 𝛾𝑤𝑗𝑘⁺)+ 𝑎𝑗⁻.(𝑤𝑗𝑘 + 𝛾𝑤𝑗𝑘⁻)
⋅ 1𝑎𝑘>0  ⋅ 𝑅𝑘  +

 ∑𝑘
𝑎𝑗⁺.(𝑤𝑗𝑘 + 𝛾𝑤𝑗𝑘⁻)+ 𝑎𝑗⁻.(𝑤𝑗𝑘 + 𝛾𝑤𝑗𝑘⁺)

∑0,𝑗 𝑎𝑗⁺.(𝑤𝑗𝑘 + 𝛾𝑤𝑗𝑘⁻)+ 𝑎𝑗⁻.(𝑤𝑗𝑘 + 𝛾𝑤𝑗𝑘⁺)
⋅ 1𝑎𝑘<0  ⋅ 𝑅𝑘  

 

where (. )+ =  𝑚𝑎𝑥(0, . ) and (. )− =  𝑚𝑖𝑛(0, . ), and where 𝛾 is a parameter that needs to be 

selected. Here, we used the heuristic 0.01 which worked well in other applications.44 Applying 

the rule at each layer, starting at the top layer and moving backwards until the input layer, we 

obtain in the last step the contribution of each input feature to the prediction. For expanded 

features, the final LRP score is calculated as the sum of the LRP scores assigned to the tuple 

(x, 1-x). 
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We treated the LRP score assigned to a specific input as the risk contribution (RC) of this 

marker to the overall patient prognosis (OS or TTNT). The ‘marker importance’ of a marker 

across all patients was defined as the sum of the absolute LRP scores divided by the number 

of patients for whom this marker was not missing. To calculate the marker importance in a 

subcohort (e.g., patients of a single cancer entity), LRP scores were first centered by 

subtracting the cohort mean. 

 

 

Statistics: 

 

The statistical analyses were conducted in R statistical packages.49 All tests were two-sided 

and results were regarded as significant if p<0.05. Model performance (Fig. 2) was compared 

using Wilcoxon ranked test in the package Hmisc.50 

Linear regression was applied to fit relationships between marker values and their 

corresponding xAI-assigned RC for the internal and external datasets, respectively. 

Subsequently, the slope coefficients of these models were compared between the internal and 

external datasets. 

 

The search for interactions between markers was quantified by comparing linear mixed-effects 

models with baseline models. For each marker pair, the relationship between the ‘primary’ 

marker and the RC was examined under the two conditions when the ‘secondary’ marker was 

high (highest 10%) or low (lowest 10%). For categorical parameters, category levels were 

selected so that at least 10% of the samples were members of the high or low class, 

respectively. Medications, ICD codes, OPS codes, and cancer types were excluded from this 

analysis due to unbalanced levels. Marker pairs that were present in less than 100 samples 

were discarded. Holm’s multiple test correction was applied. 

 

To validate marker relationships of higher complexity, we examined marker pairs that were 

found in the internal and external datasets. The difference in model coefficients between ‘high’ 

and ‘low’ classes was compared between both datasets. This analysis was restricted to 

markers that were present in both datasets. For the simple linear model, the baseline was a 

model consisting of the intercept only. For the mixed effects linear model, the baseline 

consisted of a linear model with a fixed slope and a random intercept. 

 

Additionally, these relationships between marker values and RC were compared with the 

coefficients (i.e., hazard ratios) of univariate Cox proportional hazard models that predicted 

survival based on the respective markers. A mixed-effects variant of Cox proportional hazards 

models was used to validate the mixed-effects case. Cox models were discarded if they had 

a lower log-likelihood than their baseline models, but did not have to be significant to be 

included in the comparison. 

 

Cox proportional hazards models were implemented with the Survival package.51 The mixed-

effects variants of this analysis were modeled using the coxme package.52 Other mixed-effects 

models were implemented with lme4.53 
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Figures: 

 

Kaplan-Meier plots were computed with the R package survival.54 Fig. 1 was created with 

BioRender.com. All other plots were created with ggplot2.55 For Fig. 2, only cancer ICD codes 

were selected for which there were at least 20 patients in each fold’s test set. For cancers with 

fewer patients, the training on only the specific cancer ICD code (for comparison against 

training on all cancer entities) became unstable. For Fig. 2B, patients from the test sets were 

stratified based on the models trained and validated on training and validation sets. This was 

repeated for each fold. 

 

Fig. 3 shows marker values and corresponding RC for all patients. 

 

Fig. 4 shows a selection of features for selected patients. 

 

Fig. 5 and Suppl. Fig. 11 only show cancer entities for which the respective marker has been 

measured in at least 20 patients. 

 

Fig. 6 and Suppl Fig. 12-14: Basis of the xKM plot is a conventional Kaplan-Meier plot, 

including all patients who were not censored. For each marker, the marker importance curve 

was added by calculating a regression line through the marker importance score for each 

event. The xKM plots were limited to a 2-year time window for better visualization. To make 

the results more robust, only markers measured in at least 40 patients are shown. 

 

Suppl. Fig. 2 shows the coefficients of the linear models between marker values and RC and 

compares them between the internal and external datasets.  

 

Suppl. Fig. 3 compares the coefficients from Suppl. Fig. 2 to the coefficients fitted in the Cox 

proportional hazards scores. 

 

Suppl. Fig. 4 shows marker values and corresponding RC for all patients. 

 

Suppl. Fig. 5 is similar to Suppl. Fig. 2, but instead of showing linear model coefficients, it 

shows the difference in random effect coefficients between high and low ‘secondary markers’. 

The labels X->Y indicate the difference in the influence of marker Y on the prognosis when 

the ‘secondary marker’ X is high versus low.  

 

Suppl. Fig. 6 is similar to Suppl. Fig. 3, but instead of showing linear model coefficients, it 

shows the differences in random effect coefficients between high and low ‘secondary markers’. 

The labels X->Y indicate the difference in the influence of marker Y on the prognosis when 

the ‘secondary marker’ X is high versus low. 

 

Suppl. Fig. 7 only shows cancer entities for which each marker was measured in at least 20 

patients. In addition, a marker value (e.g., ECOG score of 3) was discarded if no other patient 

in the same cancer entity had the same value for that marker. 

 

Suppl. Fig. 8 shows the importance of each marker across all patients. The markers had to 

be measured in at least 20 % of the cancer entities in at least 10 % of the patients. Otherwise, 

they were presented in a transparent font. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.12.23296873doi: medRxiv preprint 

https://www.zotero.org/google-docs/?YxekiB
https://www.zotero.org/google-docs/?xcxH0Z
https://doi.org/10.1101/2023.10.12.23296873
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Suppl. Fig. 9 shows the importance of the 70 most important markers across all patients. 

Rare and particularly tumor-specific markers were discarded in this overview according to the 

following threshold: Markers had to be measured in at least 20% of cancer entities in at least 

10% of patients. This analysis does not include information about ICD and OPS codes or 

systemic treatments. 

 

Suppl. Fig. 10 shows the RC of ICD and OPS codes. Markers are ordered from top to bottom 

by decreasing mean RC and only the first 70 markers are shown.  
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