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Abstract 137 

Machine learning can be used to define subtypes of psychiatric conditions based on shared 138 

clinical and biological foundations, presenting a crucial step toward establishing 139 

biologically based subtypes of mental disorders. With the goal of identifying subtypes of 140 

disease progression in schizophrenia, here we analyzed cross-sectional brain structural 141 

magnetic resonance imaging (MRI) data from 4,291 individuals with schizophrenia (1,709 142 

females, age=32.5 years±11.9) and 7,078 healthy controls (3,461 females, age=33.0 143 

years±12.7) pooled across 41 international cohorts from the ENIGMA Schizophrenia 144 

Working Group, non-ENIGMA cohorts and public datasets. Using a machine learning 145 

approach known as Subtype and Stage Inference (SuStaIn), we implemented a brain 146 

imaging-driven classification that identifies two distinct neurostructural subgroups by 147 

mapping the spatial and temporal trajectory of gray matter (GM) loss in schizophrenia. 148 

Subgroup 1 (n=2,622) was characterized by an early cortical-predominant loss (ECL) with 149 

enlarged striatum, whereas subgroup 2 (n=1,600) displayed an early subcortical-150 

predominant loss (ESL) in the hippocampus, amygdala, thalamus, brain stem and striatum. 151 

These reconstructed trajectories suggest that the GM volume reduction originates in the 152 

Broca's area/adjacent fronto-insular cortex for ECL and in the hippocampus/adjacent 153 

medial temporal structures for ESL. With longer disease duration, the ECL subtype 154 

exhibited a gradual worsening of negative symptoms and depression/anxiety, and less of 155 

a decline in positive symptoms. We confirmed the reproducibility of these imaging-based 156 

subtypes across various sample sites, independent of macroeconomic and ethnic factors 157 

that differed across these geographic locations, which include Europe, North America and 158 

East Asia. These findings underscore the presence of distinct pathobiological foundations 159 

underlying schizophrenia. This new imaging-based taxonomy holds the potential to identify 160 

a more homogeneous sub-population of individuals with shared neurobiological attributes, 161 

thereby suggesting the viability of redefining existing disorder constructs based on 162 

biological factors. 163 

 164 

Keywords: schizophrenia; structural MRI; artificial intelligence; subtype; ENIGMA; brain 165 

gray matter  166 
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1. Introduction 167 

A key goal of biological psychiatry is to define biological subtypes of major mental 168 

disorders, based on objective measures derived from imaging and other biomarkers [1]. In 169 

psychiatry, redefining subtypes of psychiatric disorders based on neural mechanisms 170 

augmenting clinical behavioral criteria presents significant benefits. By using biological 171 

characteristics to more efficiently identify biologically homogeneous clinical cohorts, clinical 172 

trials could more effectively discern the biological effects of a given intervention. Artificial 173 

intelligence (AI) methods such as machine learning can be applied to brain imaging [2] to 174 

categorize individuals based on their profiles of brain metrics, and holds great potential for 175 

revealing the underlying neurobiological mechanisms associated with disorder subtypes 176 

[3]. 177 

Schizophrenia is one of the most severely disabling psychiatric disorders with a life-178 

time prevalence of 1%; it affects approximately 26 million people worldwide [4]. The 179 

etiology of schizophrenia is still not fully understood. Current knowledge implicates multiple 180 

neurobiological mechanisms and pathophysiologic processes [5, 6]. Furthermore, people 181 

diagnosed with schizophrenia show a substantial heterogeneity in clinical symptoms [7], 182 

disease progression [8], treatment response [9], and other biological markers [10, 11]. In 183 

addition, currently available treatments are not aligned with specific pathophysiological 184 

pathways/targets, which limits effectiveness of treatment selection [12]. Establishing a new 185 

taxonomy by identifying distinct subtypes based on neurobiological data could help resolve 186 

some of these heterogeneity-induced challenges. 187 

Machine learning algorithms are increasingly used to subtype brain disorders [13-16]. 188 

Prior studies have primarily focused on grouping individuals into distinct categories without 189 

considering disease progression [17, 18]. A major obstacle to identifying distinct patterns 190 

of neuro-pathophysiological progression (referred to as progression subtypes) stems from 191 

the lack of sufficient longitudinal data covering the lifespan of the disorder. Recently, a 192 

novel data-driven machine learning approach known as Subtype and Stage Inference 193 

(SuStaIn) was introduced [19]. SuStaIn uses a large number of cross-sectional 194 

observations, derived from single time-point MRI scans, to identify clusters (subtypes) of 195 

individuals with common trajectory of disease progression (i.e., the sequence of MRI 196 

abnormalities across different brain regions) in brain disorders [20-22]. By applying 197 

SuStaIn to MRI data from individuals with schizophrenia, primarily collected from the 198 

Chinese population, we found that the progression of gray matter loss in schizophrenia can 199 

be better characterized through two distinct phenotypes: one characterized by a cortical-200 

predominant progression, originating in the Broca's area/fronto-insular cortex, and another 201 

marked by a subcortical-predominant progression, starting in the hippocampus [22]. Such 202 

brain-based taxonomies may reflect neurostructural subtypes with shared 203 

pathophysiological foundations, with relevance for neurobiological classification [22]. 204 

However, the generalisability of the two neurostructural subtypes to diverse populations 205 

outside of China, and external validation of the subgrouping is required before applying 206 

this knowledge to stratify clinical trials. 207 
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The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA, 208 

http://enigma.ini.usc.edu) consortium is dedicated to conducting large-scale analyses by 209 

pooling brain imaging data from research teams worldwide, using standardized image 210 

processing protocols. Previously, ENIGMA published findings revealing thinner cerebral 211 

cortex, smaller surface area, and altered subcortical volumes in schizophrenia compared 212 

to controls [23, 24]. Here, we included structural MRI data obtained from 4,291 individuals 213 

diagnosed with schizophrenia and 7,078 healthy controls from 41 international cohorts 214 

from ENIGMA schizophrenia groups worldwide and other non-ENIGMA datasets 215 

(Supplementary Table 1). The large sample size allowed us to conduct systematic and 216 

comprehensive analyses to verify the reproducibility and generality of neurostructural 217 

subtypes of schizophrenia across regions/locations and disease stages. This study’s aims 218 

were: (1) to validate the two neurostructural subtypes with distinct trajectories of neuro-219 

pathophysiological progression in schizophrenia, (2) to verify the reproducibility and 220 

generality of the neurostructural subtypes, in subsamples across the world and across 221 

disease stages, and (3) to characterize subtype-specific signatures in terms of 222 

neuroanatomy and clinical symptomatic trajectory. 223 

Together, these analyses aim to create a new, easily accessible (with a single 224 

anatomical MRI), interpretable (based on ‘progressive’ pathology) and robustly 225 

generalizable (across ethnic, sex and language differences) taxonomy of subtypes that 226 

share common neurobiological mechanisms in schizophrenia. If proven effective, other 227 

complex neuropsychiatric disorders with high heterogeneity [25, 26], such as major 228 

depressive disorder, autism spectrum disorder, and obsessive-compulsive disorder, could 229 

also benefit from such a subtyping paradigm. This has the potential to transition the field 230 

of psychiatry from syndrome-based to both syndrome- and biology-based stratifications of 231 

mental disorders.  232 
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2. Results 233 

2.1 Two biotypes with distinct pathophysiological progression trajectories 234 

Distinct patterns of spatiotemporal progression of pathophysiological progression 235 

were identified using SuStaIn, based on cross-sectional MRI data from 4,222 individuals 236 

diagnosed with schizophrenia (1,683 females, mean age=32.4±11.9 years) and 7,038 237 

healthy subjects (3,440 females, mean age=33.0±12.6 years) (Table.1). A 2-fold cross-238 

validation procedure resulted in an optimal number of K=2 clusters (subtypes) as 239 

determined by the largest Dice coefficient (Fig.1a), indicating the best consistency of the 240 

subtype labeling across all individuals between for a model in two independent 241 

schizophrenia populations. Fig.1b shows that only 1.2% of people were moved from 242 

subtype 1 to subtype 2, and 7.5% were moved from subtype 2 to subtype 1, indicating that 243 

91.3% of individuals' subtype labels were consistent between the SuStaIn classifications 244 

from two non-overlapping data folds. These findings suggest the presence of two stable 245 

schizophrenia biotypes with distinct ‘trajectories’ of pathophysiological progression (here 246 

we put trajectory in quotes as the typical sequence of disease progression is reconstructed 247 

from cross-sectional data). 248 

Region of interest (ROI)-wise gray matter volume (GMV) z-scores, at each stage of 249 

the ‘trajectory’ for each subtype, show the sequence of regional volume loss across the 17 250 

brain regions for each ‘trajectory’ (Fig.1c). To visualize the spatiotemporal pattern of each 251 

‘trajectory’, z-score whole brain images were mapped to a glass brain template (Fig.1d). 252 

These maps show a progressive pattern of spatial expansion along with later ‘temporal’ 253 

stages of pathological progression distinct for each ‘trajectory’. Specifically, ‘trajectory’ 1 254 

displayed an ‘early cortical-predominant loss’ biotype. It was characterized by an initial 255 

reduction in Broca’s area, followed by adjacent fronto-insular regions, then extending to 256 

the rest of the neocortex, and finally to the subcortex (Fig.1d). Conversely, 'trajectory' 2 257 

exhibited an ‘early subcortical-predominant loss’ biotype where volume loss began in the 258 

hippocampus, spread to the amygdala and parahippocampus, and then extended to the 259 

accumbens and caudate before affecting the cerebral cortex (Fig.1d). The two ‘trajectories’ 260 

were highly consistent with our previous findings in a predominantly Chinese schizophrenia 261 

cohort [22]. The phenotypic subtypes, based on the different pathophysiological 262 

‘trajectories’, are thus replicated in a large cross-geography sample, confirming the 263 

presence of two different neuropathological pathways with different anatomical origins in 264 

schizophrenia [22]. 265 

 266 

2.2 Trajectories are repeated in first-episode and medication-naïve samples 267 

The sample size of this study was large enough to allow further exploratory analyses 268 

to identify pathophysiological progression trajectories in more homogeneous subsamples 269 

of schizophrenia. Here, we re-estimated the SuStaIn ‘trajectories’ based on a subsample 270 

of data from individuals with first-episode schizophrenia with illness duration less than two 271 

years (N=1,122; 513 females, mean age=25.4 ± 8.6 years), and a subsample of 272 

medication-naïve individuals with schizophrenia (N=718, 353 females, mean age=23.7±273 

7.8 years) (Supplementary Table 3). In both subsamples, we replicated the two 274 

‘trajectories’ with either the Broca’s area or the hippocampus as the sites of origin 275 
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(Extended Data Fig.1), indicating that the two initiating regions - ranking ahead other 276 

regional deficits - are the pathological effects of the disease itself, rather than medication-277 

induced effects. Broca’s area and the hippocampus may therefore be candidate targets for 278 

intervention in schizophrenia, as these two brain regions were affected early in the disease 279 

process. 280 

 281 

2.3 Trajectories are reproducible for samples from different parts of the world 282 

To examine whether the ‘trajectories’ were reproducible for samples from different 283 

parts of the world, we divided all samples into several sub-cohorts based on where the 284 

samples were obtained (Extended Data Fig.5). Here, samples from China, Japan, South 285 

Korea and Singapore were classified into the East Asian ancestry (EAS) cohort. Samples 286 

from Europe, the United States, Canada and Australia were classified into the European 287 

ancestry (EUR) cohorts (Supplementary Table 4). In addition, Chinese, Japanese, 288 

European and North American cohorts were further classified by their site locations by their 289 

site locations in terms of geographic distribution (Supplementary Table 4). Such a division 290 

was based on the similar ethnic or environmental factors for each country, region, or 291 

continent and the size of subsample, which need to be sufficient to conduct a reliable 292 

inference of the SuStaIn trajectory. We found that two ‘trajectories’ (the optimal number 293 

was also K=2, which separately re-estimated in each cohort) - with Broca’s area leading 294 

and the hippocampus leading - were also repeated in EAS (Fig.2a) and EUR (Fig.2b) 295 

cohorts. In addition, the spatiotemporal pattern of each ‘trajectory’ showed strong, 296 

significant correlations between the EAS and EUR cohorts (‘trajectory’ 1, r=0.948, p<0.001; 297 

‘trajectory’ 2, r=0.842, p<0.001; Spearman correlation test). This high level of similarity in 298 

the trajectories was also observed between cohorts from other locations (Fig.2c). This 299 

suggests that the two biotypes with distinct ‘trajectories’ of pathophysiological progression 300 

in schizophrenia are robust, and their classification patterns are independent of macro-301 

environmental or ethnogenetic factors. 302 

 303 

2.4 Trajectories are associated with neurophysiological, pathological and 304 

neuropsychological progressions in schizophrenia 305 

The SuStaIn calculated the probability of each patient belonging to a specific 306 

'trajectory' and further assigned them to a sub-stage within that trajectory. Individuals who 307 

were assigned to the later stages of the ‘trajectory’ showed significant correlation with less 308 

GMV of Broca’s area (Fig.1e, r=0.651, p<0.0001) and hippocampus (Fig.1f, r=0.615, 309 

p<0.0001). In addition, the later stages were correlated with longer disease duration 310 

(Fig.1g, r=0.105, p<0.0001), worse negative symptoms (Fig.1h, r=0.101, p<0.0001) and 311 

worse cognitive symptoms (Fig.1i, r=0.080, p=0.004). These results suggest that the 312 

SuStaIn ‘trajectory’ reflects the underlying neural progression in schizophrenia. 313 

 314 

2.5 Subtype-specific signatures in neuroanatomical pathology 315 

To characterize subtype-specific neuroanatomical signatures, we assessed regional 316 

morphological measures using FreeSurfer in a subsample including 1,840 individuals with 317 

schizophrenia and 1,780 healthy controls. A total of 330 regional morphological measures 318 
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in cortical thickness, cortical surface area, cortical volume, subcortical volume and 319 

subregion segmentation were quantified (see Methods).  320 

Regional morphological z-scores (i.e., normative deviations from healthy control group) 321 

for each subtype were computed and compared (Fig.3). Morphological z-scores of all brain 322 

regions and inter-subtype comparisons are provided in the Supplementary Table S5. 323 

Briefly, compared to healthy controls, average cortical volume/area reduction was only 324 

observed in subtype 1 (Extended Data Fig.2a-b), though both subtype 1 and subtype 2 325 

exhibited a moderate reduction in average cortical thickness (Extended Data Fig.2c). 326 

Additionally, largest effects for cortical thickness/volume/area were located within the 327 

superior frontal regions for subtype 1 and in the superior/medial temporal regions for 328 

subtype2 (Supplementary Table S5). As for subcortical volume, larger effects for volumes 329 

of hippocampus, amygdala, thalamus, accumbens and brain stem were observed in 330 

subtype 2 compared to subtype 1 (Extended Data Fig.2d-h). The hippocampal/amygdala 331 

subregions with the most significant reduction for subtype 2 were located in the molecular 332 

layer and cortico-amygdaloid transition area (Extended Data Fig.3-4). Interestingly, we 333 

observed that, compared to healthy controls, the striatum (i.e., caudate, putamen) was 334 

larger among subtype 1 patients and smaller among subtype 2 patients (Extended Data 335 

Fig.2i-j). The difference in the striatum between the two subtypes was also replicated in a 336 

subsample of medication-naive individuals with schizophrenia (Supplementary Table S6). 337 

The main findings of subtype-specific neuroanatomical signatures are described in Table 338 

2. Taken together, subtype 1 exhibited greater deficits in cortical morphology but 339 

enlargement volume of striatum, whereas subtype 2 displayed more severe volume loss in 340 

the subcortical regions including hippocampus, amygdala, thalamus, brain stem as well as 341 

the striatum. 342 

 343 

2.6 Clinical characterization of subtypes 344 

A total of 2,622 (62.1%) individuals with schizophrenia were assigned to subtype 1 345 

and the remaining 1,600 patients (37.9%) were assigned to subtype 2. The two subtypes 346 

exhibit no significant difference in the age, sex, illness duration or PANSS scores (Table 347 

1). To further characterize the psychotic symptomatic trajectory as disease progresses for 348 

each subtype, we further defined three subgroups according to illness duration (early stage: 349 

<2 years; middle stage: 2-10 years; late stage: >10 years). The results suggested distinct 350 

trajectories of psychotic symptoms between the two subtypes (Fig.4 and Table 3). 351 

Specifically, lower positive symptom severity was observed in late stage patients compared 352 

early stage patients in both subtypes (subtype 1, F=37.4, p=1.60e-16; subtype2, F=41.9, 353 

p=4.68e-18); however, at the late stage, subtype 1 exhibited worse positive symptom 354 

compared to subtype 2 (t=2.8, p=0.005). With the increase of the disease course, subtype 355 

1 showed a gradual worsening of negative symptom (F=4.6, p=9.98e-3), whereas the 356 

negative symptoms of subtype 2 remained stable across the three stages of the disease 357 

course (F=0.1, p=0.884). Additionally, a gradual worsening of depression/anxiety was only 358 

observed in subtype 1 (F=5.9, p=2.86e-3), which showed worse depression/anxiety at the 359 

late stage, compared to subtype 2 (t=2.1, p=0.036).  360 
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3. Discussion 361 

Our study, applying a machine learning algorithm to brain MRI data from over 4,000 362 

individuals with schizophrenia, has revealed two distinct neurostructural subtypes based 363 

on patterns of neuro-pathological progression. These subtypes are reproducible and 364 

generalizable across different subsamples and illness stages, independent of 365 

macroeconomic and ethnic factors that differed across collection locations. Specific 366 

patterns of neuroanatomical pathology for each subtype were uncovered. Subtype 1 is 367 

characterized by early cortical-predominant loss that first occurs in the Broca's area/fronto-368 

insular cortex, and shows adverse signatures in cortical morphology and an enlarged 369 

striatum. In contrast, subtype 2 is marked by early subcortical-predominant loss that first 370 

appears in the hippocampus, and displays significant volume loss in subcortical regions, 371 

including the hippocampus, amygdala, thalamus, brain stem and striatum. Additionally, we 372 

observed distinct trajectories of specific symptoms clusters in these two subtypes: as 373 

disease progresses, subtype 1 exhibited a gradual worsening of negative and 374 

depression/anxiety symptoms, and less of a decline in positive symptoms compared to 375 

subtype 2. 376 

Despite the growing body of evidence pointing to group-level gray matter volume 377 

deficits in various brain regions - especially in frontal and temporal regions - as well as 378 

altered subcortical volume in schizophrenia [27], substantial individual variations persist 379 

within this population [11, 28]. These inter-individual differences in brain structure may stem 380 

from two primary sources of variation. First, differences in underlying etiology and 381 

pathogenesis could result in varying clinical characteristics (referred to as phenotypic 382 

heterogeneity) [6, 29]. Second, relative differences among subjects in the stage of dynamic 383 

progression (known as temporal heterogeneity) could further increase differences in the 384 

clinical presentation [30, 31]. Such variations suggest that the pathological progression of 385 

schizophrenia might not be attributed to a single unified pathophysiological process. 386 

Indeed, our neurostructural subtypes uncovered two patterns of gray matter loss trajectory 387 

through brain structural imaging. Several studies also reported dynamic patterns of 388 

accelerated gray matter loss over time in individuals with schizophrenia [32, 33]. In addition, 389 

staging of trajectory within subtype reflects the underlying neurophysiological, pathological 390 

and neuropsychological progressions in schizophrenia. Furthermore, we demonstrated 391 

that the phenotypic difference in the intrinsic neuro-pathophysiological trajectory was 392 

reproducible across samples worldwide, independent of macroeconomic and ethnic factors 393 

that differed across these sites. 394 

The Broca's area/fronto-insular cortex and hippocampus are identified separately in 395 

subtype 1 and subtype 2 as the first regions to show gray matter deficits. This is consistent 396 

with our prior finding based on individuals with schizophrenia primarily collected from the 397 

Chinese population [22]. Furthermore, the current study replicates the same two primary 398 

regions in a medication-naïve and a first-episode cohort, suggesting that these 399 

neuropathological changes are a reflection of the disease process, rather than medication 400 

effects. Broca's area and the fronto-insular cortex have been extensively implicated in 401 

schizophrenia [34], supporting Crow's linguistic primacy hypothesis [35] and a triple-402 

network model of the disorder [36]. Moreover, in individuals with psychosis, reductions in 403 
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the inferior frontal cortex preceding the initial psychotic episode have been reported [37, 404 

38]. A prior study reported reduced dopamine release in the prefrontal cortex in patients 405 

with schizophrenia [39]. In relation to hippocampal pathology, research has emphasized 406 

the hippocampus as one of the initial regions to display volumetric loss in schizophrenia 407 

[40, 41]. The hippocampus is thought to be involved in potential glutamatergic dysfunction 408 

in schizophrenia [6]. Decreased levels of the NMDA co-agonist D-serine were linked to 409 

neurobiological alterations similar to those seen in schizophrenia, including hippocampal 410 

volume loss [42]. These findings offer evidence regarding the specific neuroanatomical 411 

locations where gray matter loss is first observed in the schizophrenia subtypes. These 412 

two potential origins could also offer a new viewpoint on the pathological ‘spread’ of the 413 

disorder. 414 

The new subtyping method employed exhibits high potential for distinguishing 415 

neurostructural subtypes with shared pathophysiological foundations. Notably, subtype 1 416 

displayed larger volume of the striatum, while subtype 2 demonstrated reduced volume. 417 

The striatum plays a key role in the dopamine system, which contributes to psychotic 418 

symptoms [43]. Nevertheless, studies of striatal pathology have reported inconsistent 419 

differences between patients and controls [6]. The variability of the striatum is greater in 420 

patients than in controls, which relates to overall structural morphometry [27], dopamine 421 

D2 receptor and transporter levels [44]. This indicates that differences might exist within 422 

subgroups of the disorder [6]. In addition, it is still uncertain whether the discrepancy in 423 

striatum between cases and controls indicates a primary pathology or an effect of 424 

antipsychotic treatment [6]. Interestingly, this study's subtype-specific striatal differences 425 

were replicated in a subset of individuals who had not received antipsychotic treatment, 426 

suggesting that striatal variability persists even in those without antipsychotic treatment. In 427 

addition, a recent study reveals a more pronounced and widespread pattern of thinner 428 

cortex in deficit schizophrenia, a clinically defined subtype with primary, enduring negative 429 

symptoms, compared to non-deficit schizophrenia [45]. This also suggests the existence 430 

of distinct subtypes distinguished by unique neuroimaging features. Taken together, our 431 

neurostructural subtyping differentiated subgroups with unique pathological features, 432 

thereby enhancing our understanding of the neurobiological mechanisms underlying 433 

schizophrenia. 434 

The two newly identified subtypes may have several potential therapeutic implications. 435 

While the underlying mechanisms associated with a subtype-specific symptomatic 436 

trajectory remain unclear, our research shows divergent long-term clinical outcomes 437 

between the two neurostructural subtypes. As the disease advanced, for subtype 1, the 438 

negative and depression/anxiety symptoms gradually worsened; for subtype 2 these 439 

symptoms remained stable. In addition, subtype1 experienced worse positive symptoms 440 

than subtype 2 at the late stage of disease (i.e., duration > 10 years). This is consistent 441 

with a prior study that reported greater gray matter reduction in frontal regions in treatment-442 

resistant compared with treatment-responsive individuals with schizophrenia [46]. Another 443 

intriguing aspect is that our prior research on treatment-resistant schizophrenia 444 

demonstrated that electroconvulsive therapy (ECT) can substantially enhance the volume 445 

of the hippocampus and insula; this is also associated with psychotic symptom alleviation 446 

[47-49]. Notably, these two brain regions were also identified as the 'origins' of gray matter 447 
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loss separately in each subtype. This observation raises the possibility of exploring 448 

neuromodulation interventions, such as transcranial magnetic stimulation (TMS), to target 449 

these specific brain regions. 450 

This study has several limitations. First, while the SuStaIn algorithm estimates 451 

pathophysiological trajectories from cross-sectional MRI data, it remains crucial to validate 452 

these outcomes with longitudinal data to verify the brain changes with disease progression 453 

over time. Second, the current study benefits from a large sample size, but the inclusion of 454 

data from various sites could potentially be influenced by confounding factors, including 455 

diverse cohorts, scanners, and locations. Harmonization methods have been employed to 456 

alleviate disparities across MRI acquisition protocols. Nonetheless, it remains essential to 457 

collect a sufficiently large sample from multi-centers under a standard imaging protocol 458 

and experimental paradigm. Third, a substantial portion of individuals with schizophrenia 459 

were likely to have received or currently use medications, and data from medication-460 

naïve/free individuals were only available for a subset of the datasets. One important 461 

limitation is the assumption of progressive pathology in schizophrenia (discrete events of 462 

tissue loss or continuous downward drift), when applying SuStaIn. The few existing very 463 

long-term imaging studies in schizophrenia support this stance [50] but selection bias 464 

cannot be fully overcome in the recruitment process for neuroimaging studies. Routine 465 

anatomical MRI for every person with psychosis seeking help, with periodic repeats, may 466 

provide better view of the validity of progressive pathology in the future. 467 

In summary, our study reveals two distinct neurostructural schizophrenia subtypes 468 

based on patterns of pathological progression of gray matter loss. We extend the 469 

reproducibility and generalisability of these brain imaging-based subtypes across illness 470 

stages, medication treatments and different sample locations worldwide, independent of 471 

macroeconomic and ethnic factors that differed across these sites. The identified subtypes 472 

exhibit distinct signatures of neuroanatomical pathology and psychotic symptomatic 473 

trajectories, highlighting the heterogeneity of the neurobiological changes associated with 474 

disease progress. This new imaging-based taxonomy shows potential for identification of 475 

homogeneous subsamples of individuals with shared neurobiological characteristics. This 476 

may be a first crucial step in the transition from only syndrome-based to both syndrome- 477 

and biology-based identification of mental disorder subtypes in the near future. 478 
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4. Methods 479 

4.1 Study samples 480 

This study analyzed cross-sectional T1-weighted structural MRI data from a total of 481 

4,291 individuals diagnosed with schizophrenia (1,709 females, mean age=32.5±11.9 482 

years) and 7,078 healthy controls (3,461 females, mean age=33.0±12.7 years). These 483 

datasets came from 21 cohorts of ENIGMA schizophrenia working groups from various 484 

countries around the world, 11 cohorts collected from Chinese hospitals over the last ~10 485 

years, and 9 cohorts from publicly available datasets, i.e., HCP-EP [51], JP-SRPBS [52], 486 

fBIRN [53], MCIC [54], NMorphCH [55], NUSDAST [56], DS000030 [57], DS000115 [58] 487 

and DS004302 [59]. The datasets came from various countries around the world 488 

(Extended Data Fig.5). Details of demographics, geographic location, clinical 489 

characteristics, and inclusion/exclusion criteria for each cohort may be found in the 490 

Supplementary Information (Supplementary Table S1-2). 491 

The severity of symptoms was evaluated by the Positive and Negative Syndrome 492 

Scale (PANSS) [60], including a positive scale (total score of P1-P7), a negative scale (total 493 

score of N1-N7), a general psychopathology scale (total score of G1-G16) and total score. 494 

In addition, phenotypic characteristics were further quantified in three dimensions, such as 495 

cognitive (total score of P2, N5, G5, G10, G11), depression/anxiety (total score of G1, G2, 496 

G3, G6, G15) and excitement (total score of P4, P7, G44, G14) via a five-factor model of 497 

schizophrenia [61]. 498 

All sites obtained approval from their local institutional review boards or ethics 499 

committees, and written informed consent from all participants and/or their legal guardians. 500 

The present study was carried out under the approve from the Medical Research Ethics 501 

Committees of Fudan University (Number: FE222711). 502 

 503 

4.2 Image acquisition, processing and quality control 504 

T1-weighted structural brain MRI scans were acquired at each study site. We used a 505 

standardized protocol for image processing using the ENIGMA Computational Anatomy 506 

Toolbox (CAT12) across multiple cohorts (https://neuro-jena.github.io/enigma-cat12/). 507 

These protocols enable region-based gray matter volume (GMV) measures for image data 508 

based on the automated anatomical (AAL3) atlas [62]. Further details of image acquisition 509 

parameters and quality control may be found in Supplementary Information 510 

(Supplementary Table S1-2). 511 

 512 

4.3 Data harmonization 513 

The ROI-wise GMV measures were first adjusted by regressing out the effects of sex, 514 

age, the square of age, site and total intracranial volume (TIV) using a regression model 515 

[22]. Subsequently, a harmonization procedure was performed using the ComBat algorithm 516 

for correcting multi-site data [63]. The adjusted values were transformed as z-scores (i.e., 517 

normative deviations) relative to the healthy control group. We multiplied these z-scores 518 

by -1 so that the z-score increases as regional GMV decreases. Finally, we removed these 519 

samples if they were marked as a statistical outlier (>5 standard deviations away from the 520 
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global mean). After the quality control, 11,260 individuals were included, of which 4,222 521 

were schizophrenia patients (1,683 females, mean age=32.4±12.4 years) and 7,038 522 

healthy subjects (3,440 females, mean age=33.0±12.4 years). 523 

 524 

4.4 Disease progress modelling 525 

To uncover diverse patterns of pathophysiological progression from cross-sectional 526 

only MRI data and cluster individuals into groups (subtypes), we employed a novel 527 

machine learning approach - Subtype and Stage Inference (SuStaIn) [19]. The 528 

methodology of SuStaIn has been described in detail previously [19]. Here, we briefly 529 

describe the main parameter choices specific to the current study. The SuStaIn model 530 

requires an M x N matrix as input. M represents the number of cases (M=4,222). N is the 531 

number of biomarkers (N=17). 17 gray matter biomarkers that were previously used for 532 

SuStaIn modelling in schizophrenia [22]. Here, all of the AAL3 regions of whole brain were 533 

separated and merged into 17 regions of interest (ROIs) [22], including frontal lobe, 534 

temporal lobe, parietal lobe, occipital lobe, insula, cingulate, sensorimotor, Broca’s area, 535 

cerebellum, hippocampus, parahippocampus, amygdala, caudate, putamen, pallidum, 536 

accumbens and thalamus (Supplementary Table S6). We then ran the SuStaIn algorithm 537 

with 25 start points and 100,000 Markov Chain Monte Carlo (MCMC) iterations [19] to 538 

estimate the most likely sequence that describes spatiotemporal pattern of 539 

pathophysiological progression (i.e., ‘trajectory’). 540 

SuStaIn can identify diverse trajectories of pathophysiological progression given a 541 

subtype number K. We fitted the model for K=2-6 subtypes (‘trajectories’), separately. The 542 

optimal number of subtypes was determined according to the reproducibility of individual 543 

subtyping via a two-fold cross-validation procedure, as described previously [22]. 544 

Specifically, all individuals were randomly split into two non-overlapping folds. For each 545 

fold, we trained the SuStaIn model. For each individual, the trained SuStaIn model provides 546 

a subtype label. We measured the consistency of the subtype labeling across all individuals 547 

between two folds by using the Dice coefficient. This above procedure was repeated ten 548 

times. The largest Dice coefficient was obtained for K=2 (see Figure 1a), indicating the 549 

best consistency based on cross-validation. Finally, the two-cluster model of SuStaIn was 550 

fitted to the entire sample. The most probable sequence (i.e., the order of biomarkers) was 551 

evaluated for each ‘trajectory’ via SuStaIn. For each individual, SuStaIn calculated the 552 

probability (ranging from 0 to 1) of belonging to each ‘trajectory’, and assigned the 553 

individual into a sub-stage of the maximum likelihood ‘trajectory’ through MCMC iterations. 554 

We also estimated the SuStaIn ‘trajectories’ based on a subsample from individuals with 555 

first-episode schizophrenia whose illness duration was less than two years (N=1,122, 513 556 

females, mean age=25.4±8.6 years), and a subsample of medication-naïve individuals 557 

with schizophrenia (N=718, 353 females, mean age=23.7±7.8 years). 558 

 559 

4.5 Visualization of pathophysiological progression trajectory 560 

To visualize the spatiotemporal patterns of pathophysiological progression, we 561 

calculated the mean z-score of regional GMV across individuals belonging to the same 562 

substage of each SuStaIn ‘trajectory’. The images of ROI-wise GMV z-scores were 563 
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mapped into a glass brain template via visualization tools implemented in ENIGMA Toolbox 564 

(https://enigma-toolbox.readthedocs.io/en/latest/index.html) and BrainNetViewer 565 

(https://www.nitrc.org/projects/bnv/). 566 

To examine whether the SuStaIn stage (a continuous indicator of the ‘temporal’ stage 567 

of SuStaIn ‘trajectory’) is associated with pathological processes and clinical 568 

characteristics in schizophrenia, we performed Spearman correlations between the 569 

SuStaIn stages and the degree of brain atrophy (i.e., regional GMV) in schizophrenia. We 570 

also examined whether SuStaIn stages were linked to disease duration, severity of 571 

symptoms, and phenotypic characteristics. 572 

 573 

4.6 Neuroanatomical signatures using regional morphological measures 574 

To further characterize the neuroanatomical signatures associated with each subtype, 575 

we conducted regional morphological analyses in a subsample including 1,840 individuals 576 

with schizophrenia and 1,780 healthy controls. Brain morphological measures, such as 577 

cortical thickness, cortical surface area, cortical volume and subcortical volume, were 578 

quantified using FreeSurfer (version 7.3, http://surfer.nmr.mgh.harvard.edu/). A total of 579 

68x3 regional measures for cortical thickness, cortical surface area and cortical volume 580 

were extracted based on the DK atlas [64], along with 14 subcortical regions (bilaterally 581 

nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus) 582 

and 2 lateral ventricles. In addition, we performed an automated subregion segmentation 583 

(https://surfer.nmr.mgh.harvard.edu/fswiki/SubregionSegmentation) for the hippocampal 584 

substructures (n=38 subregions) [65], the nuclei of the amygdala (n=18) [66], the thalamic 585 

nuclei (n=50) [67], and the brain stem structures (n=4) [68], yielding a total of 110 586 

subregional volumetric measures. 587 

Regional morphological measures for each individual with schizophrenia were 588 

adjusted by regressing out the effects of sex, age, the square of age, TIV and site, and 589 

then transformed to z-scores (i.e., normative deviations from healthy control group). The 590 

mean regional morphological z-score across individuals belonging to each subtype was 591 

calculated, and mapped to brain templates for visualization of neuroanatomical signature 592 

deviation for each subtype relative to healthy population. To further manifest subtype-593 

specific signature in neuroanatomical pathology, we compared the regional morphological 594 

z-scores between the two subtypes using two sample t-tests. Multiple comparisons were 595 

corrected by family wise error (FWE) correction. 596 

 597 

4.7 Distinct symptom profiles between subtypes 598 

To characterize the psychotic symptomatic trajectory with disease duration increases 599 

for each subtype, we further divided the individuals of each subtype into three subgroups 600 

according to their illness durations (early stage: <2 years; middle stage: 2-10 years; late 601 

stage: >10 years). We compared the difference of symptoms among the three stages of 602 

disease in each subtype using ANOVA. Two sample t-tests were performed to compare 603 

the inter-subtype differences separately between each of the stages.  604 
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Data availability 605 

Data of NMorphCH, FBIRN and NUSDAST were obtained from the SchizConnect, a 606 

publicly available website (http://www.schizconnect.org/documentation#by_project). The 607 

NMorphCH dataset and NUSDAST dataset were download through a query interface at 608 

the SchizConnect (http://www.schizconnect.org/queries/new). The FBIRN dataset was 609 

download from https://www.nitrc.org/projects/fbirn/. The DS000115 dataset was download 610 

from OpenfMRI database (https://www.openfmri.org/). The DS000030 dataset was 611 

available at https://legacy.openfmri.org/dataset/ds000030/. The DS004302 dataset was 612 

available at https://openneuro.org/datasets/ds004302/versions/1.0.1. The HCP-EP 613 

dataset was available at https://www.humanconnectome.org/study/human-connectome-614 

project-for-early-psychosis/. The Japanese SRPBS Multi-disorder MRI Dataset was 615 

available at https://bicr-resource.atr.jp/srpbsopen/. Requests for ENIGMA data can be 616 

applied via the ENIGMA Schizophrenia Working Group 617 

(https://enigma.ini.usc.edu/ongoing/enigma-schizophrenia-working-group/). Requests for 618 

raw and analyzed data can be made to the corresponding author (J.Feng, 619 

jffeng@fudan.edu.cn) and will be promptly reviewed by the Fudan University Ethics 620 

Committee to verify whether the request is subject to any intellectual property or 621 

confidentiality obligations. 622 

 623 

Code availability 624 

SuStaIn algorithm is available on the UCL-POND GitHub (https://github.com/ucl-625 

pond/). T1-weighted images were processed using the Computational Anatomy Toolbox 626 

for Standardized Processing of ENIGMA Data (https://neuro-jena.github.io/enigma-cat12/). 627 

A protocol for the current data processing is available at 628 

https://docs.google.com/document/d/1lb9v0v4j_OrgAKDh6_9fl3Hz2Wcfg46c/edit/. 629 

FreeSurfer (version 7.3, http://surfer.nmr.mgh.harvard.edu/) was used to quantify various 630 

morphological measures, such as cortical thickness, cortical surface area, cortical volume 631 

and subcortical volume. The visualization of ROI-wise z-score images was conducted 632 

using BrainNetViewer (https://www.nitrc.org/projects/bnv/). 633 
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Abbreviation: HC, healthy control; SCZ, schizophrenia; FES, first-episode schizophrenia; PANSS, Positive and Negative Syndrome Scale. 716 

  717 

Table 1. Demographic and clinical characteristics in the primary sample including 4,222 schizophrenia patients and 7,038 healthy controls. 
 HC(n=7,038) SCZ(n=4,222) SCZ subtype1(n=2,622) SCZ subtype2(n=1,600) 

 n mean(SD) n mean(SD) n mean(SD) n mean(SD) 

Sex (Female/Male) 3440/3598 - 1683/2539 - 1044/1578 - 639/961 - 

Age (years) 7038 33.0(12.6） 4222 32.4(11.9) 2622 32.4(11.8) 1600 32.4(12.0) 

Illness duration (years) - - 2333 10.5(10.4) 1442 10.4(10.5) 891 10.5(10.4) 

FES/Chronic/Unknown - - 1112/1623/1477 - 696/1002/924 - 426/621/553 - 

PANSS Positive scale (P1-P7) - - 2651 17.2(6.8) 1622 17.3(3.9) 1029 17.0(6.7) 

PANSS Negative scale (N1-N7) - - 2651 17.5(7.6) 1622 17.6(7.6) 1029 17.3(7.6) 

PANSS General scale (G1-G16) - - 2651 34.8(11.6) 1622 35.2(11.6) 1029 34.3(11.6) 

PANSS Total score - - 2651 69.5(22.4) 1622 70.0(22.4) 1029 68.6(22.5) 

PANSS excitement dimension (P4, P7, G44, G14) - - 1322 8.2(3.5) 823 8.2(3.4) 499 8.2(3.5) 

PANSS depression/anxiety dimension (G1, G2, G3, G6, G15) - - 1322 11.3(4.1) 823 11.4(4.1) 499 11.1(4.2) 

PANSS cognitive dimension (P2, N5, G5, G10, G11) - - 1322 10.6(4.0) 823 10.5(4.0) 499 10.6(4.0) 
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Table 2. Main findings of subtype-specific neuroanatomical signatures. 
Morphometry measures Subtype-specific neuroanatomical signatures 

Cortical Thickness/Volume/Area a)      Both subtype1 and subtype2 exhibit a moderate degree in the average cortical thickness reduction. 

b)      Reduction of average cortical volume/area is only observed in the subtype1. 

c)      The worst reduction of cortical thickness/volume/area is located within the superior frontal regions for the subtype1, but in the superior/medial temporal 

regions for the subtype2. 

Subcortical Volume a)      Enlargement of lateral ventricle is found in both subtype1 and subtype2, but much larger in the subtype2. 

b)      Worse loss volumes of hippocampus, amygdala, thalamus and accumubens are observed in the subtype2, compared to the subtype1. 

c)      Volumes of striatum (i.e., caudate, putamen) are increased in the subtype1, but decreased in the subtype2, compared to the healthy population. 

Hippocampus segmentation a)      Volume loss in hippocampal subregions is worse in the subtype2, compared to the subtype1. 

b)      The most significant volume loss is in the molecular layer for the subtype2. 

Amygdala segmentation a)      The subtype2 shows worse volume loss in amygdala subregions, compared to the subtype1. 

b)      The most significant decrease in volume is in the cortico-amygdaloid transition area for both the subtypes. 

Thalamus segmentation a)      The subtype2 shows worse volume loss in thalamus subregions, compared to the subtype1. 

Brain stem segmentation a)      Volume loss of brain stem subregions is only observed in the subtype2. 

 718 
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Table 3. Symptom scores for each subtype at different stages of disease duration. 
Symptoms Subtype 1 F test  Subtype 2 F test 

Early 

(n=579) 

Middle 

(n=362) 

Late 

(n=400) 
F P  

Early 

(n=371) 

Middle 

(n=216) 

Late 

(n=282) 
F P 

PANSS Positive scale (P1-P7) 19.5(6.4) 16.0(6.7) 16.7(7.0)* 37.4 1.60E-16  19.6(6.4) 16.0(6.7) 15.2(6.2)* 41.9 4.68E-18 

PANSS Negative scale (N1-N7) 16.8(7.3) 17.4(7.4) 18.3(7.7) 4.6 9.98E-03  17.3(7.4) 17.1(7.5) 17.4(7.5) 0.1 0.884 

PANSS General scale (G1-G16) 37.6(10.0) 34.1(12.2) 35.3(13.3)* 10.6 2.80E-05  37.7(10.8) 33.7(12.4) 32.7(12.0)* 15.6 2.30E-07 

PANSS Total score 73.9(19.7) 67.5(23.2) 70.2(25.0)* 9.3 9.40E-05  74.5(20.9) 66.7(23.4) 65.4(22.4)* 15.7 2.05E-07 

PANSS excitement dimension (P4, P7, 

G44, G14) 
8.8(3.4) 7.9(3.3) 8.2(3.4) 4.9 8.01E-03  8.7(3.3) 7.8(3.4) 7.8(3.7) 4.12 0.017 

PANSS depression/anxiety dimension 

(G1, G2, G3, G6, G15) 
11.2(3.7) 11.7(4.2) 12.5(4.9)* 5.9 2.86E-03  11.4(4.0) 10.8(4.4) 11.3(4.9)* 0.7 0.511 

PANSS cognitive dimension (P2, N5, 

G5, G10, G11) 
10.1(3.7) 10.8(4.0) 12.0(4.6) 13.5 1.74E-06  10.3(3.8) 10.9(3.9) 11.4(4.7) 2.8 0.061 

* indicates significant difference between the subtype1 and subtype2 using two sample t test (p<0.05). 720 
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Figures Legend 721 

Figure 1. Two pathophysiological progression trajectories in schizophrenia. (a) Dice coefficient 722 

indicates that K=2 is the optimal number of subtypes with best consistency of the subtype labeling 723 

between two independent schizophrenia populations using non-overlap 2-folds cross-validation 724 

procedure. Data are presented as mean values +/- SD. (b) The proportion of individuals whose subtype 725 

labels keep consistent by non-overlap cross-validation procedure. (c) Sequences of regional volume 726 

loss across seventeen brain regions for each ‘trajectory’ via SuStaIn are shown in y-axis. The heatmap 727 

shows regional volume loss in which biomarker (y-axis) in a particular ‘temporal’ stage (T0-T16) in the 728 

trajectory (x-axis). The Color bar represents the degree of gray matter volume (GMV) loss in 729 

schizophrenia relative to healthy controls (i.e., z score). (d) Spatiotemporal pattern of pathophysiological 730 

‘trajectory’. The z-score images are mapped to a glass brain template for visualization. Spatiotemporal 731 

pattern of gray matter loss displays a progressive pattern of spatial extension along with later ‘temporal’ 732 

stages of pathological progression, that is distinct between trajectories. (e-f) Pathological stages of 733 

SuStaIn are correlated with reduced gray matter volume of Broca’s area and hippocampus. (g-i) 734 

Pathological stages of SuStaIn are correlated with longer disease duration, worse negative symptoms 735 

and worse cognitive symptoms.  736 

Figure 2. Trajectories are reproducibility for samples from different locations of the world. Two 737 

sets of ‘trajectories’ are separately derived from two non-overlapping location cohorts, that are (a) East 738 

Asian ancestry (EAS) cohort, and (b) European ancestry (EUR) cohort. The Color bar represents the 739 

degree of gray matter volume (GMV) loss in schizophrenia relative to healthy controls (i.e., z score). (c) 740 

The similarity of the spatiotemporal pattern of each ‘trajectory’ between any two of cohorts is shown by 741 

the heatmap. The color bar of the heatmap represents the similarity, which is quantified via the 742 

Spearman correlation coefficient between the trajectories from two cohorts. A total of six location cohorts 743 

are classified by where the sample locate at, including the EAS, EUR, China, Japan, Europe and North 744 

America. The whole sample is labelled as a cross-ancestry cohort.  745 

Figure 3. Subtype-specific signatures in neuroanatomical pathology. Regional Morphological z-746 

scores (i.e., normative deviations from healthy control group) for each subtype are mapped to a brain 747 

template for visualization. Effect size of inter-subtype difference is quantified using Cohen’s d. 748 

Figure 4. Symptomatic trajectories across three stages of disease duration. Individuals of each 749 

subtype are divided into three subgroups according to their illness durations (early stage: ≤2 years; 750 

middle stage: 2-10 years; late stage: >10 years). Data are presented as mean values +/- se. * p<0.05.  751 

Extend Data Fig 1. Pathophysiological progression trajectories in first-episode population and 752 

medication-naïve population. Trajectories are repeated based on the subsample data from the first-753 

episode schizophrenia patients whose illness duration was less than two years (N=1,112, 513 females, 754 

mean age=25.4±12.4 years), and another subsample data from medication-naïve patients with 755 

schizophrenia (N=718, 353 females, mean age=23.7±12.1 years). 756 

Extend Data Fig 2. Comparisons of morphological z-score between the two subtypes. A larger 757 

positive z-score indicates a larger deviation of reduction relative to healthy control group. Two sample t 758 

test is conducted to examine inter-subtype difference for the (a) averaged cortical volume (t=9.36, 759 

p<10e-16, Cohen’s d=0.446); (b) averaged cortical area (t=8.09, p<10e-16, Cohen’s d=0.386); (c) 760 
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averaged cortical thickness (t=1.29, p=0.198, Cohen’s d=0.061); (d) thalamus volume (t=-4.28, p=1.97e-761 

5, Cohen’s d=-0.205); (e) brain stem volume (t=-9.79, p<10e-16, Cohen’s d=-0.469); (f) hippocampus 762 

volume (t=-9.25, p<10e-16, Cohen’s d=-0.449); (g) amgydala volume (t=-7.83, p=8.44e-15, Cohen’s d=-763 

0.379); (h) accumbens volume (t=-6.40, p=1.94e-10, Cohen’s d=-0.305); (i) caudate volume (t=-9.82, 764 

p<10e-16, Cohen’s d=-0.468); (j) putamen volume (t=-8.14, p<10e-16, Cohen’s d=-0.389). 765 

Extend Data Fig 3. Hippocampus subregional morphological z-score for the two subtypes. A 766 

larger positive z-score indicates a larger deviation of reduction relative to healthy control group. 767 

Extend Data Fig 4. Amygdala subregional morphological z-score for the two subtypes. A larger 768 

positive z-score indicates a larger deviation of reduction relative to healthy control group.  769 

Extend Data Fig 5. Geographic map of included datasets.  770 
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Figure 1. Two pathophysiological progression trajectories in schizophrenia. (a) Dice
coefficient indicates that K=2 is the optimal number of subtypes with best consistency of
the subtype labeling between two independent schizophrenia populations using
non-overlap 2-folds cross-validation procedure. Data are presented as mean values +/-
SD. (b) The proportion of individuals whose subtype labels keep consistent by
non-overlap cross-validation procedure. (c) Sequences of regional volume loss across
seventeen brain regions for each ‘trajectory’ via SuStaIn are shown in y-axis. The
heatmap shows regional volume loss in which biomarker (y-axis) in a particular ‘temporal’
stage (T0-T16) in the trajectory (x-axis). The Color bar represents the degree of gray
matter volume (GMV) loss in schizophrenia relative to healthy controls (i.e., z score). (d)
Spatiotemporal pattern of pathophysiological ‘trajectory’. The z-score images are mapped
to a glass brain template for visualization. Spatiotemporal pattern of gray matter loss
displays a progressive pattern of spatial extension along with later ‘temporal’ stages of
pathological progression, that is distinct between trajectories. (e-f) Pathological stages of
SuStaIn are correlated with reduced gray matter volume of Broca’s area and
hippocampus. (g-i) Pathological stages of SuStaIn are correlated with longer disease
duration, worse negative symptoms and worse cognitive symptoms.
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Figure 2. Trajectories are reproducibility for samples from different locations of the
world. Two sets of ‘trajectories’ are separately derived from two non-overlapping location
cohorts, that are (a) East Asian ancestry (EAS) cohort, and (b) European ancestry (EUR)
cohort. The Color bar represents the degree of gray matter volume (GMV) loss in
schizophrenia relative to healthy controls (i.e., z score). (c) The similarity of the
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spatiotemporal pattern of each ‘trajectory’ between any two of cohorts is shown by the
heatmap. The color bar of the heatmap represents the similarity, which is quantified via
the Spearman correlation coefficient between the trajectories from two cohorts. A total of
six location cohorts are classified by where the sample locate at, including the EAS, EUR,
China, Japan, Europe and North American. The whole sample is labelled as a
cross-ancestry cohort.
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Figure 3. Subtype-specific signatures in neuroanatomical pathology. Regional
Morphological z-scores (i.e., normative deviations from healthy control group) for each
subtype are mapped to a brain template for visualization. Effect size of inter-subtype
difference is quantified using Cohen’s d.
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Figure 4. Symptomatic trajectories across three stages of disease duration.
Individuals of each subtype are divided into three subgroups according to their illness
durations (early stage: ≤2 years; middle stage: 2-10 years; late stage: >10 years). Data
are presented as mean values +/- se. * p<0.05.
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Extend Data Fig 1. Pathophysiological progression trajectories in first-episode
population and medication-naïve population. Trajectories are repeated based on the
subsample data from the first-episode schizophrenia patients whose illness duration was
less than two years (N=1,112, 513 females, mean age=25.4±12.4 years), and another
subsample data from medication-naïve patients with schizophrenia (N=718, 353 females,
mean age=23.7±12.1 years).
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Extend Data Fig 2. Comparisons of morphological z-score between the two
subtypes. A larger positive z-score indicates a larger deviation of reduction relative to
healthy control group. Two sample t test is conducted to examine inter-subtype difference
for the (a) averaged cortical volume (t=9.36, p<10e-16, Cohen’s d=0.446); (b) averaged
cortical area (t=8.09, p<10e-16, Cohen’s d=0.386); (c) averaged cortical thickness (t=1.29,
p=0.198, Cohen’s d=0.061); (d) thalamus volume (t=-4.28, p=1.97e-5, Cohen’s d=-0.205);
(e) brain stem volume (t=-9.79, p<10e-16, Cohen’s d=-0.469); (f) hippocampus volume
(t=-9.25, p<10e-16, Cohen’s d=-0.449); (g) amgydala volume (t=-7.83, p=8.44e-15,
Cohen’s d=-0.379); (h) accumbens volume (t=-6.40, p=1.94e-10, Cohen’s d=-0.305); (i)
caudate volume (t=-9.82, p<10e-16, Cohen’s d=-0.468); (j) putamen volume (t=-8.14,
p<10e-16, Cohen’s d=-0.389).
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Extend Data Fig 3. Hippocampus subregional morphological z-score for the two
subtypes. A larger positive z-score indicates a larger deviation of reduction relative to
healthy control group.
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Extend Data Fig 4. Amygdala subregional morphological z-score for the two
subtypes. A larger positive z-score indicates a larger deviation of reduction relative to
healthy control group.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.11.23296862doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.11.23296862
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extend Data Fig 5. Geographic map of included datasets.
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