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Abstract7

Parkinson’s Disease (PD) exhibits significant individual variability, and recent Artificial Intel-8

ligence advancements have identified three distinct progression subtypes, each with known9

clinical features but unexplored gene expression profiles. This study aimed to identify the10

transcriptomics characteristics of PD progression subtypes, and assess the utility of gene11

expression data in subtype prediction at baseline. Differentially expressed genes were12

subtype-specific, and not typically found in other PD studies. Pathway analysis showed13

distinct and shared features among subtypes. Two had opposing expression patterns for14

shared pathways, and the third had amore unique profile with respect to the others. Machine15

Learning revealed that the progression subtype with the worst prognosis can be predicted16

at baseline with 0.877 AUROC, yet the contribution of gene expression was marginal for17

the prediction of the subtypes. This study offers insights into PD subtypes transcriptomics,18

fostering precision medicine for improved diagnosis and prognosis.19
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1 Introduction22

Parkinson’s Disease (PD), the prevailing neurodegenerative movement disorder, is experiencing23

a faster rise in prevalence than other neurological disorders over the last years [1, 2]. The primary24
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pathological feature is the accumulation of misfolded, aggregated α-synuclein in the substantia25

nigra and other brain regions, which contributes to movement disorders like bradykinesia in26

combination with either rest tremor, rigidity, or both [3, 4].27

PD is a remarkably variable condition, characterized by a wide heterogeneity at individual level,28

with variations in clinical features, dominant symptoms, and rate of progression [5]. This vari-29

ability has prompted a number of studies investigating the existence of PD subtypes. To this30

extent, PD is a well-suited model for precision medicine which, taking individual variability into31

account, emphasizes fine-grained diagnostics to enhance treatment effectiveness [6]. One of32

the challenges in PD research is to assign each affected individual to a specific disease cluster,33

in order to find phenotypic subgroups that may have a particularly good response to specific34

treatments [3].35

While the majority of research concerning data-driven clustering in PD has centred on disease36

subtyping using baseline cross-sectional data, mounting evidence suggests that PD has a highly37

heterogeneous progression [7, 8]. Therefore, any static subtype defined at the baseline may not38

well account for disease progression patterns. Accordingly, PD subtypes instability is partic-39

ularly pronounced in the early stages of the disease [9, 10] and advanced PD patients exhibit40

many clinical similarities despite early-stage heterogeneity [11, 12]. The hypothesis of heteroge-41

neous progression in PD found further support in a 2021 study, where a predictive model found42

that patients show non-sequential, overlapping disease progression trajectories over eight dis-43

tinct disease states, finally suggesting that static subtype assignment might be ineffective at44

capturing the full spectrum of PD progression [8].45

Recently, α-synuclein Seed Amplification Assays (SAA) resulted as a promising biomarker for46

the biochemical diagnosis of PD [13], yet this necessitates a cerebrospinal fluid (CSF) sample47

to be detected, which might not always be readily available. Conversely, peripheral blood is48

a more accessible sample type and can be subjected to molecular-level analysis, which could49

provide further details on biomarkers for a finer-grained diagnosis. The identification of disease50

subtypes in such a complex disease is pivotal to advance therapeutics [14], and RNA-Seq allows51

for a broad scope view of the biochemical landscape of a specific phenotype [15].52

Research on PD blood transcriptomics is consistently highlighting the association of inflam-53

matory pathways, oxidative stress, and mitochondrial processes with the disease [15, 16], also54

demonstrating that immune cell subtypes play a role in its transcriptomic changes [17]. Nonethe-55
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less, it was noted that RNA-Seq data is often ignored in Machine Learning studies of PD [18],56

meaning that the potential of this data source remains to be fully exploited.57

Efforts in PD progression subtyping research focus on detecting distinct classes of patients58

based on unique progression patterns, emphasizing the importance of incorporating time as a59

dimension. Artificial Intelligence algorithms play a crucial role in managing the complexity of60

time series data, enhancing result reliability, and enabling hypothesis-free experiments.61

A pivotal study for PD subtyping employed clustering analysis at baseline and performed a lon-62

gitudinal evaluation, but it was based on cross-sectional data analysis, thus overlooking the63

temporal dimension [5]. The most recent attempt in 2022 introduced an intriguing approach,64

combining NMF-reduced PD representations with Gaussian Mixture Model clustering; however,65

it lacked a clear temporal framework, resulting in non-overlapping clusters for patients at the66

latest time point [19]. Contrastingly, a 2019 study by Zhang et al. harnessed a Long Short Term67

Memory (LSTM) model to identify three PD progression subtypes [20]. LSTM is an AI archi-68

tecture specifically designed to handle sequential data, such as time series [21]. The analysis69

of comprehensive clinical and biological data resulted in the identification of three distinct70

subtypes: in brief, subtype I (S1) starts with mild motor and non-motor symptoms, and motor71

impairment increases with a moderate rate over time; subtype II (S2) has moderate motor and72

non-motor symptoms at baseline, with a slow progression rate; subtype III (S3) has significant73

motor and non-motor symptoms at baseline, and its impairment progresses rapidly over time,74

thus accounting for a worse prognosis [20]. An improved iteration of this approach, using an75

LSTM coupled with a Deep Progression Embedding (DPE) model, was shared as a preprint in76

2021, aligning with earlier findings but awaiting peer-review [22]. Other authors developed their77

own algorithm for the identification of progression subtypes [23], but the heterogeneity in the78

results dependent on the features selected for analysis, and unavailability of clustered subject79

IDs, made us prone to focusing on PD progression subtypes identified in [20]. Not only the80

latter is ongoing research, still needing peer-revision for its latest update [22], but has open81

access to the full analysis code and tables through GitHub.82

1.1 Aims83

To the best of our knowledge, RNA-Sequencing data has never been taken into account in PD84

progression subtyping research. Although PD subtypes with distinctive progression phenotypes85
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have been identified, their transcriptomics profiles remain unexplored. The present study has86

two main objectives: (1) to describe the transcriptomics profile of disease progression subtypes,87

and (2) to subsequently evaluate the usefulness of gene expression data in predicting disease88

subtype at baseline. The present paper aims to reveal the biological characteristics of disease89

progression subtypes. We expect to find partially distinct characteristics of gene expression,90

which should account for the separate identity of the disease subtypes. The identification of91

unique transcriptomic traits associated with the subtypes may foster precision medicine in92

PD, with relevant indications for a finer-grained diagnosis and prognosis. Finally, we make93

available comprehensive results tables and code scripts, fostering the formulation of hypotheses94

for further experiments on PD subtypes.95

2 Results96

The data preparation process focused on determining which subjects included in the present97

study (thus meeting the inclusion criterion of having available RNA data) had been clustered98

into a disease progression subtypes by [20]. Out of the initial 466 PD subjects with assigned99

subtypes (S1 = 201; S2 = 107; S3 = 158), a total of 407 PD subjects had RNA-Seq data available100

(S1 = 199; S2 = 52; S3 = 156), and were included in downstream analyses. Outliers’ detection101

identified 19 records as outliers, and nine subjects showed sex inconsistencies (Supplementary102

Figure 1). After their removal, the final dataset comprised 2,057 samples from 598 participants.103

Finally, 58,780 genes were available for the analysis.104

2.1 Differentially Expressed Genes (DEGs)105

Differential expression analysis was conducted to assess changes in gene expression attributable106

to the progression of the disease over a span of 4 years, thereby incorporating longitudinal mea-107

surements for a time course experiment analysis. In particular, each one of the three subtypes108

was compared to the HC group.109

60 DEGs were found for S1 (41 up, 19 down), 34 for S2 (15 up, 19 down), and 32 for S3 (27 up, 5110

down). The most part of these DEGs were distinctive of the subtypes, with just six of these DEGs111

found as shared between two or more subtypes (Figure 1). A list of DEGs with gene names and112

descriptions, along with the complete results tables from the differential expression analysis,113

can be found in Supplementary Table 1.114
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Figure 1: Venn diagram of DEGs for each subtype

2.2 Over Representation Analysis (ORA)115

In order to understand the biological pathways associated with the DEGs, ORA was performed116

on Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and WikiPathways117

databases. The full list of pathways from the ORA can be found in Supplementary Table 2.118

2.2.1 Gene Ontology (GO)119

The results include distinctive pathways characterizing each subtype (S1: 73; S2: 18; S3: 16),120

with seven GO terms in common between S1 and S3, and three in common between S1 and S2121

(Figure 2).122
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Figure 2: Venn diagram of GO terms for each subtype.

2.2.1.1 S1123

The main theme of S1 biological pathways resulting from ORA encompassed cellular energy124

metabolism, gene expression regulation, and cellular adaptation to various stressors. The pres-125

ence of pathways associated with oxidative phosphorylation (GO:0006119, q-value: 5.54 × 10-7),126

aerobic respiration (GO:0009060, q-value: 3.74 × 10-6), and cellular respiration (GO:0045333,127

q-value: 1.38 × 10-5) indicated a modulation of cellular energy derivation processes, mediated128

by organic compounds oxidation. Additionally, the presence of pathways related to ATP synthe-129

sis, including mitochondrial ATP synthesis coupled electron transport (GO:0042775, q-value:130

5.54 × 10-7), and proton motive force-driven mitochondrial ATP synthesis (GO:0042776, q-131

value: 1.73 × 10-5), highlighted the modulation of cellular energy metabolism in this disease sub-132

type. There were several pathways associated with nucleotide metabolism, including nucleotide133
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metabolic process (GO:0009117, q-value: 1.54 × 10-2) and nucleoside phosphate metabolic pro-134

cess (GO:0006753, q-value: 1.58 × 10-2), along with pathways associated with RNA splicing,135

such as RNA splicing (GO:0008380, q-value: 1.14 × 10-3), and mRNA splicing, via spliceosome136

(GO:0000398, q-value: 4.13 × 10-3). Cellular response to stress pathways were significantly en-137

riched by the set of DEGs, including cellular oxidant detoxification (GO:0098869, q-value: 6.68138

× 10-3), response to reactive oxygen species (GO:0000302, q-value: 1.26 × 10-2), and cellular139

response to toxic substance (GO:0097237, q-value: 1.26 × 10-2).140

2.2.1.2 S2141

The significantly enriched pathways for this disease subtype mainly pointed to regulation of142

gene expression and metabolic processes. The most significant term, with the lowest q-value of143

7.43 × 10-7, was RNA processing (GO:0006396). Along with this, several terms associated with144

RNA metabolism and processing were found significant. These terms included macromolecule145

metabolic process (GO:0043170, q-value: 2.38 × 10-2), RNA metabolic process (GO:0016070,146

q-value: 1.23 × 10-3), and nucleic acid metabolic process (GO:0090304, q-value: 3.51 × 10-3).147

The term with the highest gene ratio found wasmetabolic process (GO:0008152, q-value: 2.92 ×148

10-2), highlighting the modulation of metabolism. This subtype had seven GO terms in common149

with S1: RNA splicing, via transesterification reactions; RNA splicing, via transesterification150

reactions with bulged adenosine as nucleophile; mRNA splicing, via spliceosome.151

2.2.1.3 S3152

The main theme of S3 biological pathways resulting from the ORA was the response to ox-153

idative stress and detoxification processes. The pathways with the lower q-values include re-154

sponse to hydrogen peroxide (GO:0042542, q-value: 5.76 × 10-4), carbon dioxide transport155

(GO:0015670, q-value: 5.76 × 10-4), and oxygen transport (GO:0015671, q-value: 5.76 × 10-4).156

The presence of these pathways suggests a cellular response to reactive oxygen species, in-157

cluding the catabolic and metabolic processes of hydrogen peroxide. Additionally, pathways158

related to detoxification processes were highlighted, such as cellular oxidant detoxification159

(GO:0098869, q-value: 6.62 × 10-3), cellular detoxification (GO:1990748, q-value: 8.13 × 10-3),160

and detoxification (GO:0098754, q-value: 1.08 × 10-2). Furthermore, the pathways cellular re-161

sponse to toxic substances (GO:0097237, q-value: 8.14 × 10-3) and reactive oxygen species162

metabolic processes (GO:0072593, q-value: 2.7 × 10-2) further support the main theme of ox-163
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idative stress response and detoxification. This subtype had seven GO terms in common with164

S1: response to reactive oxygen species, response to hydrogen peroxide, hydrogen peroxide165

metabolic process, cellular response to toxic substance, detoxification, cellular oxidant detoxi-166

fication, cellular detoxification.167

2.2.2 Kyoto Encyclopedia of Genes and Genomes (KEGG)168

ORA on the KEGG database showed pathways characterizing each subtype (S1: 16; S2: 1; S3:169

2). Most of the pathways resulting from KEGG analysis are unique to the specific subtypes170

(Figure 3).171

Figure 3: Venn diagram of KEGG terms for each subtype.

2.2.2.1 S1172

The main theme of these ORA results on KEGG database is related to neurological diseases and173
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neurodegeneration, including Parkinson’s disease (hsa05012, q-value: 1.85 × 10-5), Huntington174

disease (hsa05016, q-value: 2.96 × 10-4), prion disease (hsa05020, q-value: 4.79 × 10-4), amy-175

otrophic lateral sclerosis (hsa05014, q-value: 2.83 × 10-3), and Alzheimer disease (hsa05010,176

q-value: 2.83 × 10-3). Additionally, the presence of oxidative phosphorylation (hsa00190, q-177

value: 5.72 × 10-8) as the most significant resulting pathway further points to a modulation of178

energy metabolism.179

2.2.2.2 S2180

This analysis yielded a single significant pathway, namely Spliceosome (hsa03040, q-value:181

9.74 × 10-6), which further points to the regulation of gene expression. S2 shares his sole182

pathway with S1 (Figure 3).183

2.2.2.3 S3184

Here there are two significant pathways, namely African trypanosomiasis (hsa05143, q-value:185

2.06 × 10-3) and Malaria (hsa05144, q-value: 2.06 × 10-3), suggesting the modulation of path-186

ways involved in detoxification processes.187

2.2.3 WikiPathways188

ORA on the WikiPathways database showed pathways characterizing each subtype (S1: 5; S2:189

2; S3: 19). Most of these pathways are unique to the subtypes (Figure 4).190

9

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.11.23296884doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.11.23296884
http://creativecommons.org/licenses/by/4.0/


Figure 4: Venn diagram of WikiPathways terms for each subtype.

2.2.3.1 S1191

Pathways regarding mitochondrial function and energy production represent the main theme in192

these results. Oxidative phosphorylation (WP623, q-value: 5.68 × 10-3) and Electron transport193

chain: OXPHOS system in mitochondria (WP111, q-value: 3.02 × 10-6) represent the modulation194

of ATP generation pathways, along with Nonalcoholic fatty liver disease (WP4396, q-value: 1.89195

× 10-3), associated with mitochondrial dysfunction and impaired energy metabolism.196

2.2.3.2 S2197

This set of results only includes two pathways, namely Endoderm differentiation (WP2853, q-198

value: 1.85 × 10-2) andMesodermal commitment pathway (WP2857, q-value: 1.85 × 10-2). Those199

pathways are enriched by only one gene, namely NCAPG2.200
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2.2.3.3 S3201

The main theme in this set of results is related to cellular signaling and metabolism. Many202

of the terms are pathways involved in signaling processes associated with apoptosis, includ-203

ing Photodynamic therapy-induced NF-kB survival signaling (WP3617, q-value: 6.40 × 10-3),204

and Apoptosis-related network due to altered Notch3 in ovarian cancer (WP2864, q-value:205

6.40 × 10-3). Additionally, several pathways are involved in metabolism, including Vitamin B12206

metabolism (WP1533, q-value: 6.40 × 10-3), Folate metabolism (WP176, q-value: 6.40 × 10-3),207

and Selenium micronutrient network (WP15, q-value: 6.40 × 10-3). S3 shares three pathways208

with S1, namely Oxidative phosphorylation (WP623), Electron transport chain: OXPHOS sys-209

tem in mitochondria (WP111), and Mitochondrial complex I assembly model OXPHOS system210

(WP4324).211

2.3 Gene Set Enrichment Analysis (GSEA)212

The examination of overall gene expression levels was carried out through GSEA. This analysis213

is not limited to the set of DEGs, as it accounts for variations in gene expression across all214

analyzed genes. The complete results tables can be found in Supplementary Table 2.215

2.3.1 GO216

The number of enriched BP terms found in S1 was 1092, while 1070 enriched terms were found217

in S2, and 134 enriched terms were found in S3. Venn plots show that most pathways were218

shared between S1 and S2, while far less were shared with S3 (Figure 5).219
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Figure 5: Venn diagram of GO terms for each subtype

2.3.1.1 S1220

Gene Ontology BP domain pathways enrichment revealed main themes related to organismal221

processes, cell signaling, and energy metabolism. A primary parent term was Multicellular Or-222

ganismal Processes (GO:0032501, q-value: 5.49 × 10-50). Also found as enriched with very high223

significance there were Nervous System Development (GO:0007399, q-value: 9.00 × 10-38),224

and Anatomical Structure Development (GO:0048856, q-value: 6.30 × 10-35). Cell signal-225

ing and homeostatic processes were identified as enriched, as exemplified by the presence226

of Cell-Cell Signaling (GO:0007267, q-value: 4.36 × 10-28) and Ion Transmembrane Transport227

(GO:0034220, q-value: 5.28 × 10-21), along with Cellular Processes (GO:0009987, q-value: 7.54228

× 10-12), and Cell Communication (GO:0007154, q-value: 8.86 × 10-20). Energy metabolism was229

mainly represented by oxidative phosphorylation (GO:0006119, q-value: 8.56 × 10-7), aerobic230
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respiration (GO:0009060, q-value: 1.31 × 10-5), and ATP biosynthetic process (GO:0006754,231

q-value: 6.13 × 10-6)232

2.3.1.2 S2233

TheGeneOntology analysis revealed biological pathways associated with organismal processes,234

structures development, and cellular signaling. The most significant pathways were related235

to multicellular organismal processes (GO:0032501, q-value: 5.12 × 10-68), followed by devel-236

opment pathways like nervous system development (GO:0007399, q-value: 2.26 × 10-47) and237

anatomical structure morphogenesis (GO:0009653, q-value: 8.43 × 10-41). Signaling pathways238

included cell-cell signaling (GO:0007267, q-value: 1.45 × 10-29) and G protein-coupled recep-239

tor signaling pathway (GO:0007186, q-value: 1.67 × 10-18). Pathways related to response to240

stimulus (GO:0050896, q-value: 5.62 × 10-10), like detection of stimulus involved in sensory241

perception (GO:0050906, q-value: 9.03 × 10-13) were also found in this set of results. More-242

over, this GSEA analysis yielded many pathways related to RNA metabolism and processing,243

such as positive regulation of transcription by RNA polymerase II (GO:0045944, q-value: 2.03244

× 10-11) and positive regulation of RNA metabolic process (GO:0051254, q-value: 1.11 × 10-3).245

Pathways for S1 and S2 were mostly shared and related to morphological changes (nervous246

system development, anatomical structure development, anatomical structure morphogenesis,247

tissue development). Interestingly, all pathways from S1 and S2 showed opposite enrichment248

scores, indicating that these two groups were characterized by an opposite expression pattern249

despite sharing most of their enriched pathways (Figure 6).250
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Figure 6: Pathway Enrichment Analysis. Visual representation of six distinct pathways, each

labelled with its respective name as a section title. Within each section, there are two sets of

plots: S1 on the left and S2 on the right. The upper plots illustrate the positions of gene set

members on a rank-ordered list, with the x-axis indicating position and the y-axis representing

the ranked list metric. The lower plots display the enrichment scores, with a dashed line indi-

cating the maximum rank of the enrichment score. It is clear to see that all of the represented

pathways show opposite enrichment profiles.
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2.3.1.3 S3251

All enriched pathways in this set of results were distinctive of S3 (none was shared with the other252

subtypes). One of the prominent themes identified in our analysis is related to sensory percep-253

tion and signal transduction. Notably, the pathway detection of chemical stimulus involved in254

sensory perception of smell (GO:0050911, q-value: 2.33 × 10-6) and detection of chemical stim-255

ulus (GO:0009593, q-value: 5.96 × 10-6) were highly significant in this set of results. Another256

important theme centers around cell signaling and regulation, with pathways like positive regu-257

lation of antigen receptor-mediated signaling pathway (GO:0050857, q-value: 3.17 × 10-5) and258

G protein-coupled receptor signaling pathway (GO:0007186, q-value: 1.03 × 10-4) were highly259

enriched in this theme, indicating their crucial roles in modulating cellular responses and in-260

tercellular communication. Furthermore, our analysis highlighted pathways associated with the261

regulation of gene expression, such as regulation of RNA export from nucleus (GO:0046831,262

q-value: 9.80 × 10-5). Relevantly to Parkinson’s disease, results included cellular response to263

misfolded protein (GO:0071218, 5.92 × 10-3) as an enriched pathway.264

2.3.2 KEGG265

This analysis resulted in 83 enriched terms found for S1, 15 for S2, and 3 for S3 (Figure 7).266

15

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.11.23296884doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.11.23296884
http://creativecommons.org/licenses/by/4.0/


Figure 7: Venn diagram of KEGG terms for each subtype.

2.3.2.1 S1267

The main theme of the pathways is the regulation of physiological processes and diseases, in-268

cluding cell signaling and communication pathways, metabolism, disease pathways, along with269

the regulation of the immune system. The upregulation of protein synthesis is highlighted by270

the presence of the Ribosome pathway (hsa03010, q-value: 2.94 × 10-14), and along with neu-271

trophil extracellular trap formation (hsa04613, q-value: 1.46 × 10-13) and osteoclast differenti-272

ation (hsa04380, q-value: 1.10 × 10-6) pathways, suggest cellular processes and immune sys-273

tem dysregulation. Cell signaling pathways are also significant, such as glutamatergic synapse274

(hsa04724, q-value: 6.77 × 10-7), GABAergic synapse (hsa04727, q-value: 2.34 × 10-5), and275

cholinergic synapse (hsa04725, q-value: 8.77 × 10-4) suggesting an implication of disrupted276

neuronal signaling. Noteworthy, there were again pathways regarding metabolic and energy277
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production dysregulation, such as oxidative phosphorylation (hsa00190, q-value: 3.58 × 10-6)278

and protein digestion and absorption (hsa04974, q-value: 2.75 × 10-9). Finally, pathways related279

to addiction were found, like Nicotine addiction (hsa05033, q-value: 4.38 × 10-5) and Morphine280

addiction (hsa05032, q-value: 2.18 × 10-3).281

2.3.2.2 S2282

Pathways involved in cell communication and signal transduction in the nervous system are283

foundmodulated in this set of results, includingNeuroactive ligand-receptor interaction (hsa04080,284

q-value: 5.93 × 10-14), Calcium signaling pathway (hsa04020, q-value: 1.85 × 10-6), and Olfac-285

tory transduction (hsa04740, q-value: 2.09 × 10-8). Cell development and connectivity was also286

modulated, as indicated by the presence of pathways like Wnt signaling pathway (hsa04310,287

q-value: 3.98 × 10-3) and Axon guidance (hsa04360, q-value: 6.84 × 10-3). Like in S1, pathways288

regarding addiction processes were found, such as Nicotine addiction (hsa05033, q-value: 1.84289

× 10-3) and Morphine addiction (hsa05032, q-value: 6.16 × 10-3).290

2.3.2.3 S3291

Here three pathways are found as significantly enriched, indicating a positive regulation of292

olfactory transduction (hsa04740, q-value: 6.02 × 10-10) along with Neuroactive ligand-receptor293

interaction (hsa 04080, q-value: 2.78 × 10-10). Additionally, Protein export pathway (hsa03060,294

q-value: 4.57 × 10-2) was found enriched.295

2.3.3 WikiPathways296

Here 86 enriched terms were found in S1, 40 enriched terms were found in S2, 1 enriched term297

was found in S3 (Figure 8).298
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Figure 8: Venn diagram of WikiPathways terms for each subtype.

2.3.3.1 S1299

In this set of results, the main theme was driven by enriched pathways related to protein syn-300

thesis, cellular metabolism, neuronal signaling, and immune system response. Notably, the Cy-301

toplasmic ribosomal proteins pathway (WP477, q-value: 1.81 × 10-14) confirmed the modulation302

of processes related to protein synthesis. Accordingly, the Electron transport chain: OXPHOS303

system in mitochondria pathway (WP111, q-value: 3.58 × 10−7) confirmed the importance of ox-304

idative phosphorylation in energy production. The results also included pathways associated305

with neuronal signaling, like Phosphodiesterases in neuronal function (WP4222, q-value: 1.50306

× 10−4), mBDNF and proBDNF regulation of GABA neurotransmission (WP4829, q-value: 1.03307

× 10−2), and Neuroinflammation and glutamatergic signaling (WP5083, q-value: 2.07 × 10−2),308

also pointing out to an involvement of the immune response, along with IL-3 signaling pathway309
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(WP286, q-value: 2.65 × 10−4). Related to this, the TYROBP causal network in microglia path-310

way (WP3945, q-value: 1.53 × 10−5) highlighted the involvement of the regulatory mechanisms311

within microglia. Another notable theme revolved around disease processes, as there was a312

significant enrichment of pathways like Nonalcoholic fatty liver disease (WP4396, q-value: 1.05313

× 10−3) and Hepatitis B infection (WP4666, q-value: 1.69 × 10−3).314

2.3.3.2 S2315

This set of GSEA results revealed pathways encompassing signaling mechanisms, neuroge-316

nesis, developmental processes, immune response, and disease processes. GPCRs, class A317

rhodopsin-like (WP455, q-value: 4.52 × 10-6) was the most significant, pointing out to signaling318

along with GPCRs, other (WP117, q-value: 4.70 × 10-3), and GABA receptor signaling (WP4159,319

q-value: 4.02 × 10-2). Pathways related to cellular differentiation and neurogenesis were also320

present, such as dopaminergic neurogenesis (WP2855, q-value: 1.56 × 10-2) and Neural crest321

differentiation (WP2064, q-value: 9.45 × 10-4). Developmental processes were represented by322

pathways such as cardiac progenitor differentiation (WP2406, q-value: 2.40 × 10-4), osteoblast323

differentiation and related diseases (WP4787, q-value: 2.60 × 10-4), and neural crest differ-324

entiation (WP2064, q-value: 9.45 × 10-4). Additionally, results included pathways associated325

with immune response, such as host-pathogen interaction of human coronaviruses - interferon326

induction (WP4880, q-value: 2.52 × 10-4), immune response to tuberculosis (WP4197, q-value:327

4.34 × 10-4), and SARS coronavirus and innate immunity (WP4912, q-value: 4.26 × 10-2). Finally,328

we identified pathways associated with genetic disorders and syndromes, including Prader-Willi329

and Angelman syndrome (WP3998, q-value: 1.09 × 10-2),MECP2 and associated Rett syndrome330

(WP3584, q-value: 1.35 × 10-2), and Cornelia de Lange Syndrome - SMC1/SMC3 role in DNA331

damage (WP5118, q-value: 1.86 × 10-2).332

2.3.3.3 S3333

The GSEA here yielded only one significant pathway, namely Interactome of polycomb repres-334

sive complex 2 (PRC2) (WP2916, q-value: 4.04 × 10-2), indicating a modulation in gene expres-335

sion regulation and chromatin organization.336
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2.4 Baseline prediction of disease progression subtype337

A Machine Learning hierarchical classification approach was implemented to develop a predic-338

tion system aimed at identifying the disease subtypes of a newly-diagnosed PD patient, namely339

at the baseline. Data from multiple modalities were used, including demographics, motor, non-340

motor, biospecimen, imaging (See section 4.6, Table 2). The first model in the hierarchy aimed341

to predict whether the subject was from S3, which has the most distinctive phenotype and is342

also the most severe. The model achieved a fair performance with 0.814 sensitivity, and 0.757343

specificity, yielding an F-Score of 0.828 and a total AUROC of 0.877 (Figure 9).344

Figure 9: ROC curve and confusion matrix from the first model of the hierarchy.

Variable importance was investigated with the application of an explainable Artificial Intelli-345

gence (XAI) method, namely SHAP values. These highlighted the score to MDS-UPDRS Part II346

(disability evaluation) as the most important factor contributing to S3 identification. Among the347

most important variables there are other clinical measures, along with a neuroimaging measure348

(DaTScan Caudate R). Gene expression only had a marginal importance, with low absolute SHAP349

values, giving little contribution to the final prediction (??).350
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Figure 10: SHAP summary plot representing the contribution of each variable to the prediction

of the model.

??

For all those subjects that the model did not classify as S3, the second level of the hierarchy351

included a model aiming to predict whether the subject was from S1 or S2. It achieved a poor352

performance, with 0.745 sensitivity, 0.25 specificity, yielding a F-Score of 0.77 and a total AU-353

ROC of 0.576 (Figure 11).354
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Figure 11: ROC curve and confusion matrix from the second model of the hierarchy.

SHAP values indicated that expression values of U8, HSBP1, TRBV6-4, and SCL4A10, along with355

Benton Judgement of Line Orientation test score, were the most important factors to discrimi-356

nate between S1 and S2 (Figure 12).357
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Figure 12: SHAP summary plot representing the contribution of each variable to the prediction

of the model.

3 Discussion358

The identification of progression subtypes is of extreme importance in order to attempt settling359

the heterogeneity of PD. Recent research has shown that people with PD can exhibit a variety of360

progression patterns from diagnosis onwards [5, 8, 19, 20, 22, 24]. The identification of disease-361

modifying treatments can be fostered by finer-grained diagnoses and biomarkers identification,362

pursuing a precision medicine approach. Targeting specific biological processes is currently363

unfeasible due to the lack of validated nonclinical biomarkers of PD progression [25], thus the364

importance of describing the biological profiles of progression subtypes is a paramount objec-365

tive.366

In this study we investigated the transcriptomic profile of three disease progression subtypes,367

which were identified in [20] with an Artificial Intelligence algorithm that reliably takes into368

account time as a dimension. Briefly, S1 had mild motor and non-motor symptoms at baseline,369
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with a moderate rate of motor impairment increase and relatively stable cognitive abilities; S2370

had moderate motor and non-motor symptoms at baseline, with a slow progression rate; and371

S3 started with significant motor and non-motor symptoms, showing a rapid progression of372

impairment, and thus reporting the worse prognosis among the three [20].373

The DEGs identified in this study are unique to these progression subtypes, as none of the genes374

that are commonly found as differentially expressed in PD studies are present in our results. As375

a specific example, common transcriptomic markers such as SYN1, ANKRD22, and SLC14A1376

[16] are absent from all our DEGs lists. This result is not surprising to us, as our experiment had377

two main differences with other PD RNA studies. First, although based on transcriptomics of PD378

subjects, we investigated progression subtypes as diagnostic classes, thus differences with a379

classical PD group were expected. Second, our differential expression analysis was performed380

as a time course experiment, in order to identify those genes that varied for expression values381

as a result of the disease over time. This profoundly differs with previous PD transcriptomics382

studies, which performed a cross-sectional analysis of gene expression, thus not taking time383

into account. As a further note, there is general poor consensus between previous studies on384

resulting DEGs from PD studies [15].385

3.1 S1386

All pathway analyses consistently highlighted the modulation of cellular energy metabolism, par-387

ticularly pathways associated with oxidative phosphorylation, aerobic respiration, and cellular388

respiration. Additionally, pathways related to ATP synthesis, mitochondrial dysfunction, and nu-389

cleotide metabolism were commonly enriched across the ORA and GSEA over GO, KEGG and390

WikiPathways databases. The modulation of energy metabolism is well known in PD, and it has391

already been found from transcriptomics analyses both in blood and brain sample tissues [26,392

27, 28]. Cellular response to stress pathways, including oxidant detoxification and response393

to reactive oxygen species, were also consistently identified. Furthermore, the results consis-394

tently pointed towards the involvement of neurological diseases and neurodegeneration, with395

pathways associated with Parkinson’s disease, Alzheimer’s disease, Huntington disease, prion396

disease, and amyotrophic lateral sclerosis consistently enriched.397

Despite these similarities, there were also differences observed across the pathway analyses of398

S1 data. In fact, there were different specific pathways within the broader common themes. For399
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instance, one analysis emphasized the significance of pathways related to ribosomal proteins400

in protein synthesis, while another highlighted the importance of neuronal signaling pathways401

and immune system dysregulation. Disease-related pathways such as nonalcoholic fatty liver402

disease and hepatitis B infection were specifically enriched in one analysis. The involvement403

of immune system response and processes related to oxidative stress are known in PD tran-404

scriptomics [15, 17], and the observation of disease pathways enrichment is related to their405

modulation.406

The biological profile of S1 shares similarities with that of PD patients with LRRK2 mutation,407

which is involved in multiple biological functions, including mitochondrial activity and oxidative408

pathways [29]. It is interesting to note that none of the patients included in this study had a409

mutation in one of the risk loci known for PD, as this study was solely focused on idiopathic410

PD. Nonetheless, it has already been observed that the patients with idiopathic PD or LRRK2411

genetic PD show mostly overlapping phenotypes, and they are clinically difficult to distinguish412

[30].413

Cellular signaling pathways were also found enriched in the GSEA, confirming that signaling414

mechanisms, often found among transcriptomics alterations from PD post mortem brain tissues415

[31], can also emerge from the analysis of peripheral tissues, such as blood [32, 33].416

3.2 S2417

Pathway analyses consistently identifiedmodulation of gene expression regulation andmetabolic418

processes. Specifically, pathways associated with RNA metabolism and processing emerged419

among the most significant terms across all analyses. The implication of RNA metabolic pro-420

cesses has been considered in the pathogenesis and disease course of PD, advancing that421

these may be related to energy conservation, aggregated proteins modulation, and response to422

cellular stress [34].423

One notable difference lies in the number of pathways identified in each analysis, as some424

analyses revealed a limited number of pathways. As an example, there were only two significant425

pathways in the ORA on WikiPathways: Endoderm differentiation (WP2853) and Mesodermal426

commitment pathway (WP2857). These were enriched by a single gene, NCAPG2. This gene427

encodes for a regulatory subunit of the condensin II complex which, along with the condensin I428

complex, plays a role in chromosome assembly and segregation during mitosis [35]. Alterations429
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of this gene have been associated with cancer and neurodevelopmental defects [36, 37], and430

although its presence has already been observed in PD blood transcriptomics [38, 39], its role431

in the disease is still unclear.432

Cell-cell communication was found modulated in the GSEA results on all databases. Relatedly,433

various pathways related to stimulus response emerged as modulated, indicating their involve-434

ment in this phenotype.435

In GSEA results on the KEGG database, S2 exhibited pathways associated with addiction pro-436

cesses, sharing this characteristic with S1. Pathways related tomorphine addiction also emerged437

in a recent evaluation of PD proteome from dopaminergic neurons in the substantia nigra (SN),438

suggesting an involvement of potentially compromised GABA-related pathways [40].439

3.3 S3440

This subtype had significantly fewer shared terms with the other two, which in turn showed441

a much higher level of similarity. Pathways resulting from the ORA on DEGs indicate the in-442

volvement of response to oxidative stress and detoxification processes, aligning with findings443

in S1. Additionally, ORA on the KEGG database highlighted pathways related to diseases such444

as African trypanosomiasis and Malaria, implying a possible modulation of detoxification pro-445

cesses within this phenotype. Overall, these resulting pathways indicate a modulation of the446

processes associated with cellular adaptation and defense against oxidative stress and toxic447

substances. Cellular signaling was also foundmodulated in many of the results sets, and this is a448

shared alteration for all three subtypes. Accordingly, S3 results included sensory perception and449

signal transduction as prominent themes, with pathways related to the detection of chemical450

stimuli and smell perception. Also, the enrichment of pathways related to olfactory transduction,451

neuroactive ligand-receptor interaction, and protein export was observed. Furthermore, path-452

ways associated with gene expression regulation and cellular response to misfolded proteins453

were significant, as also found in the other subtypes.454

Metabolic pathways such as Vitamin B12 metabolism, Folate metabolism, and Selenium mi-455

cronutrient network, were also found altered in this subtype. Recent studies have shown that456

B12 deficiency is common in patients with neuropathies, and PD has B12 levels decline over the457

course of the disease [41].458
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3.4 Results comparison between subtypes459

The results of our transcriptomics analysis revealed a number of similarities between the three460

PD subtypes (S1, S2, and S3). All three subtypes showed a significant modulation of pathways461

related to the regulation of gene expression, metabolism, and cell signaling. Pathways associ-462

ated with nervous system dysregulation were consistently found in all three subtypes. Although463

expected when analyzing brain cells, we believe that when resulting in blood it’s a confirmatory464

result of appropriate transcriptomics findings, and this is also in line with previous works on pe-465

ripheral tissues [15, 42]. We may consider this as a general alteration due to the disease state,466

as these were also found in other PD transcriptomics experiments [16], and not distinctive of467

any of the subtypes.468

S1 and S2 had a few shared themes, including addiction pathways, structure development, im-469

mune response alterations and disease processes. In fact, among the distinctive character-470

istics for S1 we find neurological and neurodegenerative disease pathways. Moreover, S1 was471

unique in its alteration of energy production and mitochondrial functions. Interestingly, all of472

the shared pathways between S1 and S2 had opposite enrichment patterns in the GSEA (Figure473

6). This demonstrates that S1 and S2 are distinct progression forms of the same disease. De-474

spite sharing a few transcriptomic characteristics, these appear to be modulated in opposing475

ways, and thus may be at the foundation of their different progression courses. S2 was unique476

in its alteration of pathways related to developmental processes and neurogenesis. Moreover,477

this subtype showed an alteration in olfactory transduction, as also observed in S3. S3 was478

unique in its increased expression of genes involved in detoxification processes, and pathways479

related to cellular stress response were altered in both S1 and S3. Interestingly, this was the480

only subtype characterized by enrichment of response to misfolded proteins.481

3.5 Subtype prediction at baseline482

The machine learning classifier provided a reliable tool to predict disease progression subtypes483

using baseline data. This tool could easily be implemented into a user-friendly software, to fi-484

nally build a reliable Computer-Aided Diagnosis (CAD) tool to identify subjects with the most485

severe prognosis. As resulting from the variable importance analysis, the contribution of gene486

expression was marginal for the prediction of S3, not allowing for substantial discrimination487

between disease subtypes in neither of the steps of the hierarchical ML approach. Clinical vari-488
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ables instead demonstrated high importance to identify S3 subjects, with perceived disability489

(MDS-UPDRS Part II) being the most important predictor for a more severe prognosis. In fact,490

S3 subjects were characterized by a faster progression and worse symptomatology, sharing491

some similarities with the classical Posture Instability / Gait Difficulty (PIGD) subtype. Inter-492

estingly, most of the S3 subjects were PIGD patients, and those that were Tremor Dominant493

(TD) instead were likely to shift to PIGD over 6 years [20]. Although expression values resulted494

as the most important factors to discriminate between S1 and S2, the model at the second level495

of the hierarchy had a poor test performance. This made it unreliable and, as a consequence,496

the evaluation of its behavior is meaningless. Considering that this hierarchical classification497

model has 0.877 AUROC to detect the most severe subtype, this would give useful indication498

for prognosis. As such, this ML model may foster precision medicine for PD, providing support499

for a finer-grained diagnosis by applying the results of subtyping research. As all PD subjects500

included in this study were newly diagnosed, and the classifier was trained and tested on base-501

line data, it could be applied in clinical practice when evaluating a new PD patient. Additionally,502

we would like to highlight that the model was trained on baseline data to predict a class de-503

fined by disease progression, which involves the passage of time. Notably, it has a greater504

ability to predict a subject’s future compared to traditional PIGD/TD subtyping. This prediction505

holds particular relevance for individuals whose phenotype aligns with the S3 subtype, where506

this classification is more prone to change over time.507

In the replication study of the PD progression subtype identification, it has been found that508

the most severe subtype (S3) had distinctive clinical features when compared to the two less509

severe subtypes (S1 and S2). Moreover, it was observed that there was limited signal in baseline510

variables to discriminate between the less severe subtypes [22]. These observations are in line511

with our results, as the performance of our classifier is poor in discriminating between S1 and512

S2 (0.576 AUROC). Additionally, our analysis revealed that not even transcriptomics assessment513

was useful to discriminate between S1 and S2 at baseline.514

Providing a tool for progression subtype prediction at baseline is pivotal to improve the ap-515

plication of subtyping research results into PD clinical practice. Not only this study provides a516

biological characterization of progression subtypes, but it also demonstrates that a hierarchical517

ML approach is suitable to detect the most severe subtype, with a potentially relevant impact518

on prognosis.519
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3.6 Strengths and limitations520

This study provides a characterization of the transcriptomics profile for three PD subtypes iden-521

tified in a data-driven manner, namely using AI to analyze the disease progression. A data-522

driven approach to disease subtyping is free from the biases due to the experimenter and is523

more precise, as no a priori choices based on medical expertise are made. PPMI has one of524

the largest PD cohorts to date, offering a consistently large group to identify disease subtypes525

with AI methods. As the identification of disease progression subtypes was performed using526

an LSTM [20], the present study is hypothesis-free and aims to characterize the most reliable527

PD progression subtypes available in the literature.528

The vastness of the results tables from the pathway analyses hindered results manageability. As529

a group of researchers, we did our best to read the results table and report noteworthy results,530

yet it is to be disclosed that a complete and accurate report was unfeasible. As a comment531

to this, we would like to speculate that future technological development may help with the532

interpretation of High Throughput Sequencing data analysis results: Large Language Models533

(LLM), such as ChatGPT [43], are showing increasingly better ability to handle textual data, and534

may one day be well-suited to summarize and expose these kinds of results. Potential future535

analysis of our results by means of such methods is encouraged, and full results tables can be536

found in Supplementary Tables 1-2.537

4 Methods538

4.1 Workflow overview539

Data from the PPMI database were used for both of the objectives of this study: (1) to identify540

the transcriptomics characteristics of the disease progression subtypes, and (2) to train the541

ML model aimed at evaluating the usefulness of gene expression data in predicting disease542

subtypes at baseline. First, data were gathered and the cohort of study was defined, as de-543

scribed in section 4.2. RNA-Seq data were preprocessed (section 4.3) and then a differential544

expression analysis was performed as described in section 4.4 The resulting DEGs were further545

analyzed through pathway analyses, as described in section 4.5 Following cohort definition, the546

ML classifier was trained to predict the cluster at baseline, as described in section 4.6, then547

its behaviour was investigated using XAI methods (section 4.7). R code used to perform data548
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analysis can be found on GitHub (https://github.com/217c/parkinson_subtypes_rnaseq,549

accessed on 25 September 2023).550

4.2 Data551

Data used in this study were obtained from the Parkinson Progression Marker Initiative (PPMI)552

[44]. PPMI is one of the most important ongoing studies of PD progression markers, collecting553

data from multiple international sources and focusing on a diverse range of potential markers554

for tracking the progression of PD, including demographics, clinical variables, imaging data,555

cerebrospinal fluid, blood, DNA and, importantly to this study, RNA measures. The data were556

downloaded from the LONI Image and Data Archive (IDA) in April 2022. The cohort of study557

was defined using the PPMI Consensus Committee Analytic Dataset (RD: 2021-10-28). PPMI558

inclusion criteria for PD subjects include: age ≥ 30, Parkinson’s disease diagnosis within the last559

2 years, baseline Hoehn and Yahr Stage I–II, and no anticipated need for symptomatic treatment560

within 6 months of baseline [44]. Healthy controls (HC) inclusion criteria will include individuals561

without clinical signs suggestive of parkinsonism, no evidence of cognitive impairment, and562

no first-degree relative diagnosed with PD. To be included in this study cohort, subjects must563

have had a diagnosis of sporadic PD and available RNA-Seq data for multiple timepoints, as564

found in the LongRNA Transcriptome Sequencing of PPMI Samples (B38) study (RD: 2021-04-565

02). The PPMI RNA Sequencing Project has generated overview transcriptomics data from566

raw sequencing reads of PPMI whole blood samples. The data were pre-analyzed and quality-567

controlled from the PPMI group [45].568

The definition of the sample for this study follows that described in [20]. Subjects that un-569

derwent disease progression subtyping were included, along with all available HC subjects. In570

brief, S1 starts with mild motor and non-motor symptoms, and motor impairment increases with571

a moderate rate over time; S2 has moderate motor and non-motor symptoms at baseline, with572

a slow progression rate; S3 has significant motor and non-motor deficits at baseline, and its573

impairment progresses rapidly over time, thus accounting for a worse prognosis. The IDs of the574

subjects assigned to disease progression subtypes were retrieved from [20]. To summarize,575

data analysis was performed on those subjects that had RNA-Seq data available and that were576

clustered into one PD subtype. This study cohort included a total number of 2085 RNA-Seq577

records for 4 years of longitudinal measures (starting from baseline, with constant time interval578
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measures at 12 months) from 600 subjects (PD = 407, HC = 193) (S1 = 199; S2 = 52; S3 =579

156).580

4.3 RNA-Seq data preparation581

To assess outliers, a Principal Component Analysis (PCA) was computed on variance stabilized582

and transformed (namely, vst from DESeq2) expression data of the top 20000 genes, and data583

points lying beyond the edges of the Highest Density Interval of the first principal component584

were deemed as outliers. The threshold was set to 0.99, thus considering as outliers all obser-585

vations outside the 99% CI [46]. A sex incompatibility check was performed to assess con-586

tamination due to abnormal transcription using t-SNE and DBSCAN on gene expression data587

from the following sex chromosome genes: USP9Y, XIST, RPS4Y1, RPS4Y2, KDM5D, DDX3Y.588

Subjects whose samples had inconsistent clustering between sex in metadata and sex from589

expression data were removed from the analysis (Supplementary Figure 1).590

4.4 Differential Expression Analysis591

Differentially expressed genes (DEGs) were identified using DESeq2 R library v1.38.3 to perform592

a Likelihood ratio test (LRT). This experiment was designed as a time course analysis, thus593

the full model including group, time, and their interaction, was compared to a reduced model594

without the interaction. This analysis allowed us to identify those genes that at one or more595

time points after time 0 showed a group-specific effect, thus excluding genes that moved up596

or down in time in the same way in both groups. Each PD cluster was compared to the HC597

group performing a separated LRT. For each comparison, DESeq2 automatically estimated size598

factors based on the median ratio method, estimated dispersions, and performed the LRT for599

negative binomial GLMs [47]. Correction for multiple testing was performed using the False600

Discovery Rate (FDR) method, applying DESeq2’s default threshold for adjusted p-value < 0.1.601

Gene names and descriptions were retrieved using g:Profiler R package [48].602

4.5 Pathway analysis603

To further investigate the differences in gene expression we performed a pathway analysis using604

clusterProfiler R library v4.6.2 [49]. An Over-Representation Analysis (ORA) was performed605

on DEGs for all three comparisons on GO Biological Process (BP) domain, KEGG, and WikiPath-606
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ways databases. Not to limit our pathway analysis to DEGs sets, we chose to investigate path-607

way modulation due to eventually small but coordinated changes in the expression levels of all608

genes, thus performing a Gene Set Enrichment Analysis (GSEA) for all three comparisons on609

GO BP, KEGG, and WikiPathways databases. To improve interpretability, GSEA results on GO610

were reduced to semantically similar terms using rrvgo R library v1.10.0 [50].611

4.6 Machine Learning model for subtype prediction at baseline612

Data collected at the time of diagnosis (baseline) was used to predict the cluster, using a hier-613

archical machine learning approach. In this approach, we train multiple classifiers in a hierar-614

chical structure, where each classifier is responsible for a specific task. This approach is useful615

here because the classification task can be broken down into simpler sub-tasks. As cluster 3616

showed to be the most severe, the first step was to predict if the newly diagnosed PD subject617

belonged to S3. If not, the second step aimed to predict whether the subject was from S1 or S2618

(Figure 13).619

Figure 13: Schematic representation of the flow of the Hierarchical ML approach
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Specifically, two XGBoost models were used in this pipeline [51]. Firstly, a subject is evaluated620

by the first model in the hierarchy, which aims to identify subjects from S3. If the subject is621

found to be from S3, the pipeline ends. If the subject is found not to be from S3, then the subject622

is evaluated by the second model, which aims to discriminate between S2 and S1 subjects. The623

machine learning pipeline was developed using tidymodels R library v1.0.0. Train test split624

was performed at subject level, including 75% of the sample in the train set (Table 1). Data625

from multiple modalities were used, including demographics, motor, non-motor, biospecimen,626

imaging, and gene expression values (Table 2). Missing data were imputed with the mean value627

of the train set and rounded to integer value, thus respecting the original format of variables.628

All variables were transformed by applying a Box-Cox transformation [52] and feature selection629

was performed by univariate filtering with ANOVA on all three groups. Variables reporting an630

FDR-corrected p-value < 0.05 were selected for training. Variables with an absolute Pearson’s631

correlation value greater than 0.8 with other variables were removed. Synthetic minority over-632

sampling technique (SMOTE) was used to address class imbalance before training [53]. The633

XGBoost models were trained using 10 Cross-Validation resamples to find the best combination634

of hyperparameters using a grid latin hypercube of values [54]. The best models resulting from635

cross-validation were tested on the test set and evaluation metrics were computed.636

Table 1: Number of observations in train and test splits.

Split Subtype n

train S1 141

train S2 33

train S3 108

test S1 47

test S2 12

test S3 37

637
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Table 2: Full list of variables used for machine learning.

Variable Name Extended Name Description

AGE_AT_VISIT Age Age at the time of visit

REMSLEEP_tot REM Sleep Behavior Disorder

Questionnaire

Final score

SCOPAAUT_tot Scales for Outcomes in

Parkinson’s Disease - Auto-

nomic Dysfunction (SCOPA-

AUT)

Final score

JLO_TOTRAW Benton Judgement of Line

Orientation

Line Orientation-Sum 15 item

DVT_TOTAL_RECALL Hopkins Verbal Learning Test

- Revised

Derived-Total Recall T-Score

DVT_DELAYED_RECALL Hopkins Verbal Learning Test

- Revised

Derived-Delayed Recall T-Score

DVT_RECOG_DISC_INDEX Hopkins Verbal Learning Test

- Revised

Derived-Recog. Discrim. Index T-

Score

LNS_TOTRAW Letter - Number Sequencing LNS-Sum questions 1-7

SDMTOTAL Symbol Digit Modalities Test Symbol Digit Modalities Total Cor-

rect

VLTANIM Modified Semantic Fluency Total Number of animals

VLTVEG Modified Semantic Fluency Total Number of fruits

VLTFRUIT Modified Semantic Fluency Total Number of vegetable

NP2PTOT MDS-UPDRS MDS-UPDRS Part II Total Score

NP1PTOT MDS-UPDRS MDS-UPDRS Part I (Patient Ques-

tionnaire) Total...

NP3TOT MDS-UPDRS MDS-UPDRS Part III Total Score

Continued on next page
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Variable Name Extended Name Description

DATSCAN_CAUDATE_R DATSCAN Imaging Striatal Binding Ratio of the Right

Caudate Small brain region of inter-

est referenced to the Occipital Lobe

DATSCAN_PUTAMEN_R DATSCAN Imaging Striatal Binding Ratio of the Right

Putamen Small brain region of inter-

est referenced to the Occipital Lobe

ENSG00000144290.16 SLC4A10 solute carrier family 4 member 10

ENSG00000248350.1 None heat shock factor binding protein 1

(HSBP1) pseudogene

ENSG00000057657.16 PRDM1 PR/SET domain 1

ENSG00000211713.3 TRBV6-4 T cell receptor beta variable 6-4

ENSG00000212219.1 RNU6-604P RNA, U6 small nuclear 604, pseu-

dogene

ENSG00000197275.13 RAD54B RAD54 homolog B

ENSG00000239148.1 U8 U8 small nucleolar RNA

ENSG00000261553.5 None novel transcript

ENSG00000275968.1 None None

ENSG00000258494.1 OR11J5P olfactory receptor family 11 subfam-

ily J member 5 pseudogene

ENSG00000275992.1 RN7SL327P RNA, 7SL, cytoplasmic 327, pseudo-

gene

ENSG00000171649.11 ZIK1 zinc finger protein interacting with

K protein 1

ENSG00000152454.3 ZNF256 zinc finger protein 256

ENSG00000199567.1 Y_RNA Y RNA

638
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4.7 Variable importance and XAI639

The importance of variables in contributing to the Machine Learning prediction of subtype at640

baseline was investigated using SHAP (SHapley Additive exPlanations) values [55]. As an XAI641

method [56], SHAP values highlight the contribution of each feature to the final prediction,642

thus providing a measure to rank features importance. To calculate SHAP values and produce643

informative plots, shapviz R library functions [57] were applied to the XGBoost models.644
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