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Abstract 

 

Heart failure (HF) is a major public health problem. Early identification of at-risk 

individuals could allow for interventions that reduce morbidity or mortality. The 

community-based FINRISK Microbiome DREAM challenge (synapse.org/finrisk) 

evaluated the use of machine learning approaches on shotgun metagenomics data 

obtained from fecal samples to predict incident HF risk over 15 years in a population 

cohort of 7231 Finnish adults (FINRISK 2002, n=559 incident HF cases). Challenge 

participants used synthetic data for model training and testing. Final models 

submitted by seven teams were evaluated in the real data. The two highest-scoring 

models were both based on Cox regression but used different feature selection 

approaches. We aggregated their predictions to create an ensemble model. 

Additionally, we refined the models after the DREAM challenge by eliminating 

phylum information. Models were also evaluated at intermediate timepoints and 

they predicted 10-year incident HF more accurately than models for 5- or 15-year 

incidence. We found that bacterial species, especially those linked to inflammation, 

are predictive of incident HF. This highlights the role of the gut microbiome as a 

potential driver of inflammation in HF pathophysiology. Our results provide 

insights into potential modeling strategies of microbiome data in prospective cohort 

studies. Overall, this study provides evidence that incorporating microbiome 

information into incident risk models can provide important biological insights into 

the pathogenesis of HF.  
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1. Introduction 

Cardiovascular diseases (CVD) are the leading cause of death worldwide 1. Despite 

significant advancements in medical therapies, heart failure (HF), a heterogeneous 

condition characterized by the heart's inability to pump a sufficient supply of blood, 

remains a common manifestation of CVD. According to recent estimates, more than 

64 million people worldwide have HF and the average 5-year mortality rate 

worldwide is estimated to be over 55% 2. Many HF patients are diagnosed during 

acute care despite the presence of preceding symptoms 3. The early identification 

of individuals at risk prior to HF onset could allow for early intervention and the 

subsequent reduction of adverse events including hospitalization, morbidity, and 

mortality.  

 

Analysis of multiple markers across various omics platforms has provided new 

opportunities to investigate the underlying factors and physiological processes 

involved in HF, particularly in the context of exploring potential biomarkers 4. In 

particular, the human gut microbiome, which comprises trillions of 

microorganisms residing in the gastrointestinal tract, is increasingly recognized as 

an important modulator of various aspects of human health and disease 5–10. The gut 

microbiome has been suggested as crucial in the pathophysiology of HF 11–14, where 

it has been shown to impact several mechanisms involved in development and 

progression, including inflammation, oxidative stress, and endothelial dysfunction 
15,16. While associations between gut microbiome composition and HF have been 

reported in cross-sectional studies 14,17,18, prospective population-level studies on the 

gut microbiome and incident HF have been lacking. An improved understanding of 

these prospective associations can support early identification of high-risk 

individuals.  

 

Community challenges have proven to be a successful strategy for assessing the 

solvability of bioinformatic problems, identifying best practices, and optimizing 

predictive features and machine learning models 19,20. The recently held Preterm 

Birth Microbiome Prediction DREAM Challenge 20 focused on utilizing vaginal 
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microbiome data from nine studies to predict both preterm and early preterm 

births. The prominent predictive factors encompassed alpha diversity, community 

state types, and composition. To further explore the potential of microbiome data 

in predictive health research, we implemented the Heart Failure Prediction: 

Microbiome-FINRISK DREAM Challenge to use a community challenge approach 

to investigate whether the microbiome can predict HF incidence in a prospective 

population survey of Finnish adults (FINRISK 2002) 21.  

 

This challenge provides an avenue for evaluating different modeling approaches of 

microbiome data in incident risk predictions. Overall, the best-performing models 

identified during the challenge highlight strategies for incorporating microbiome 

data in HF risk prediction and provide insights into the possible connections 

between the gut microbiome and HF. Notably, the co-abundance network approach 

outperformed other microbiome feature engineering techniques. Taken together, 

these findings suggest that microbiome data may offer added value to complement 

conventional risk factors and aid in identifying individuals with a high risk of 

developing HF. 

 

2. Results 

2.1 Baseline characteristics and heart failure incidence 

Of the 7231 individuals in FINRISK 2002 (Figure 1A), 162 (2.2%) had HF at baseline, 

and another 559 (7.73%) experienced HF during the ~15-year follow-up period. The 

mean age of the population was 49.5±13.0 years and 44.9% were men (Table 1). The 

dataset was randomly divided into three sets: training (n=3615, 50%, n HF=275), 

testing (n=1807, 25%, n HF=131), and scoring set (n=1809, 25%, n HF=153) (Figure 1C). 

We confirmed that these groups had a similar microbial taxonomic composition 

(Figure 1B). 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.12.23296829doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.12.23296829
http://creativecommons.org/licenses/by-nc/4.0/


 

Table 1. Overview of the National FINRISK 2002 Cohort 

 

Variable Total 

Incident Heart Failure 

P-value* Yes No 
Number 7231 559 6556  
Men 3248 (44.9%) 293 (52.4%) 2909 (44.4%) 0.00028 

Baseline age, years 49.5 (13) 61.9 (9) 48.4 (12.7) 4.2e-125 
Body Mass Index, 
kg/m2 27.01 (4.69) 29.69 (5.05) 26.78 (4.58) 2.7e-43 
Systolic Blood 
Pressure, mmHg 135.81 (20.33) 149.22 (21.93) 134.69 (19.71) 9.9e-54 
Non HDL Cholesterol, 
mmol/L   4.09 (1.09) 4.29 (1.07) 4.07 (1.08) 3.8e-06 
Current smokers 1687 (23.3%) 113 (20.2%) 1545 (23.6%) 0.085 
Taking Blood Pressure 
Treatment 1129 (15.6%) 213 (38.1%) 900 (13.7%) 6.1e-42 
Diabetes at baseline 407 (5.6%) 85 (15.2%) 322 (4.9%) 6.2e-18 
Coronary Heart 
Diseases at baseline 205 (2.8%) 48 (8.6%) 157 (2.4%) 2.3e-12 
Heart Failure at 
baseline 162 (2.2%) NA NA NA 
 

Data are presented as n (%) (n of participants in indicated category and 
percentage of total) or mean (SD). 
*Mann-Whitney U test was used for numeric data; Fisher exact test was 
used for categorical data. 
 

 

2.2. DREAM challenge model performance 

To identify optimal modeling strategies for microbiome-based risk prediction in 

prospective cohort studies using machine learning (ML) approaches, we designed 

and initiated an open DREAM community challenge (Figure 1C, 

https://www.synapse.org/finrisk). The challenge participants developed their 

prediction models using the synthetic training dataset (Figure 1C, Supp. Figure 1A-
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B, Supp. Table 1). During the submission phase, participants could submit up to five 

models for hyperparameter tuning, which were conducted based on feedback 

provided to participants as challenge organizers evaluated their models on real 

testing datasets. The final models were then submitted and the challenge organizers 

evaluated them in the real scoring data set during the scoring phase. There were 187 

registered participants and ten teams submitted models in the submission phase 

(Supp. Table 2) and seven teams submitted final models for evaluation (Figure 1, 

Supp. Table 3). The performance of the final models was evaluated during the 

scoring phase in a real FINRISK scoring dataset that was not accessible to 

participants. Harrell's C-index was comparable between the four highest-scoring 

teams in the scoring phase (Supp. Table 3). Out of these, two models achieved 

calibration comparable to our baseline models (Figure 2, Supp. Figure 2).  

 

A schematic overview of the two top-performing models is provided in Figure 3. 

Both best-scoring models used variations of a regularized Cox proportional hazards 

model. DenverFINRISKHacky (DFH) team's final model achieved a Harrell's C-

index of 0.8271 and SB2 team's model performed slightly better, yielding a Harrell's 

C-index of 0.8344 (Figure 2A, Supp. Table 3). The most informative variables for 

both models are presented in Fig 2D and Supp. Table 4.  

 

The DFH model provided limited ability to interpret the importance of individual 

features, due to the implementation of variable transformations and non-linear 

feature combinations. Therefore, we focused our interrogation of the biology 

represented by the features in the SB2 model (Fig 2D, Supp. Table 4). The SB2 model 

selected 11 phyla including Crenarchaeota, Bacteroidetes, Verrucomicrobia, 

Chrysiogenetes, and Proteobacteria and eight co-abundance networks that were 

identified as relevant for HF risk prediction (Supp. Table 4-5). Notably, the 

microbiome features that showed the highest association coefficient with HF were 

Crenarchaeota, Chrysiogenetes, network 1, and 6 (Supp. Table 5, Supp. Figure 3-4). 

It should be noted that Crenarchaeota and Chrysiogenetes which have been 

infrequently observed in gut microbiome studies, were identified with relatively low 

read counts in our samples (Supp. Figure 5). This underscores the importance of 
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further verifications, especially related to potential limitation that arises when rare 

taxa are either improperly filtered or when computational methods were employed 

for microbiome feature selection in data-driven models without considering prior 

knowledge.  

 

Network 6 exhibited a diverse composition, containing ten species from the class 

Clostridia, five from Erysipelotrichia, and two from Coriobacteriia (Supp. Table 5). 

Species from Clostridia class (e.g Clostridium citroniae, Clostridium asparagiforme, 

Hungatella hathewayi) have been linked with the production of trimethylamine N-

oxide (TMAO), a compound that is likely connected to the intake of red meat, eggs, 

and fatty dairy products 22,23, and has been previously linked with cardiovascular 

diseases 24,25. Network 6 also contains Clostridium bolteae and Clostridium citroniae, 

which has been positively associated with inflammatory signals 17,26,27 and associated 

with type 2 diabetes (T2D) 28,29. Additionally, network 6 also contained opportunistic 

pathogens, such as Hungatella hathewayi, Clostridium ramosum, Clostridium symbiosum, 

and Eggerthella lenta 28. Network 1 (Supp. Table 5) contained 10 species from the class 

Coriobacteriia. Among them, Collinsella genera abundance has been associated with 

T2D 30, and in overweight and obese pregnant women 31. 

 

2.3 Model refinement 

As phylum level information introduces redundancy with higher resolution 

taxonomic level (Supp. Table 4), we also ran the model without phylum information 

(SB2 refined model). This slightly improved the performance and fit of this model 

(Harrell’s C-index=0.8388, Hosmer-Lemeshow p-value=0.0102; Supp. Table 7). The 

relevant co-abundance networks remained similar with additional contributions of 

network 20 (Supp. Table 5), which also contains R. gnavus that has been positively 

associated with inflammation 32,33. In addition, we observed that Fisher’s alpha 

diversity index contributed to the final model (Fig 2D, Supp. Table 4). Restricting 

the unpenalized information to age (SB2 age fixed model) provided a modest 

improvement in model accuracy (Harrell’s C-index=0.8392, Hosmer-Lemeshow p-

value= 0.0019; Supp. Table 7). The model selected all clinical covariates and 

additional co-abundance networks (networks 9, 11, 16 and 24) while removing 
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dysbiosis as a feature. Four co-abundance networks (1, 6, 12, and 25) had positive 

associations with incident HF (Hazard ratio > 1, Supp. Table 4 ). All models 

consistently referred to clinical covariates (age, sex, BMI, smoking status, blood 

pressure, prevalent diabetes and prevalent coronary heart diseases).  

 

Finally, we investigated whether combining predictions from the top-performing 

approaches could further improve the accuracy and calibrations of the predictions. 

Toward this goal, we constructed ensemble models (Figure 4), which were generated 

by taking the mean of prediction scores obtained from the combined individual 

models. Mean-aggregated ensemble models of the top 2 performers improved both 

model performance measured by Harrell’s C-index (Figure 5A, Supp. Table 7; 

0.8369) and calibration as determined by Hosmer-Lemeshow test p-value (Figure 

4B, Supp. Table 7; 0.1551). 

 

2.4 Enhanced model performance and evaluation results  

While the challenge was conducted using a lenient definition of HF and the follow-

up endpoint of 15 years, another definition of HF relying on strict criteria, which 

required additional assessments to confirm the relationship between drug purchases 

and HF 34, was also available in the national FINRISK study. To test whether a 

population where the incident diagnosis of HF was more certain would further 

improve predictions with the current models, we tested the models with this stricter 

definition (N cases=288) 34. Both SB2 and DFH models showed improved predictions 

for the stricter definition of the HF endpoint (C-statistics of 0.8541 and 0.8454 

respectively). However, only the SB2 model achieved a well-calibrated performance 

(Hosmer-Lemeshow p-val=0.1359, Supp. Table 7).  

 

Finally, we evaluated our baseline models and SB2 refined models (SB2 refined and 

SB2 age fixed models) based on the follow-up times of 5 and 10 years, two 

intermediate time points that were made available in addition to the original 15-year 

follow-up period. There were 115 and 299 recorded cases of incident HF within 5 

and 10 years of follow-up, respectively. Notably, the 10-year risk prediction models 

exhibited enhanced performance and improved calibrations, whereas the 5-year 
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follow-up exhibited a decline in performance and calibration when compared to the 

15-year follow-up (Figure 5).  

 

3. Discussion 

 

This study demonstrates the value of incorporating taxonomic profiling in the 

prediction of incident HF. We leveraged the National FINRISK 2002 cohort, a 

unique resource used to identify predictive microbiome signatures for various 

complex diseases and all-cause mortality21. While the model performance did not 

substantially improve through the inclusion of microbial taxonomic profile on the 

conventional risk factors, the incorporation of microbiome data did provide 

important information for biological interpretability. Additionally, incorporation of 

species-level co-abundance networks improved the performance, as shown by the 

top-performing model performance compared to the microbiome-based baseline 

model (Baseline all). The community challenge allowed us to gain insights into 

modeling microbiome data and engage teams with diverse areas of expertise. 

Overall, the community challenge resulted in optimized models that incorporate 

microbiome data to provide additional biological insights into HF risk prediction. 

 

We observed associations between incident HF occurrence and a combination of 

microbiome features, including alpha (intra-individual) diversity, taxonomic co-

abundance networks, and individual taxonomic groups. Alpha diversity, measured 

with Fisher’s alpha, contributed to HF predictions in the refined models, showing 

an inverse association with incident HF risk. This supports a previous study which 

reported significantly reduced alpha) and beta (inter-individual) diversity 

measurements in HF patients compared to controls 35. The predictive co-abundance 

networks included several networks consisting of species (e.g R. gnavus (network 20), 

C. bolteae and C. citroniae (network 6)) that were previously reported to be positively 

associated with inflammatory signals 17,26,27. This supports a role for the gut 

microbiome in HF progression through inflammatory processes, a known aspect of 

HF pathophysiology 36,37. Furthermore, we observed that networks positively 

associated with HF are comprised of species that have been previously associated 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.12.23296829doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.12.23296829
http://creativecommons.org/licenses/by-nc/4.0/


 

with T2D and obesity, both of which are known risk factors for HF 37. Thus, these 

established risk factors are also partially captured by the microbiome features 

predicting incident HF risk. However, the causal relations between the gut 

microbiome and established risk factors for HF warrant further research. 

 

A large number of features is a common problem in predictive machine learning 

models 38. Thus, similar to a previous study of microbiome-based prediction of all-

cause mortality 21, we found the approach to compress the data into a smaller 

number of informative characteristics by aggregating species into co-abundance 

networks provided a strategy for feature engineering in microbiome-based risk 

prediction. We also observed the network that was inversely associated with HF risk 

composed mostly of Bacteroides genera (Network 8), which have been reported to be 

lower in patients with cardiovascular diseases 39. A recent study of enterosignatures 

(ESs) suggested that Bacteroides-ES provide core functionality to the healthy gut 

microbiome, particularly in the Western population 40. Despite containing species 

that are associated with HF, we also observed that network 6 contains a number of 

bacteria, such as Anaerostipes caccae, a butyrate producer, that have been previously 

reported to be depleted in HF patients 14. Similarly, one network comprised mostly 

of Coriobacteriaceae which have been shown to have a lower abundance in patients 

with HF compared to controls 35. Overall, the findings from the co-occurrence 

analysis support that examining the specific interactions between previously 

disease-associated and health-promoting microbes can elucidate the associations 

within the gut microbiome in various conditions, although we expect the relevance 

of this strategy to vary for different traits.  

 

We found that mean aggregations could improve model accuracy and calibration 

(Figure 4, Supp. Table 7) as the model performance may vary in different subsets of 

the data. Hence, ensemble modeling approaches provide a promising target for 

further enhancing the overall predictive capability and clinical relevance of ML 

models. By exploring different strategies for combining models and optimizing the 

feature selection strategies, we can potentially overcome limitations to achieve more 

robust predictions across diverse demographic groups.  
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Interestingly, we found that the microbiome-based predictions of incident HF 

during the 10-year follow-up period outperformed the 5- and 15-year follow-ups. 

While we speculate that the demographics of the population are most informative 

at the 10-year interval and therefore allow this increase, it remains uncertain 

whether this is the case. Further efforts to model incident disease with microbiome 

data will be necessary to understand the timing of the most informative endpoints. 

Likewise, focusing on the stricter definition of HF led to improved predictions, as 

seen in analyses of other more homogeneous phenotypes in other types of omics 41. 

 

While this study offers a distinctive perspective on the prediction of incident HF 

risk based on population-level microbiome profiling, it must be interpreted in the 

context of its limitations. First, the ability of the challenge participants to optimize 

their models was limited since they only had access to synthetic data, which may 

obscure the biological link between the clinical variables and microbiome data, and 

access to only a limited number of submissions and computational resources. 

Moreover, this may have affected the types of models participants chose to use. No 

participants incorporated external datasets into the models. This may have limited 

the generalizability of the models but also represents a limitation in the public 

availability of suitable complementary microbiome datasets.  

 

We used Harrell’s C-index and Hosmer-Lemeshow tests to assess model 

performance and calibration. While both tests are widely used, they have known 

limitations. Harrell’s C may not fully account for calibration. The Hosmer-

Lemeshow test supports model calibration better, but it can be sensitive to the 

specific choice of risk groups and it may not always detect model miscalibration 42. 

Additionally, best-performing models were selected based on the real scoring set, 

and as a result, the model refinement performed afterward for the top models is no 

longer independent of the scoring set. Regarding data, the use of shallow 

metagenomics limited the depth of microbiome profiling and analysis. 

Furthermore, the taxonomic annotations pipeline choices and reference database 

selections could influence the results. Considering up-to-date microbial reference 
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databases or alternative processing pipelines may impact outcomes. The study was 

also limited by geography and population characteristics. The generalizability of the 

results to demographically or geographically distinct populations will deserve 

further study as the study design did not consider predictors specific to 

demographic subgroups. Verification and extensions in independent prospective 

population cohorts will be important for future microbiome-based studies in 

cardiovascular disease. Future studies should consider an extended variety of model 

assessment tools for microbiome data, for example including functional 

measurements to gain a more comprehensive understanding of microbial 

communities and their activity and impact on human health status. Despite its 

limitations, this work contributes to establishing the groundwork for microbiome-

based risk prediction of heart disease.  

 

Conclusions 

Community challenges facilitate the comparison of alternative different modeling 

strategies. We have presented the outcomes of a computational modeling 

crowdsourced challenge to predict the risk of incident HF based on gut microbiome 

profiling in a prospective population cohort of Finnish adults. The results indicate 

that taxonomic profiles are predictive of incident HF risk and suggest an association 

between HF risk and specific taxonomic groups linked to inflammation. However, 

the incorporation of taxonomic features did not substantially improve HF risk 

prediction models over baseline covariates. Taken together, the results provide 

insights into the links between gut microbiome composition and incident HF as well 

as considerations for successful feature engineering and modeling strategies for 

prospective risk prediction in microbiome studies. Further work to generalize and 

interpret the models can help to elucidate the underlying causal mechanisms.  

 

4. Methods 

4.1. FINRISK data characteristics 

The FINRISK study, initiated in 1972, aims to investigate risk factors associated with 

cardiovascular disease in Finland. The study is conducted every five years, and in 

2002, participants were selected from specific areas: North Karelia, Northern Savo, 
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Oulu, Lapland, Turku and Loimaa, Helsinki, and Vantaa (Figure 1A) 43. A random 

sample of individuals aged 24-74 years, stratified by sex and 10-year age groups, was 

taken from each study area. Out of the 13,498 individuals invited to participate, a 

total of 8,783 agreed to participate, and among them, 7,231 provided fecal samples. 

The data was combined with national healthcare registers in Finland, which allowed 

for the integration of subsequent disease diagnoses and drug prescriptions based on 

individual personal identity codes. The study protocol for FINRISK 2002 was 

approved by the Coordinating Ethics Committee of the Helsinki University Hospital 

District (Helsinki, Finland) with reference number 558/E3/2001, and all participants 

provided written informed consent. We are using the taxonomic composition 

characterized from the fecal samples and relevant baseline clinical variables such as 

BMI, age, sex, smoking status, blood pressure treatment, systolic blood pressure, and 

relevant disease history (diabetes, coronary heart diseases, and HF), in addition to 

the information of incident HF. We used a broad definition of HF based on the ICD-

10 codes, I11.0, I13.0, I13.2, I50, ICD-9 codes 4029B, 428, and ICD-8 codes 42700, 

42710,428,7824 in the nationwide Care Register for Health Care. In addition, HF was 

characterized based on three or more drug purchases with Anatomical Therapeutic 

Chemical drug code C03CA01, and C03EB01 in the nationwide Drug 

Reimbursement Register prior to baseline.  

 

4.2 Metagenomic sequencing from stool samples and taxonomic profiling  

Fecal sample collection, DNA extraction, and taxonomic profiling have been 

previously described 21. Briefly, the participants sent the fecal samples by mail to the 

laboratory of the Finnish Institute for Health and Welfare during the Finnish winter 

(survey period: January to March 2002). The samples were shipped overnight and 

stored at a temperature of -20°C upon arrival. The stool samples remained frozen 

until they were later transported in 2017 to the University of California San Diego 

for shallow shotgun metagenomics sequencing using Illumina HiSeq 4000 Systems. 

The DNA extraction process in this study followed the protocols of the Earth 

Microbiome Project, using the MagAttract PowerSoil DNA Kit. The library 

preparation for sequencing was conducted using a miniaturized version of the Kapa 

HyperPlus Illumina-compatible library prep kit. Automation systems such as the 
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Echo 550 and Mosquito HV liquid-handling robots were used for various steps, 

including DNA dilution, enzymatic fragmentation, end-repair, adapter-ligation 

reactions, and addition of sample-specific barcoded sequences. The libraries were 

quantified using the PicoGreen assay and pooled in approximately equal amounts 

before being sequenced on an Illumina HiSeq 4000 instrument for shallow 

metagenomic sequencing. This protocol yielded an average read count of 900,000 

reads per sample. 

 

The sequences were subjected to quality and adapter trimming using Atropos 44, and 

host reads were eliminated by aligning them to the human genome assembly 

GRCh38 with Bowtie2 45. Taxonomy assignment was performed using SHOGUN 

v1.0.5 46 against a comprehensive database comprising complete bacterial, archaeal, 

and viral genomes available from NCBI RefSeq (as of version 82, dated May 8, 2017). 

A total of 5,749 taxonomic features were successfully annotated. 

 

4.3. Design of the DREAM challenge  

The Heart Failure Prediction: Microbiome-FINRISK DREAM Challenge was 

designed as a collaborative competition aimed at advancing our understanding of 

the relationship between gut microbiome and cardiovascular disease, particularly 

HF. The challenge was hosted on the Synapse platform 

(https://www.synapse.org/finrisk) and financially supported by the COST Action 

ML4Microbiome (CA18131). We provided participants access to synthetic dataset of 

microbiome and clinical data, as well as additional resources including a discussion 

forum, model submission pipeline, and leaderboards. We also provided participants 

with three baseline models based on Cox proportional hazards model: 

1. Baseline Age-Sex which incorporates only Age and Sex information. 

2. Baseline Covariates which included all relevant conventional risk factors as 

covariates. 

3. Baseline All which builds upon Baseline Covariates by further incorporating 

the centered log-ratio of relative species abundance information. 
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Teams were required to comply with a data usage agreement, which restricted the 

use of data outside the Challenge and provided guidelines on ethical participation.  

All the participants/teams are included in the FINRISK - Heart Failure and 

Microbiome Challenge Community and they were required to make their code 

public after the challenge, provide a write-up with a detailed description of their 

modeling process, and participate in a post-challenge survey to collect information 

on method development and selected features in the model. 

 

4.4. Synthetic data generation 

Synthetic data provided an added layer of protection for the privacy of individuals 

in the FINRISK cohort. The novel approach (a separate publication is being 

prepared) preserves the mean and covariance structure of the original dataset, 

creating as many synthetic observations as in the original dataset. Cox proportional 

hazard models were applied to ensure that the regression associations between 

variables (each clinical variable and taxon) and incident HF remained. The 

missingness pattern for unobserved variables was recreated based on the original 

dataset to preserve the distribution and covariance structure. All the processes above 

were created independently in clinical and microbial compositional data.  

 

4.5. Singularity container generation  

Singularity containers were used to ensure reproducibility and to minimize the 

impact of differences in software versions or operating systems on the results. This 

provided a standardized computational environment for the server that hosted the 

confidential FINRISK dataset. A more detailed explanation of the Singularity 

container generation is provided at the challenge homepage 

https://www.synapse.org/#!Synapse:syn27130806/wiki/616714. 

 

4.6 Model creation in the challenge environment 

The synthetic dataset was divided into training (N=3615) and testing (N=1807) sets 

maintaining the same individual compositions in the FINRISK dataset. Participants 

could use the training set to build algorithms and evaluate the performance of these 

algorithms in the testing set. DREAM challenge participants created their prediction 
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models based on the synthetic training dataset and submitted these for evaluation 

in the real FINRISK 2002 testing data set (https://www.synapse.org/finrisk). In the 

first phase (submission phase), the models were evaluated on the testing data, and the 

performance metrics were returned to the submitting team. In the submission phase 

of the challenge, a total of 35 valid submissions were received from 9 registered 

teams (187 registered participants, Supp. Table 2). Each team was allowed to make 

up to five submissions in total in order to optimize their approach. Leaderboards 

were available during the open phase of the challenge to offer real-time feedback 

and comparative performance rankings to the teams. Of these, seven teams went on 

to submit final model Singularity containers for evaluation during the scoring phase 

(Supp. Table 3). The final scoring dataset (N=1809) was not shared with participants. 

 

At the end of the submission phase, each team selected their final model to be 

evaluated on the confidential scoring dataset that was not used during the 

submission phase. The performance of the seven models was evaluated based on 

their ability to predict the HF incidence in the confidential scoring dataset which 

was not revealed to the participants.  

 

4.7. Assessment metrics 

The output of each submitted model was expected to be a two-column file, with the 

first column containing Sample ID and the second column containing a numeric 

predictor for the predicted absolute HF risk for ~15 years follow-up, with larger 

numbers associated with a higher probability of incident HF.  

 

The primary metric used to assess model performance was Harrell's C 

(concordance) index 47, a standard evaluation measure for survival models. 

Additionally, we used the Hosmer-Lemeshow goodness of fit method to assess 

model calibration. This has been designed to test whether the average of the 

predicted risk scores follows the observed event rate which ensures the survival 

models provide reliable estimates of the expected event probabilities. 
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To ensure a robust ranking of participants, we additionally performed 1000 

bootstrap iterations of random sampling on the individual’s risk scores calculated 

by each model. The evaluation metrics, Harrell’s C-index and Hosmer-Lemeshow 

p-value, were then re-calculated to generate a distribution of evaluation scores for 

each submission. We used these metrics to calculate the Bayes factor, using the 

computeBayesFactor functions from the challenge scoring R package 

(https://github.com/Sage-

Bionetworks/challengescoring/blob/develop/R/bootstrap.R) and comparing them 

to the top-performing model as well as to the baseline models.  

 

4.8. Statistical modeling and data analysis of the two top-performing models 

A schematic overview of the two top-performing models is provided in Figure 3. 

Notably, both top-performing teams used variations of the regularized Cox 

proportional hazard models, which can be depicted with the target function 48: 

!" 	= 	%&'(%)! 	[2" (∑
#
$%1 )&($)) 	! − ./'(∑&∈+! 0,"#!)) 	− 	2(3 ∑-$%1 |!$| + 1

2
(1− 3)∑-$%1 !$2) 

(Eq. 1) 

Where ! are the linear model’s regularized coefficients, 2 is the penalization term 

controlling the ratio between model goodness-of-fit (first term) and the coefficient 

shrinkage toward zero (second term) searched in a grid with cross-validation, and 3 

is the ratio of LASSO-regularization (3= 1, L1 norm), Ridge Regression (3 = 0, L2 

norm), and their Elastic Net (EN) mixture (0 < 3 < 1). For DFH team, Eq. 1 provided 

the regularized final model coefficients, while for SB2 Eq. 1, with 3=1 was only used 

for feature selection after which non-regularized Cox model fit provided the model 

coefficients.  

 

To reduce the dimensionality of the data, SB2 team used a regularized Cox 

proportional hazard model (based on LASSO penalty) to select the most relevant 

features. The unpenalized features were used to build a Cox proportional hazards 

model. Prior to conducting analyses, the taxonomic features were aggregated at the 

species level, and features that were not associated with known species were 

removed. Four types of features were then calculated for each volunteer based on 
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the microbiome data. (i) Firmicutes-Bacteroidetes ratio, as this ratio is often 

associated with dysbiosis in earlier literature 12,49. (ii) the relative abundance of all 

phyla. (iii) various diversity indices including Shannon, observed richness, Chao1, 

Simpson, inverse Simpson, and Fisher’s alpha indices. (iv) GSVA scores for each co-

abundance network50. The species that did not have any significant associations with 

other species based on 50 bootstrap iterations (p < 0.01) using data from all 

individuals in the training dataset were excluded. 

The Louvain method was used as an unsupervised two-step algorithm for 

community detection with a resolution value of four 51. There were 25 distinct 

networks of co-abundant species identified after the process. The overall abundance 

of each such co-abundance network was then summarized with microbial set 

variation analysis using GSVA 52. This reduced the dimensionality of the data by 

agglomerating strongly co-varying species. The co-abundance networks were 

obtained based on the training set, and subsequently also used with the testing and 

scoring sets. A total of 50 features were thus obtained from the combination of 

clinical and microbiome data. 

Finally, to further reduce dimensionality, simplify the model, and mitigate 

overfitting, a Cox regularized regression with LASSO feature selection was 

employed using the biospear package 53. The weight of Firmicutes-Bacteroidetes 

ratio as a proxy for dysbiosis and clinical covariates including age, BMI, systolic 

blood pressure, non-HDL cholesterol were fixed and not optimised by LASSO 

analysis. The features selected by LASSO were then used as input variables in a Cox 

model. The inverse survival probability was calculated with the survfit function from 

the survival R package 54 to obtain risk score for each individual in the scoring 

dataset. 

 

The DFH team took an overall similar approach to the SB2 team, leveraging 

regularized regression (specifically, Cox regularized regression) to generate 

informative modules from volunteer microbiome data in conjunction with clinical 

metadata, complemented by literature-derived findings to guide interpretability48. 
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The approach consisted of nested feature selection via Elastic Net (EN, ɑ = 0.5 in Eq. 

1) penalization for Cox proportional hazards models. Modules consisting of 

connected candidate features were manually curated. Each module was 

independently subjected to EN regularization in order to prune the module to its 

most informative predictors, with the feature selection conducted using the first 

conservative regularization parameter 6 within 1 standard error of the local 

optimum in 10-fold cross-validation (CV) (Eq.1). Second, these pruned modules were 

brought together and whole modules were eliminated using the same CV strategy. 

Finally, these two steps were run using a multi-seeded CV, after which the 

predictions produced over the seeds were averaged over to reduce effects from 

random binning in CV. These modules submitted in the final challenge model were 

as follows: i) Two clinical submodules, one with a focus on age and sex, and the other 

with a focus on more complex interactions and self-derived variables such as an ad 

hoc disease burden estimate; ii); Alpha and beta diversity indices for within-sample 

and between-sample variation; iii) A comprehensive list of relative abundances of 

taxa in varying levels, coupled with two modules focusing on literature-derived 

findings; iv) Family and phylum level relative abundances coupled with binarized 

variables for age, sex, and obesity. Further, to expand to non-linear interactions 

between variables, transformations (such as z-score, square root, power of 2, or x 

log(x)) were used, along with taking the product of multiplying candidate features to 

assess their combined effect after transformations. The final submission included 

modules presented in teams Wiki 

(https://www.synapse.org/#!Synapse:syn50613972/wiki/620396). Multiple varying 

transformations were used to introduce non-linearity into the model components.  

 

4.8. Model refinement during the post-challenge phase 

Due to participants’ limited access to the real dataset, we also worked with the top 

two performing teams to further improve the model performance and calibrations 

for the final submitted models after the challenge formally concluded. The 

ensemble model was created by simple mean aggregations of the individual risk 

score of an increasing number and all possible combinations from all submissions 

(Figure 4).  
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4.9. Model evaluation in stricter HF definition and 5-, 10-year follow-up 

We also tested the models using a stricter definition of HF (N cases=288) 34. We 

further examined model performance with a restricted follow-up time of 5 and 10 

years, in addition to the 15-year interval used in the challenge. For this analysis, we 

focused only on the baseline and the refined models in the post-challenge phase. 

The evaluation criteria remained consistent with those applied during the challenge, 

which are Harrel’s C-index and the Hosmer-Lemeshow p-value. 
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FINRISK Microbiome Dream Challenge  Community 
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5. Iván Ellson-Lancho1 

6. Juan A. Villatoro1,2 

7. Raúl López-Domínguez1,2 

8. Jordi Martorell-Marugan1,4 

9. Daniel Toro-Domínguez1 

10. Adrián García-Moreno1 

 

DenverFINRISKHacky 

1. Teemu D. Laajala5,6 

2. Lily Elizabeth Feldman5 

3. Varsha Sreekanth5 

4. Michael Orman5 

 

Yuanfang Guan Lab Team 

1. Hanrui Zhang7 

2. Yuanfang Guan7 

3. Yiyang Nan7 

 

Metformin-121 

1. Chih-Han Huang8  

2. Tsai-Min Chen9,10  

3. Hsuan-Kai Wang: Independent Researcher  

4. Edward S.C. Shih11 

5. Kuei-Lin Huang12 

6. Chih-Hsun Wu13 

 7. Sz-Hau Chen14 
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8. Jhih-Yu Chen15 
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4. Scott Emrich  
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ML4Microbiome Community 

 

The ML4Microbiome Community, under the COST Action CA18131 (Statistical 

and machine learning techniques in human microbiome studies), is part of COST 

Actions, a research network funded for four years. It requires participation from at 

least seven different COST Full Members or Cooperating Members. These Actions 

use various networking tools to support research coordination and capacity 

building, as specified in each Action's Memorandum of Understanding. COST, a 

funding agency for research and innovation networks in Europe, provides the 

funding for these Actions. ML4Microbiome introduced the idea for the community 

challenge, and some of its members were involved in organizing the challenge as 

part of the realizations of Working Group 2. You can find more information about 

the community here: https://www.ml4microbiome.eu/. 
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request from THL Biobank, https://thl.fi/en/web/thl-biobank/for-researchers/ due 

to sensitive health information of individuals.  
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Figure 1. Overview of the DREAM Challenge and FINRISK data. A. Geographical distribution across 
Finland for the individuals within the national FINRISK 2002 cohort. B. Principal Coordinate Analysis 
(PCoA) using Bray- Curtis dissimilarity metrics between randomly selected subsets of the data (training, 
testing, scoring sets). C. The setup and timeline of the DREAM Challenge including submission and 
scoring phases. 
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Figure 2. Harrell’s C and Hosmer-Lemeshow test A. Harrell's C-index and Hosmer-Lemeshow p-value 
were obtained for the investigated models, including the three baseline models provided by the organiz-
ers in the scoring phase. B-C. Harrell's C-index and Hosmer-Lemeshow empirical p-value on 1000 
bootstrapped iterations for all the models. We used blue for SB2, orange for DFH and purple for the 
baseline models. D. Selected features in the baseline and top models. *Taxonomic features in the 
“Baseline All” model are presented in Supp. Table 6. ** The features and modules selected by DFH 
model were weight-based from 10 different seeds. Features present in each model are represented by 
turquoise-filled squares, while absence is indicated by blank squares.
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Figure 3. Schematic illustration of modeling workflow of the two top-performing teams. A. Team DFH 
used modular Elastic Net regularized Cox proportional hazards model. After manually curating inter-
pretable modules, they identified the optimal features within each module by module-specific cross-vali-
dation. The pruned modules were then combined and used to identify the best overall combination of 
features using cross-validation. The team averaged final risk predictions across multiple seeds. B. The 
SB2 team used LASSO regularization to retain 29 features encompassing age, BMI, systolic blood 
pressure, non-HDL cholesterol, sex, and dysbiosis as unpenalized features, and blood pressure treat-
ment, prevalent diabetes, smoking and prevalent coronary heart disease were penalized and selected 
by LASSO to be included in the final Cox proportional hazards model..
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Figure 4. A.Harrell's C-index and B. Hosmer-Lemeshow p-value for the ensemble models from mean-
aggregations of the final model’s individual risk score. The lower plot illustrates the combination of 
teams utilized in the calculation of the mean for the aggregated final models. The dashed line 
corresponds to p-value=0.05 on the y-axis (B), while the x-axis represents different combinations of 
ensemble models.
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Figure 5. Evaluation of model performance over varying follow-up times. A. Harrell's C-index and B. 
Hosmer-Lemeshow p-values are presented for different models, distinguished by unique colors, across three 
distinct follow-up periods: 5, 10, and 15 years. Two distinct HF definitions were represented in different shapes.
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