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Abstract 

Background Sudden cardiac death (SCD) affects >4 million people globally, and ~300,000 yearly in the 

US. Fatal coronary heart disease (FCHD) is used as a proxy to SCD when coronary disease is present and 

no other causes of death can be identified. Electrocardiographic (ECG) artificial intelligence (AI) models 

(ECG-AI) show promise in predicting adverse coronary events yet their application to FCHD is limited.  

Objectives This research aimed to develop accurate ECG-AI models to predict risk for FCHD within the 

general population using waveform 12- and single-lead ECG data as well as assess time-dependent risk. 

Methods Standard 10-second 12-lead ECGs sampled at 250Hz, demographic and clinical data from 

University of Tennessee Health Science Center (UTHSC) were used to develop and validate models. 

Eight models were developed and tested: two classification models with convolutional neural networks 

(CNN) using 12- and single-lead ECGs as inputs (12-ECG-AI and 1-ECG-AI, respectively) and six time-

dependent cox proportional hazard regression (CPHR) models using demographics, clinical data and 

ECG-AI outputs. The dataset was split into 80% for model derivation, with five-fold cross-validation, and 

20% holdout test set. Models were evaluated using the AUC and C-Index. Correlation of predicted risks 

from the 12-lead (12-ECG-AI) and single-lead (1-ECG-AI) CNN models was assessed. 

Results A total of 50,132 patients were included in this study (29,093 controls and 21,039 cases) with a 

total of 167,662 ECGs with mean age of 62.50±14.80years, 53.4% males and 48.5% African-Americans. 

The 12- and 1-ECG-AI models resulted AUCs=0.77 and 0.76, respectively on the holdout data. The best 

performing model was C12-ECG-AI-Cox (demographics+clinical+ECG) with no time restriction 

AUC=0.85(0.84-0.86) and C-Index= 0.78(0.77-0.79). 2-year FCHD risk prediction reached 

AUC=0.91(0.90-0.92). The 12-/1-ECG-AI models’ predictions were highly correlated (R2 = 0.72).  

Conclusion: 2-year risk for FCHD can be predicted with moderate accuracy from ECG data alone. When 

combined with other data, a very high accuracy was obtained. High correlation between single-lead and 

12-lead ECG models infer opportunities for screening larger patient populations for FCHD risk.  
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1. Introduction 

SCD is an unexpected and sudden cardiovascular collapse with ~80% of cases resulting in death before 

reaching the hospital1,2. SCD is amongst the most common causes of death, affecting more than 4 million 

people globally, with an estimated 300,000 events yearly in the United States alone3 with increasing 

prevalence in adults aged 30-40 years3,4.  

 

Recent literature suggest that fatal coronary heart disease (FCHD) is a proxy to SCD5,6. There have been 

developments in potential primary prevention when risk of FCHD or SCD have been detected, often 

relying on prevention or treatment of ischemic events, heart failure (HF), coronary artery disease (CAD), 

hypertrophic cardiomyopathy (HCM) or arrhythmias (including fatal arrhythmias). In most cases, the 

attributable prevention strategy is the use of implantable cardioverter defibrillators however there are 

cases where the underlying cardiovascular irregularity is clinically addressed via appropriate 

pharmacological therapies such betablockers for long QT syndrome7 and non-ischemic evaluation for 

those with anomalous coronary arteries8,9. However, early detection and prediction of the event still 
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remains challenging since risk modification strategy requires warning 10,11 to help reduce chance of SCD 

event using an appropriate intervention strategy.  

 

Artificial intelligence (AI) methods have become assets in detecting and predicting risk for different 

cardiovascular diseases due to the large availability of clinical data12,13. There is potential for the 

development of AI models for pre-screening during any clinical service to assess the risk of  FCHD/SCD 

at an early enough stage to allow for prevention or timely therapeutics. Current research has tried to 

predict FCHD risk using clinical risk factors14, ECG features as biomarkers5,15, cardiac imaging16,17 and 

have also made available a 5-year SCD risk calculator which is specific to people with hypertrophic 

cardiomyopathy14 but these have limitations attributed to prediction performance, small sample sizes or 

require additional resources, which might not be accessible to everyone. 

 

Prior studies have shown that ECG features (e.g., QRS amplitude, QRS duration, etc.) relate to risk for 

SCD18-20. Raw ECG data may, therefore, be useful to predict SCD since these are routinely collected in 

any clinical, are low cost and non-invasive5. Simple 12-lead ECGs, when incorporated within deep 

learning frameworks have shown to be able to predict multiple cardiovascular diseases, including 

cardiomyopathies and heart failure (HF)21-24.  

 

The goal of this research was to develop ECG-AI-based models for FCHD risk prediction for the general 

population that can help clinicians to monitor and assess risk for timely intervention. The specific aims of 

this research are to i) develop and validate deep learning models that can predict risk for FCHD using 

both 12-lead and single -lead ECGs ii) assess the concordance of 12-lead vs single lead-ECG only models 

in FCHD risk prediction and iii) perform time-dependent analysis on FCHD risk to identify time-points 

when our model is accurate and also allows for timely intervention (e.g. 2-5 year intervals).  
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2. Materials and Methods 

2.1 Data Sources 

Standard 12-lead 10 second time-voltage supine ECG data, demographic, and clinical data and co-

morbidities (risk factors) for patients were obtained from the electronic health records (EHR) at the 

University of Tennessee Health Science Center/Medical Center in Memphis, Tennessee (UTHSC). The 

study was approved by the IRB of both University of Tennessee Health Science Center, Memphis, TN 

and Atrium Health Wake Forest Baptist, Winston-Salem, NC.  

 

2.2 Outcome Definition 

SCD is defined as fatal coronary heart disease (FCHD) which resulted in death due to sudden 

cardiovascular failure, where the person was otherwise healthy before the event5,6. Definite or probable 

FCHD events were derived from a combination of ICD-9 codes 410, 427.5, 799 and ICD-10 codes I46, 

I46.2, I46.9, I21, I25.x5,25.  

 

2.3 Inclusion/Exclusion Criteria 

Patients aged 18 or older with at least one ECG recording were included. For initial analysis, we used the 

ECGs recorded closest to the FCHD event with no restriction on the time between the ECG and FCHD 

event. For controls, ECGs from the date last seen in the system were used as the anchor point for right 

censoring.  

 

2.4 Electrocardiogram Data 

Raw 10-second digital supine 12-lead electrocardiogram data was obtained from the EPIPHANY 

Cardiology Information System at the University of Tennessee Health Sciences Center, Memphis, TN. 

The 12-lead ECG data was in either 500Hz or 250Hz voltage. All ECGs were downsampled to 250Hz by 
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removing amplitudes at every other time point. In addition we removed the first second of the 10-second 

ECG to reduce typical noise associated with ECG initiation. We also developed a single-lead version 

using ‘lead I’ of the 12-Lead ECG, since this lead is typically mimicked in wearable devices with ECG 

functionality such as smartwatches. Lead I was used and replicated twelve times, to retain consistency 

between the model architectures and allowing for streamlined comparison.  

 

2.5 Risk Factors 

In addition to ECG data, we also included demographic and some clinical characteristics from the EHR 

that were available to us. Demographic and clinical risk factors included in the study were age, sex, race, 

diabetes, hypertension, atrial fibrillation (AF), valvular disease (VD), coronary artery disease (CAD), and 

left ventricular hypertrophy (LVH).  

 

2.6 Study Design and Model Development 

The data was split in a stratified way into 80% for derivation and 20% as a holdout dataset, which was 

kept completely independent for final testing and performance reporting. Five-fold cross-validation was 

employed on the 80% derivation data, resulting in five different models being developed. This data split 

was kept identical for all the developed models. Each model was assessed using the area under the 

receiver operating characteristics curve (ROC AUC) for all models and concordance index (C-Index) for 

Cox Proportional Hazard Regression (CPHR) models. The model performance was assessed based on 

results on the UTHSC 20% hold-out data. Within the holdout dataset only one ECG (latest ECG) per 

patient was included. 

 

All model development and analyses were performed using the Python programming language.  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.11.23296910doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.11.23296910


 8

2.7 Prediction of Fatal Coronary Heart Disease using raw ECGs 

This research employed an adjusted ResNet convolutional neural network (CNN) deep learning 

architecture, outlined in He et al.26 and modified by Akbilgic et al. for ECGs21, to predict risk of FCHD. 

The input into this deep learning architecture is a one dimensional (1-D) 12-lead ECG signal and the 

output was the predicted risk of FCHD. For the single-lead version, the architecture was the same, albeit 

using different hyperparameters.  

 

2.8 Survival analysis with Cox proportional hazard models 

Multiple Cox proportional hazard (CPHR) models were developed i) using demographic data, ii) 

demographics plus clinical data and iii) an additional four models which incorporate the 12- and single-

lead ECG-AI output with demographic and clinical (ECG-AI-Cox models; Supplementary Material Table 

S1). The ECG-AI-Cox models were assessed using the concordance index (C-Index) and time-dependent 

AUC. Time-dependent AUC is the AUC at each time point from time the ECG was taken until the 

incident27.  

 

2.9 Subgroup Analyses  

Subgroup analyses were performed for six different age groups, sex, race, and presence of coronary artery 

disease (CAD), atrial fibrillation (AF) and valvular disease (VD). Statistical significance of the difference 

between AUCs for between subgroups was assessed using the DeLong’s test.  

 

2.10 12- and single-Lead ECG-AI correlation 

Correlation between the predictions from the 12- and single-lead ECG-AI models was assessed using 

coefficient of determination, R2, Pearson Correlation, and Spearman Correlation coefficients. The AUCs 

were statistically compared using the DeLong’s test. In addition, we performed risk stratification on the 

12- and single-Lead ECG-AI models to compare risk predictions. 
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3. Results 

3.1 Clinical Characteristics 

The analytical cohort (Table 1) included a total of 167,662 ECGs collected from a total of 50,132 patients 

after applying inclusion and exclusion criteria. From these, 29,093 were controls with 78,472 ECGs and 

21,039 were cases for FCHD with 89,190 ECGs. In some situations, the same visit had multiple ECGs 

and, therefore, all available ECGs were used. The patient cohort had an average age (age at time the ECG 

was taken) of 62.58±14.0 (61.63±13.81 for controls and 63.90±14.10 for cases) of which 51.69% were 

African American (45.50% of controls and 60.24% of cases) and 45.72% were White (51.79% of controls 

and 37.31% of cases). Within the entire cohort, 53.09% were males (54.04% of controls and 51.78% of 

cases). The mean time between ECG and FCHD diagnosis was 2.25±2.68 years (median=1.38; 

minimum=0, maximum=24 years).  

 

Table 1 Demographics and clinical characteristics of the patient cohort from UTHSC EHR 

Demographics/Risk 
Factors Total Controls Cases 

Npatients = 50,132 Npatients = 29,093 Npatients = 21,039 

  NECGs = 167,662 NECGs = 78,472 NECGs = 89,190 

Age at ECG taken 
(years) ±SD 62.58±13.98 61.63±13.81 63.90±14.10 

18-29 693 (1.38) 487 (1.67) 206 (0.98) 
30-39 2701 (5.39) 1,692 (5.82) 1,009 (4.80) 
40-49 5809 (11.59) 3,607 (12.40) 2,202 (10.47) 
50-59 11,822 (23.58) 7,147 (25.57) 4,675 (22.22) 
60-69 13,970 (27.87) 8,293 (28.51) 5,677 (26.98) 
≥70 15,769 (31.45) 8,306 (28.55) 7,463 (35.47) 

Sex  
Male (0), n (%) 26,616 (53.09)  15,722 (54.04) 10,894 (51.78) 
Female (1), n (%) 23,513 (46.90) 13,379 (45.96) 10,143 (48.21) 

Race/Ethnicity 
African 

American, n (%) 25,911 (51.69) 13,238 (45.50) 12,673 (60.24) 

White, n (%) 22,918 (45.72) 15,067 (51.79) 7,851 (37.31) 
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Other or Mixed 
Race, n (%) 1303 (2.60) 788 (2.71) 515 (2.45) 

Diabetes mellitus 
No (0), n (%) 29,842 (59.52) 20,756 (71.34) 9,086 (43.19) 
Yes (1), n (%) 20,290 (40.47) 8,337 (28.67) 11,953 (56.81) 

Hypertension 
No (0), n (%) 7,502 (14.96) 4,238 (14.57) 3,264 (15.51) 
Yes (1), n (%) 42,630 (85.04) 24,855 (85.43) 17,775 (84.49) 

Left ventricular 
hypertrophy    

No (0), n (%) 49,889 (99.52) 29,093 (100) 20,796 (98.85) 
Yes (1), n (%) 243 (0.48) 0 (0.00) 243 (1.15) 

Valvular disease 
No (0), n (%) 48,834 (97.41) 28,710 (98.68) 20,124 (95.65) 
Yes (1), n (%) 1,298 (2.59) 383 (1.32) 915 (4.35) 

Coronary Artery 
Disease    

No (0), n (%) 7,871 (15.70) 5,093 (17.51) 2,778 (13.20) 
Yes (1), n (%) 42,261 (84.30) 24,000 (82.49) 18,261 (86.80) 

Atrial Fibrillation 
No (0), n (%) 37,570 (79.94) 24,746 (85.06) 12,824 (60.95) 
Yes (1), n (%) 12,562 (25.06) 4,347 (14.94) 8,215 (39.05) 

 

3.2 FCHD Risk Prediction Model Evaluations for ECG-AI and ECG-AI-Cox models 

The 12- and single-lead ECG-AI models resulted in an AUC of 0.77 (0.76-0.78) and 0.76 (0.76-0.77), 

respectively on the 20% UTHSC holdout. The D-Cox resulted in a C-Index of 0.60 (0.59-0.61) and AUC 

of 0.65 (0.63-0.66), while the C-Cox resulted in a C-Index of 0.66 (0.65-0.67) and AUC 0.69 (0.68-0.70). 

The highest overall AUC of 0.85 (0.84-0.86; bold in Table 2) and C-Index of 0.78 (0.77-0.79) were 

achieved when 12-Lead ECG-AI predictions were combined with demographic and clinical variables (12-

ECG-AI-Cox model), followed by C1-ECG-AI-Cox, achieving an AUC of 0.84 (0.83-0.86) and C-Index 

of 0.76 (0.75-0.77). 

Table 2 C-index and/or AUC results of the developed models, evaluated on the 20% holdout set. 

 UTHSC 20% Holdout 
Model Name C-Index (95% CI) AUC (95% CI) 

**12-ECG-AI  0.77 (0.76-0.79) 
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**1-ECG-AI  0.76 (0.75-0.77) 
†D-Cox 0.60 (0.59-0.61) 0.65 (0.63-0.66) 
†C-Cox 0.66 (0.65-0.67) 0.69 (0.68-0.70) 
^D12-ECG-AI-Cox 0.72 (0.71-0.73) 0.81 (0.80-0.82) 
^D1-ECG-AI-Cox 0.70 (0.69-0.71) 0.79 (0.78-0.80) 
^C12-ECG-AI-Cox 0.78 (0.77-0.79) 0.85 (0.84-0.86) 
^C1-ECG-AI-Cox 0.76 (0.75-0.77) 0.84 (0.83-0.86) 
** ECG-AI Model (Using only ECGs). No C-statistics are reported as these are classification 
models. 
† Cox Proportional hazard (CPHR) models 
^ ECG-AI-Cox models (including demographics, clinical and ECG-AI predictions) 
 

The 12-ECG-AI-Cox model (best model) resulted in an accuracy of 78%, sensitivity of 72% and 

specificity of 82% (Table 3). The coefficients for all CPHR models are provided in Supplementary 

Material Table S2. It should be noted that within ECG-AI-Cox models, the ECG-AI prediction always 

had the largest coefficient.   

 

Table 3 Confusion matrix for the C12-ECG-AI-Cox model. 

    
 Actual/Predicted No FCHD FCHD  

 

No FCHD 4770 1055 Specificity = 82% 

FCHD 1193 3000 Sensitivity = 72% 

  Negative Predictive 
Value = 80% 

Positive Predictive Value 
= 74% Accuracy = 78% 

 

3.3 Correlation between 12-Lead ECG-AI and single-Lead ECG-AI 

When comparing the 12- and 1-ECG-AI models, there was a statistical significance between the two 

AUCs, resulting in a DeLong p-value < 0.001. However, the prediction results are concordant between 

the two with a R2 of 0.72 (Figure S1), Pearson Correlation Coefficient of 0.85 and Spearman Correlation 

Coefficient of 0.85. 

 

We also stratified patients at low or high risk for FCHD using both 12- and single-Lead models based on 

similar specificity and sensitivity (specificity ~73% and sensitivity of ~67%) for both models. We 
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compared the stratification results from both models (Table S3). Overall, 84% of the time, both ECG-AI 

models produced similar class prediction. In further detail, 842 of 5781 people (15%) which were 

predicted as low risk by 1-ECG-AI were predicted as high risk by the 12-ECG-AI while 717 of 4237 

patients (17%) predicted as high risk by 1-ECG-AI were predicted as low risk by 12-ECG-AI.    

 

3.4 Time-dependent analysis (ECG-AI-Cox) 

Time-dependent analyses of the best model (C12-ECG-AI-Cox) resulted in AUC of 0.91 (0.90-0.92) for 

2-year FCHD risk prediction, reducing to AUC=0.84 (0.83-0.85) at 5 years. Accuracy of this model is 

84% with a Specificity of 85%, Sensitivity of 83%, PPV of 80% and NPV of 87% (Table 4). A similar 

trend was obtained for C1-ECG-AI-Cox, but AUC was slightly lower over the first 2 years at 0.89 (0.88-

0.90), dropping to AUC= 0.75 (0.74-0.76) after 5 years. We also assessed the ECG-alone models, 12- and 

1-ECG-AI, in their power to predict FCHD within 2 years for comparison with the C12-ECG-AI-Cox 

model. For this, FCHD events within two years were labelled as ‘1’ and any event past two years as ‘0’. 

Both the 12- and 1-ECG-AI models slightly increased in AUC from 0.77 to 0.80 (0.79-0.81) and AUC of 

0.76 to 0.78 (0.77-0.80), respectively.  

 

Table 4 Confusion matrix for the 2-year C12-ECG-AI-Cox prediction model 

    
 Actual/Predicted No FCHD FCHD  

 

No FCHD 
 4936 889 Specificity = 85% 

FCHD 715 3478 Sensitivity = 83% 

  Negative Predictive 
Value = 87% 

Positive Predictive 
Value = 80% Accuracy = 84% 

3.4 Subgroup Analyses 

We performed subgroup analysis on age groups, sex and race/ethnicity and diagnosis for CAD using the 

best performing ECG-AI-Cox (Table 5). Subgroup analysis showed no significant difference when 

comparing males and females with AUCs of 0.79 (0.77-0.81) and 0.80 (0.78-0.82) and p=0.356. The 
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same AUCs were achieved when comparing African American vs white races, with a p-value=0.393. 

There was also no significant difference in AUCs for subgroups with and without CAD with p=0.397, 

with and without VD with p =0.187) and with and without AF (p=0.187). 

  

Table 5 Subgroup analysis on sex, age groups, race, ethnicity and CAD using the best operating model 
(C12-ECG-AI-Cox). Comparisons were performed using the DeLong test. *Detailed subgroup analysis 
comparing all age groups are provided in supplementary material Table S4.  

Subgroups ECG-AI-Cox DeLong Test p-value 
Sex 

  Male 0.80 (0.79-0.81) 
0.4265 

   Female 0.79 (0.78-0.81) 
Age* 

   18-29 0.82 (0.73-0.91) 

Only significant difference 
is between 40-49, 50-59 
and 60-69 vs >70 (see 

Table S4) 

   30-39 0.83 (0.78-0.87) 
   40-49 0.83 (0.80-0.85) 
   50-59 0.82 (0.80-0.83) 
   60-69 0.81 (0.79-0.83) 
   ≥70 0.77 (0.75-0.79) 

Race 
   African American 0.80 (0.78-0.81) 

0.371 
   White 0.79 (0.77-0.80) 

Coronary Artery Disease (CAD) 
   Yes 0.80 (0.79-0.81) 

0.397 
   No 0.79  (0.77-0.81) 

Atrial Fibrillation (AF)   
   Yes 0.76 (0.74-0.78) 

0.187 
   No 0.78 (0.76-0.79) 

Valvular Disease (VD)   
   Yes 0.75 (0.69-0.82) 0.187 
   No 0.80 (0.79-0.80)  

 

Subgroup results (Tables 5 and Table S4) for different age groups showed that the highest AUC of 0.83 

was achieved for age groups 30-39 and 40-49 with no significant difference between these groups. The 

only significant differences were found when comparing AUCs of the 40-49 vs ≥70 (AUC = 0.77), 50-59 

(AUC = 0.82) vs ≥70 and 60-69 (AUC = 0.81) vs ≥70 age groups with p-values of <0.001.   
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4. Discussion 

SCD is sudden cessation of cardiac activity with hemodynamic collapse28 and predominantly occur in 

patients with structural heart disease, especially coronary heart disease and fatal ventricular arrhythmias. 

As a result, FCHD is often used as a proxy to determine SCD, since the latter’s true identification is 

difficult to ascertain5,6. The most important problem with SCD is the suddenness and rapidity with which 

the event is fatal. Therefore, there is a need for prediction models that can be easily accessible and used 

within routine clinical care to increase monitoring and follow-ups. In this research, we developed and 

compared multiple models to assess the power of ECGs to predict risk of FCHD over time. Results show 

that the highest AUC was obtained using C12-ECG-AI-Cox (AUC = 0.85). Time-dependent analysis 

resulted in an AUC of 0.91 in predicting 2-year risk for FCHD. Furthermore, the 12-ECG-AI and 1-ECG-

AI have moderate, yet similar, AUCs with high correlation between the predictions. This enforces the 

notion that ECG-based predictions are very important in determining FCHD risk, increasing the potential 

of usability for monitoring and smart wearables.  

 

While some time-dependent FCHD and SCD analyses have been  previously performed, high accuracy 

was achieved up to 24hrs before and moderate to low accuracy up to 10 years before5. Kwon et al.20 

demonstrated that in-hospital sudden cardiac arrest could be predicted in >50% of patients several hours 

before the event  using machine learning. However predicting SCD in such a short time period may not be 

clinically helpful for intervention. Therefore, using simple and routinely-collected data, e.g. ECG, can be 

an asset within AI models to increase pre-screening efforts of fatal events. In a large-scale prospective 

study, it was demonstrated that deep learning artificial intelligence could successfully predict cardiac 

arrest using diverse formats of ECGs, mostly depending on ECG-based features and data of amplitude 

and duration of individual ECG waves20. However, the use of numerous ECG features can be difficult to 

obtain, and might not always be available from clinical institutes, increasing the need for ECG-AI 

methods using raw ECGs in predicting outcomes.  
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In some published AI-driven FCHD or SCD prediction research, very high accuracies (AUC>0.85) were 

achieved hours before the event, which reduces usability for therapeutic interventions as well as they are 

not applicable to population level screening5,15,29. However, results from our research show sustained high 

AUC of 0.91 for 2-year risk prediction of FCHD. The C1-ECG-AI-Cox resulted in very similar time-

dependent AUC of 0.89 within the same timeline. In addition, we also show that ECG-based predictions 

substantially improve model predictions when compared to models developed using only demographics 

or demographics plus clinical data. This highlights the importance of ECG-based models and assessments 

years before the potential SCD incident. In this period, the model can clearly distinguish between FCHD 

and non-FCHD events (NPV = 87%, PPV = 80%), making it increasingly useful if incorporated within 

clinical settings as a tool for risk assessment.   

 

Furthermore, following the work in this research on feasibility of a single-lead ECG-AI model, results 

show that 12- and single-Lead ECG-based predictions are very correlated (Figure S1), and while the AUC 

is slightly lower in the single-lead based models, it paves the way for the integration within mobile AI 

platforms such as ECG-Air30 that can gather ECG from wearable devices such as smart watches for 

easier, simpler and cost-effective pre-screening at the population level. The availability of tools for pre-

screening is important since SCD is highly correlated with certain cardiac diseases such as HCM, the 

larger subset of people with LVH and some risk factors (e.g. diabetes) 31-33, which all showed high 

coefficients in the CPHR models developed in this research. Having a simple and usable AI model that 

can be integrated within a smart device, especially a smart watch with single-Lead ECG capabilities, can 

be an asset to the clinical workflow and help decision making for triaging, testing and risk assessment.  

Limitations and future studies 

This study had some limitations. Predominantly, while FCHD has been reported to be a proxy of SCD, 

true SCD event data could possibly improve the accuracy of the models and therefore, future work will 

focus on testing and validating our models on SCD outcomes. In addition, our current efforts are focusing 
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on gathering data a larger set of data from additional EHRs and established NHLBI-funded cohort studies 

for both training and external validation. Although we assessed the correlation of 12-lead vs single-lead 

models, as a feasibility study for future remote monitoring via wearables, we did not use ECGs obtained 

from wearable ECG devices (e.g. smartwatches). Our preliminary work shows that predictions from 

single-lead clinical ECGs and ECGs from smartwatches are also highly correlated and we will expand on 

this research for FCHD and SCD. Additional future studies lie in designing an AI-assisted randomized 

clinical trial to assess the effectiveness of AI-assisted follow-up protocols on patients predicted at high 

SCD and compare outcomes to standard of care. 

 

Conclusion 

The results from this research indicate that FCHD/SCD events can be predicted from both single- and 12-

lead ECGs using state-of-the-art methods. The deep learning models applied to ECG data can be 

combined with clinical data using a survival analysis framework to analyze time-dependent risks and 

allow for more patient-specific data commonly available in electronic health records. This research shows 

that both 12- and single-Lead ECG-based models operate similarly and, therefore, this not only serves as 

a proof-of-concept for FCHD and SCD prediction but as a large contribution for the integration within e-

health and remote monitoring systems, which can help directly target people within the general 

population. High 2-year prediction accuracy can guide developing novel protocols for detailed 

examination and close monitoring of those identified at high risk. 
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