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ABSTRACT 95 

Sequence-based genetic testing currently identifies causative genetic variants in ~50% of 96 

individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA 97 

methylation are implicated in various neurodevelopmental disorders but remain unstudied in 98 

DEEs. Rare epigenetic variations (“epivariants”) can drive disease by modulating gene expression 99 

at single loci, whereas genome-wide DNA methylation changes can result in distinct 100 

“episignature” biomarkers for monogenic disorders in a growing number of rare diseases. Here, 101 

we interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral 102 

blood samples from 516 individuals with genetically unsolved DEEs who had previously 103 

undergone extensive genetic testing. We identified rare differentially methylated regions (DMRs) 104 

and explanatory episignatures to discover causative and candidate genetic etiologies in 10 105 

individuals. We then used long-read sequencing to identify DNA variants underlying rare DMRs, 106 

including one balanced translocation, three CG-rich repeat expansions, and two copy number 107 

variants. We also identify pathogenic sequence variants associated with episignatures; some had 108 

been missed by previous exome sequencing. Although most DEE genes lack known 109 

episignatures, the increase in diagnostic yield for DNA methylation analysis in DEEs is 110 

comparable to the added yield of genome sequencing. Finally, we refine an episignature for CHD2 111 

using an 850K methylation array which was further refined at higher CpG resolution using bisulfite 112 

sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates 113 

the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate 114 

genetic causes as ~2% (10/516) for unsolved DEE cases. 115 

KEYWORDS: DNA methylation; epivariant; episignature; molecular diagnostics; developmental 116 

and epileptic encephalopathies 117 

  118 
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INTRODUCTION 119 

The developmental and epileptic encephalopathies (DEEs) are the most severe group of 120 

epilepsies, defined by frequent epileptiform activity associated with developmental slowing or 121 

regression1. While each genetic etiology is rare, with more than 825 genes implicated2, the 122 

cumulative incidence of DEEs overall is 1 in 590 children3. Currently, de novo, X-linked, or 123 

recessively inherited pathogenic germline variants are found in ~50% of individuals with DEEs 124 

who undergo genetic testing4. These are identified by gene panels, exome sequencing (ES), and 125 

now, genome sequencing (GS)5-7. A smaller subset is explained by copy number variants 126 

(CNVs)8. Understanding the etiology guides management, such as clinical trial participation, 127 

informs accurate reproductive counseling, enables families to join gene-based support groups, 128 

and facilitates the development of targeted therapies9-12. This, in turn, improves outcomes but is 129 

not possible when the etiology is unknown (“unsolved”). 130 

Epigenetic modifications, which alter the DNA without changing the DNA nucleotide 131 

sequence, determine the etiology of some individuals with neurodevelopmental disorders but 132 

have not yet been studied in the DEEs. DNA methylation is an essential epigenetic modification 133 

that regulates cellular gene expression by adding a methyl (CH3) group to a DNA strand, typically 134 

at CpG sites. This can occur through methylation of promoter CpGs, genomic imprinting, and X-135 

chromosome inactivation13. Rare epigenetic variations (“epivariants”) disrupt normal methylation 136 

and cause disease. While DNA methylation does not change the DNA sequence itself, epivariants 137 

are often perpetrated by underlying in-cis DNA changes, such as rare sequence variants, 138 

structural alterations, and CG-rich repeat expansions14 that are difficult to identify by standard 139 

sequencing. One example is the methylation of the 5’ untranslated region (5’UTR) of FMR1 140 

(MIM:309550) that represses gene expression and causes Fragile X syndrome (MIM:300624). 141 

Similarly, hypermethylation of the 5’UTR of Xylosyltransferase 1 (XYLT1, MIM:608124), leading 142 

to gene silencing, may identify the “missing” allele in the recessive disease Baratela-Scott 143 
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syndrome (BSS [MIM:615777])15. In both Fragile X and BSS, the aberrant methylation is due to 144 

the expansion of a CG-rich repeat that is difficult to reliably detect using short-read sequencing. 145 

Rare epivariants, also called rare differentially (hyper- and hypo-) methylated regions (DMRs), 146 

are enriched in individuals with neurodevelopmental disorders and congenital anomalies (ND-CA) 147 

compared to controls16. 148 

In contrast to rare DMRs, which represent discrete genomic regions with outlier 149 

methylation changes, genome-wide epigenetic profiles identify a collection of distinct individual 150 

CpG site methylation changes across the genome. A growing number of rare diseases exhibit 151 

these methylation patterns, or episignatures, that are reproducible among individuals with 152 

pathogenic variants within the same protein domain, gene, or protein complex, yielding highly 153 

sensitive and specific biomarkers17,18. Since episignatures in diagnostics were first clinically 154 

validated and implemented with the EpiSignTM assay in 201919, episignatures for nearly 70 rare 155 

diseases have been published. Episignatures provide strong evidence for genetic diagnosis, 156 

regardless of whether an underlying pathogenic DNA variant is identified, and to resolve variants 157 

of uncertain significance (VUS). Episignatures have been found for neurodevelopmental 158 

disorders where epilepsy is part of the phenotype, but the diagnostic yield for DEEs has not been 159 

determined. Furthermore, how these clinically relevant episignatures might be harnessed to 160 

inform underlying disease biology and give insights into potential distinct and overlapping 161 

pathogenic mechanisms among disorders is just beginning to be explored20. 162 

Both rare DMRs and episignatures can be detected in peripheral blood samples. Rare 163 

DMRs derived from individuals with ND-CA are recapitulated across multiple tissue types, 164 

including blood and fibroblasts16. Episignature classifiers are trained on data obtained from blood-165 

derived DNA and are, therefore, blood-specific. 166 

Here, we assessed rare outlier DMRs and DNA methylation episignatures in peripheral 167 

blood-derived DNA from 516 individuals with genetically unsolved DEEs. We report our 168 
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methylation array data processing pipeline, MethylMiner, which automates quality control, 169 

normalization, and implementation of an algorithm that mines rare DNA methylation events14 in 170 

addition to interactive data visualization. Using a combination of short- and long-read sequencing 171 

(LRS), we identify variants underlying rare epivariants and episignatures. Finally, we refine the 172 

robust episignature for the DEE gene CHD2 (MIM:602119)18 to explore how clinically relevant 173 

episignatures may give insights into underlying biology. For individuals with unsolved DEEs, we 174 

show that rare epivariants and episignatures uncover molecular causes missed using standard 175 

sequence-based approaches. 176 

 177 

MATERIALS AND METHODS 178 

Cohorts 179 

Our cohorts consist of 530 affected individuals (43% female) with unsolved DEEs and 478 healthy 180 

controls (46% female) (Figure S1, Table S1, Supplemental Methods). An additional 146 analytical 181 

controls (60% female) were included for validation. Individuals with DEEs were recruited from 182 

investigators’ research and clinical programs21,22. Methylation array data for healthy controls were 183 

drawn from a public database23 (n=111), an internal institutional database (n=337), and 30 184 

unaffected parents of probands with DEEs (Supplemental Methods). Eight family members with 185 

epilepsy were studied to identify familial methylation patterns (shared rare DMRs or 186 

episignatures). Analytical controls, including i) six individuals each with a disease-associated rare 187 

DMR, ii) 24 individuals with a pathogenic variant in a gene or CNV associated with an 188 

episignature, and iii) 116 individuals with a pathogenic variant in a gene without a known 189 

episignature, were used to validate positive and negative rare DMR and episignature findings in 190 

the DEE cohort. After quality control and normalization (described below), there were 516 191 

remaining individuals with unsolved DEEs who had undergone extensive molecular testing: 80% 192 
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had a gene panel, 40% microarray analysis, 76% ES, and 38% GS. Collectively, 98% had at least 193 

one sequence-based investigation (gene panel, ES, or GS). There were also 464 healthy controls, 194 

141 analytical controls, and eight affected family members for DNA methylation analysis. This 195 

study was approved by the Institutional Review Board (IRB) of St. Jude Children’s Research 196 

Hospital (SJCRH). Written informed consent was provided by parents or legal guardians of 197 

individuals with DEEs with local IRB approval from SJCRH, Austin Health (Australia), the 198 

University of Washington (UW), and the National Institutes of Health (NIH). 199 

 200 

Methylation Array 201 

All data were derived from peripheral blood-derived DNA, except for five analytical control 202 

samples used for outlier DMR analysis: saliva-derived DNA from one female individual with BSS 203 

and her parent and lymphoblastoid cell line (LCL)-derived DNA from three individuals, including 204 

two males and one female, with Fragile X syndrome (Coriell). These samples were used as 205 

positive controls to validate the outlier analysis, and then removed from the final analysis to 206 

minimize potential cell type differences. DNA was extracted from peripheral blood samples using 207 

standard protocols, with approximately 250-500ng of DNA bisulfite converted. The Illumina 208 

Infinium MethylationEPIC v1.0 (850K array) bead chip arrays (processed according to the 209 

manufacturer’s protocol, Supplemental Methods) interrogate >850,000 individual CpG sites, 210 

including CpG islands, promoter regions, gene bodies, FANTOM5 enhancers, and proximal 211 

ENCODE regulatory elements24. 212 

 Of 1,162 individuals included, three individuals were run in triplicate, and 29 were run in 213 

duplicate across different batches to produce a total of 1,197 blood-derived DNA methylation 214 

array samples before quality control and processing. Each sample consisted of data for >850,000 215 

probes that were rigorously quality-controlled for the removal of outlier samples as opposed to 216 
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outlier regions of interest. All data were combined and loaded into the R package minfi25 for quality 217 

control and normalization and the R package SVA26 for batch correction using the ComBat 218 

method27. Individual CpG probes that failed (detection p>0.01) in >10% of samples and probes 219 

overlapping with common SNPs were removed. Samples judged to be of poor quality (>1% of 220 

probes that failed) and samples that were deemed outliers based on manual inspection of the 221 

principal component analysis (PC1 and PC2), using β values for probes located on chromosome 222 

(chr) 1, were removed. We estimated blood cell type composition for six cell types (CD8T, CD4T, 223 

NK, B-cell, monocytes, and granulocytes) from β values for each sample28. Samples containing 224 

outlier cellular fractions defined as ≥99th percentile +2% or ≤1st percentile -2% for at least two of 225 

the six cell types were also removed. Methylation array intensity values on the sex chromosomes 226 

(X, Y) were used to infer the sample sex and compared to the clinically reported sex. Samples 227 

with sex mismatch were removed. Samples were separated into inferred sex (males and females) 228 

for all downstream analyses of sex chromosomes. This quality control and filtering left 1,161 229 

samples across 1,129 individuals (26 individuals in duplicate and three individuals in triplicate 230 

across batches) assayed by the 850K array and 833,834 probes (814,945 autosomal probes and 231 

18,889 sex chromosome probes) (Table S1). 232 

 233 

Identification and Annotation of Rare Epivariants 234 

To identify outlier DMRs, we used a sliding window approach as previously described14. In brief, 235 

this algorithm employs user-defined quantile thresholds to determine outlier β values across 236 

multiple CpG sites. Per 1Kb window, at least three consecutive CpG sites must exhibit outlier β 237 

values in the same direction (hyper or hypo) for a sample compared to the rest of the cohort to be 238 

considered an outlier DMR. We considered β values above the 99.25th percentile plus 0.15 as 239 

hypermethylated, and those below the 0.75th percentile minus 0.15 as hypomethylated for 240 

analysis of the autosomes (chr1-chr22). Since samples were split into inferred sex (males and 241 
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females) for analysis of the sex chromosomes, the stringency was adjusted accordingly to 99th 242 

plus 0.15 for hypermethylated and 1st percentile minus 0.15 for hypomethylated. DMRs were then 243 

annotated to inform functional interpretation using HOMER29 and including overlap with UCSC 244 

RefSeq gene bodies and promoter regions, defined as ±2Kb of the transcription start sites (TSS), 245 

known CpG islands (CGIs), repetitive-element information (RepeatMasker and SimpleRepeats), 246 

imprinting control centers30, CTCF-binding sites31, gene molecular function information29, OMIM 247 

phenotype32, average brain expression using bulk RNA-seq data from the GTEx Portal, and in-248 

house epilepsy- and candidate-gene lists to prioritize candidates but not as exclusion criteria. 249 

Additionally, a recent study delineated the rare DMR landscape in the human population by 250 

examining 450K methylation array data from >23,000 individuals14. Regions from those data were 251 

checked against our DMRs where possible to determine the frequency at which each DMR occurs 252 

in the population. Based on this annotation information, DMRs were prioritized by four features: 253 

(1) a low or negligible population frequency; (2) a well-annotated genomic location, such as in or 254 

near known epilepsy and candidate genes; (3) recurrence in multiple individuals; and (4) manual 255 

inspection of DMRs, including flanking regions. 256 

 257 

Development of a DNA Methylation Array Analysis and Visualization Pipeline 258 

We developed MethylMiner, a methylation array analysis pipeline tailored toward discovering rare 259 

epivariants with interactive data visualization. The pipeline requires standard input files, raw signal 260 

.idat files containing each sample’s green and red channels, and a metadata sheet including 261 

sample names, sentrix IDs, reported sample sex, and sample group (if applicable). In brief, the 262 

pipeline performs quality control and normalization as described to derive output files, including 263 

quality control reports, β values, M-values, and bigWig files for quick and convenient visualization 264 

in the integrative genomics viewer (IGV)33. The pipeline then performs the outlier DMR analysis 265 

(using scripts derived from: https://github.com/AndyMSSMLab/Methylation_script) based on user-266 
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defined quantile thresholds and outputs the DMRs and annotations into a tabulated sheet. This 267 

annotated list of DMRs is then used as input for the interactive data visualization in JupyterDash, 268 

which allows users to interact with plots for quality control metrics, DMR annotations, and DMR 269 

genomic tracks. The pipeline is hosted on our GitHub page (https://github.com/stjude-270 

biohackathon/MethylMiner). 271 

 272 

Validation of Outlier DMRs Using Enzymatic Methyl-Sequencing  273 

We performed targeted Enzymatic Methyl-sequencing (targeted EM-seq) enriched with the Twist 274 

Human methylome panel targeting 3.98M CpGs through 123 Mb of genomic content. Targeted 275 

EM-seq of peripheral blood-derived DNA was used to validate a subset of outlier DMRs, including 276 

n=2 positive control DMRs (XYLT1 and FMR1) and n=29 DMRs-of-interest called amongst n=3 277 

individuals with unsolved DEEs. EM-seq library preparation, target enrichment, and sequencing 278 

were performed using standard protocols34. Reads were processed using the “nf-core/methyseq” 279 

pipeline with the '--emseq' flag. For detailed EM-seq methods, please refer to Supplemental 280 

Methods. 281 

 282 

Identification of Structural Variants with Long-Read Sequencing 283 

We used both targeted and whole-genome LRS on the Oxford Nanopore Technologies (ONT) 284 

platform to validate rare DMRs and identify candidate disease-causing variants at or near the site 285 

of interest (Table S2A). Targeted LRS using the “read-until” function was performed on an ONT 286 

GridION using a single R9.4.1 flowcell as described previously35. At least 100Kb of sequence was 287 

added to either side of the target region for capture. Libraries for GS were prepared using the 288 

ligation sequencing kit (SQK-LSK110) following the manufacturer’s instructions, then loaded onto 289 

a single flowcell (FLO-PRO110, R9.4.1) on a PromethION and run for 72 hours with one wash 290 
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and reload. All data were base called using Guppy 6.3.2 (ONT) with the superior model including 291 

5mC methylation. Reads were aligned to GRCh38/hg38 using minimap236, SNP and indel 292 

variants were called using Clair337, structural variants were called using Sniffles38, SVIM39, and 293 

CuteSV40, and phasing was performed using LongPhase41. Aligned and phased bam files were 294 

visualized in IGV33. 295 

 296 

Episignature Testing 297 

Data were blinded and submitted to the clinical bioinformatics laboratory [Molecular Diagnostics 298 

Laboratory, London Health Sciences Centre (LHSC), Western University, London, Canada] 299 

through a secure file transfer protocol and stored on encrypted servers. DNA methylation data for 300 

each sample were compared to clinically validated DNA methylation episignatures for all disorders 301 

which are part of the EpiSignTM v4 clinical test42. The reference database EpiSignTM Knowledge 302 

Database (EKD) includes thousands of clinical, peripheral blood DNA methylation profiles from 303 

disorder-specific reference and normal controls (general population samples of various ages and 304 

racial backgrounds). Individual DNA methylation data for each individual were compared with the 305 

EKD using the support vector machine (SVM) based classification algorithm for EpiSignTM 306 

disorders. A Methylation Variant Pathogenicity (MVP) score between 0 and 1 was generated to 307 

represent the confidence of prediction for the specific disorder the SVM was trained to detect. 308 

Conversion of SVM decision values to these scores was carried out according to the Platt scaling 309 

method43.  310 

Classification for a specific EpiSignTM disorder included a combination of MVP score, 311 

hierarchical clustering, multidimensional scaling (MDS) of an individual’s methylation data relative 312 

to the disorder-specific EpiSignTM probe sets and controls. MVP score assessment had a scale 313 

with thresholds of >0.5 for positive, <0.1 negative, 0.1–0.5 inconclusive or moderate confidence. 314 
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A detailed description of this analytics protocol was described previously18,44. Possible types of 315 

results included: positive (matching an EpiSignTM disorder), negative (not matching any EpiSignTM 316 

disorder), and inconclusive (described in detail in results).  317 

 318 

Exome and Genome Sequencing 319 

If sequencing data were already available for the individual on a collaborative research basis, 320 

these data were reviewed. If the data were unavailable, ES or GS was performed on peripheral 321 

blood-derived DNA using standard Illumina short-read sequencing techniques and bioinformatic 322 

approaches (Supplemental Methods). We validated potentially pathogenic variants with Sanger 323 

sequencing and confirmed sample identity and relatedness (e.g. trios) using Powerplex Short-324 

Tandem Repeat (STR) Identification analysis.  325 

 326 

RNA-sequencing and Gene Expression Analysis 327 

RNA was extracted from dermal fibroblasts established from skin punch biopsies for Family 2 328 

(n=2) and Family 3 (n=3) described in the results. RNA-seq was performed using standard 329 

Illumina short-read sequencing practices (Supplemental Methods), and the reads were processed 330 

using the “nfcore/rnaseq” pipeline. Removal of the adapter sequences was performed using Trim 331 

Galore!, and low-quality reads were eliminated with FastQC45. Subsequently, reads were aligned 332 

to a reference genome using the STAR aligner46. Gene expression quantification was performed 333 

using Salmon47, which estimates transcript abundance. To determine gene “dropout,” the 334 

OUTRIDER algorithm48 was applied to RNA-seq data for Family 2 (proband and parent), Family 335 

3 (proband and parent 2), and Family 3 (parent 1 and parent 2) against a publicly available dataset 336 

of n=139 fibroblast samples49. PCA displayed no batch groupings, and genes with Fragments Per 337 
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Kilobase of transcript per Million mapped reads (FPKM)<1 were removed as lowly expressed 338 

genes. Results were considered significant if they had a padj<0.05 and a z-score cutoff of ±2. 339 

 340 

Refinement of a CHD2 Episignature 341 

A total of 17 females and 12 males with genetic variants in CHD2 and clinical features consistent 342 

with CHD2-epileptic encephalopathy of childhood (EEOC) were included in this expanded 850K 343 

cohort. The detailed list of genetic variants classified as pathogenic or likely pathogenic according 344 

to the American College of Medical Genetics guidelines is in Table S2B. All samples and records 345 

were deidentified. 346 

Details of the methylation data analysis and episignature refinement are as previously 347 

described18,50-52. Briefly, methylation signal intensities were imported into R 4.1.3 for analysis. 348 

Normalization was performed by the Illumina normalization method with background correction 349 

using minfi25. Probes located on X and Y chromosomes, known SNPs, or probes that cross-react 350 

(as reported by Illumina) were excluded. Samples containing failed probes of more than 5% 351 

(p>0.1, calculated by the minfi package) were also removed. The genome-wide methylation 352 

density of all samples was examined, and principal component analysis (PCA) was performed to 353 

visualize the overall data structure of the batches and to identify outlier samples. All 29 samples 354 

passed and were used for probe selection. The MatchIt package was used to randomly select 355 

controls, which were matched for age, sex, and array type from the EKD at the LHSC, as 356 

previously described18,53. The methylation level of each probe was calculated as the ratio of 357 

methylated signal intensity over the sum of methylated and unmethylated signal intensities (β-358 

values), ranging between 0 (completely unmethylated) and 1 (fully methylated). β-values were 359 

then converted to M-values by logit transformation using the formula log2(β/(1-β)) to perform linear 360 

regression modeling, which was used to identify the differentially methylated probes (DMPs), via 361 

the R package limma54. The analysis was also adjusted for blood cell-type compositions, using 362 



   
 

   
 

17 

the Houseman algorithm55. The estimated blood cell proportions were added to the model matrix 363 

of the linear models as confounding variables. The generated p-values were moderated using the 364 

eBayes function in the limma package and were corrected for multiple testing using the Benjamini 365 

and Hochberg (BH) method.  366 

Following this, probe selection was performed in three steps. Firstly, 1000 probes were 367 

selected, which had the highest product of methylation difference means between case and 368 

control samples and the negative of the logarithm of multiple-testing corrected p values derived 369 

from the linear modeling. Secondly, a receiver’s operating characteristic (ROC) curve analysis 370 

was performed, and 200 probes with the highest area under the ROC curve (AUC) were retained. 371 

Lastly, probes having pair-wise Pearson’s correlation coefficient greater than 0.85 within case 372 

and control samples separately were removed (none of the selected 200 probes met this criteria). 373 

This resulted in the identification of 200 DMPs. These probes were used for the construction of a 374 

hierarchical clustering model using Ward’s method on Euclidean distance, as well as a MDS 375 

model by scaling of the pairwise Euclidean distances between samples. 376 

 377 

Functional Annotation and Correlation of the CHD2 Episignature  378 

Functional annotation and episignature cohort comparisons were performed according to our 379 

published methods44. Briefly, to assess the percentage of DMPs shared between the CHD2 380 

episignature and other neurodevelopmental conditions on the EpiSign™ clinical classifier, 381 

heatmaps and circos plots were produced. Heatmaps were plotted using the R package 382 

pheatmap (version 1.0.12) and circos plots using the R package circlize (version 0.4.15)56. To 383 

determine the genomic location of the DMPs, probes were annotated in relation to CGIs and 384 

genes using the R package annotatr57 with AnnotationHub and annotations hg19_cpgs, 385 

hg19_basicgenes, hg19_genes_intergenic, and hg19_genes_intronexonboundaries. CGI 386 

annotations included CGI shores from 0–2Kb on either side of CGIs, CGI shelves from 2–4Kb on 387 

either side of CGIs, and inter-CGI regions encompassing all remaining regions. A chi-squared 388 
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goodness of fit test was performed in R to investigate the significance between background DMP 389 

annotation distribution and the CHD2 cohort annotation distribution. P values were obtained for 390 

both annotation categories (gene and CGIs). To assess the relationship between the expanded 391 

850K only CHD2 cohort and other EpiSign™ disorders, the distance and similarities between 392 

cohorts were analyzed using clustering methods and visualized on a tree and leaf plot. This 393 

assessed the top 500 DMPs for each cohort, ranked by p-value. For cohorts with less than 500 394 

DMPs, all DMPs were used. Tree and leaf plots, generated using the R package TreeAndLeaf58, 395 

illustrated additional information, including global mean methylation difference and total number 396 

of DMPs identified for each cohort. 397 

 398 

Whole-Genome Bisulfite Sequencing 399 

Genomic peripheral blood-derived DNA from n=3 CHD2 trios (proband and parents) and n=1 400 

CHD2 singleton (proband) (total n=10 samples) were bisulfite-converted and then underwent 401 

whole-genome bisulfite sequencing (WGBS) using standard Illumina short-read sequencing 402 

processing methods (Supplemental Methods). Reads were trimmed by Trim Galore! and aligned 403 

to the GRCh38/hg38 human genome reference using BSMAP2.74. The methylation ratios from 404 

BSAMP mapping results were extracted using methratio.py. Duplicated reads were removed and 405 

CpG methylation from both strands was combined. The methylation ratios were also corrected 406 

according to the C/T SNP information estimated by the G/A counts on reverse strand. 407 

 408 

DMR Calling of DNA Methylation Array and WGBS  409 

We performed DMR analysis on Illumina 850K EPIC methylation array data for 16 individuals with 410 

DEEs harboring pathogenic variants in CHD2 compared to 18 controls. The data were normalized 411 

using the minfi package’s functional normalization algorithm59, and we employed two independent 412 

R packages to call DMRs, bumphunter60 and DMRcate61. DMRs were defined as those passing 413 
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a significance threshold of p<0.05 for bumphunter and Fisher’s multiple comparison P<0.05 for 414 

DMRcate. A minimum of three CpGs and mean methylation difference between CHD2 and 415 

controls of at least 5% was also required (bumphunter "cutoff” and DMRcate “betacutoff”=0.05) 416 

in either the hyper or hypo direction. For bumphunter, smoothing was used, and the number of 417 

permutations for each condition was set to B=1000. For DMRcate, default settings were used, 418 

and the Gaussian kernel bandwidth for smoothed-function estimation was set to λ=1000, meaning 419 

that significant CpGs further than 1000 nucleotides were in separate DMRs.  420 

The methylCall data from WGBS, which consists of the total number of reads covered for 421 

each CpG site and the number of methylated C’s at each CpG site, was used for calling DMRs 422 

between four individuals with DEEs caused by pathogenic CHD2 variants and six unaffected 423 

parents. Firstly, CpG sites with less than 10X coverage and those on the sex chromosomes were 424 

removed. DMRs were called from WGBS methylCall data using two independent R packages, 425 

DMRcate62 and DSS63. DMRcate identifies and ranks the most differentially methylated regions 426 

across the genome, while DSS detects differentially methylated loci or regions from WGBS. For 427 

DMRcate, the scaling factor for bandwidth “C” was set to 50, as recommended for WGBS. DSS 428 

was run with default parameters. DMRs were defined by each algorithm (with smoothing) as 429 

regions of a minimum of five CpGs with significance (Fisher’s multiple comparison P value <0.05) 430 

and minimum methylation differences of 5% in either the hyper or hypo direction (DSS “delta” and 431 

DMRcate “betacutoff”=0.05) between cases and controls.  432 

The genomic locations of output DMR calls were intersected between both callers 433 

requiring a minimum overlap of 50bp in the same direction to reduce the false positive rate. This 434 

resulted in high-confidence list of DMRs predicted by two independent callers for array 435 

(bumphunter and DMRcate) and WGBS (DMRcate and DSS). The methylation difference 436 

between CHD2 and control was averaged between both callers for the final DMR list. DMRs were 437 

segmented by mean methylation difference between CHD2 and control (5%, 10%, 15%, and 20%) 438 

for visualization and annotation with CpG elements (islands, shores, shelves) and gene regions 439 
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(1-5Kb upstream TSS, promoters as <1Kb upstream TSS, 5’UTRs, exons, introns, and 3’UTRs) 440 

using annotator57. To get adequate CpG element counting (i.e. a DMR spanning both a shore and 441 

shelf would not get counted twice), CpG annotations were adjusted for DMR size by calculating 442 

representation across CpG elements as a fraction of the total DMR length. 443 

 444 

RESULTS 445 

Discovery and Validation of DMRs in Unsolved DEEs 446 

To determine the ability of our analysis pipeline to robustly detect rare, outlier DMRs, we included 447 

DNA from six positive controls with genetic diseases: three individuals with heterozygous or 448 

homozygous hypermethylation of XYLT1, and three individuals (two males and one female) with 449 

hypermethylation of FMR1. The outlier DMR analysis detected both rare DMRs (Figure S2, Table 450 

S3A). Additionally, we identified an XYLT1 heterozygous hypermethylation carrier in our DEE 451 

cohort. Targeted X-chromosome analysis in males identified complete methylation at the FMR1 452 

locus in both Fragile X males compared to the remaining cohort, all of which were completely 453 

unmethylated at FMR1. FMR1 hypermethylation was also higher (~75%) in the Fragile X female 454 

sample compared to the other females with 25-50% methylation, likely due to random X-455 

inactivation. Thus, our methylation array analysis approach detects outlier DMRs at known 456 

disease loci for the autosomes and sex chromosomes. 457 

Next, we assessed outlier DMRs in our cohort of 1,124 individuals (516 unsolved DEE) 458 

across 1,156 array samples. We predicted n=2,140 total DMRs for the autosomes, n=59 DMRs 459 

for males on chromosome X, n=42 DMRs for females on chromosome X, and no DMRs on 460 

chromosome Y (Table S3B, S3D, S3F). After accounting for DMRs overlapping across samples 461 

(≥50% probe overlap in the same direction of DNA methylation hyper- or hypo-methylation), we 462 

derived n=1,540 unique DMRs for the autosomes (917 hyper, 623 hypo), n=45 for males on chrX 463 

(26 hyper, 19 hypo), and n=34 for females on chrX (20 hyper, 14 hypo) (Table S3C, S3E, S3G). 464 
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Of the samples with one or more outlier DMRs, the majority had only a single outlier DMR (Figure 465 

S3).  466 

To determine the robustness of our DMR calling algorithm, we (i) assessed the 467 

reproducibility of DMR calls in a subset of samples and (ii) performed validation of DMRs using 468 

targeted EM-seq (Supplemental Methods). Using replicate array data for 29 individuals, we found 469 

that 80% of DMRs were replicated across different batches for an individual (Supplemental 470 

Methods). We then used targeted EM-seq, a non-bisulfite approach, to validate a subset of DMRs. 471 

We confirmed that our positive control DMRs (XYLT1 and FMR1) could be detected in the 472 

targeted EM-seq data (Figure S4). We then validated 30 outlier DMRs by targeted EM-seq in four 473 

individuals with unsolved DEEs (Figure S5 and S6). In addition to DMR validation, targeted EM-474 

seq provides much higher resolution of the extent of differential methylation than the methylation 475 

array (e.g. >100 methylated CpG sites for the XYLT1 DMR by targeted EM-seq compared to eight 476 

representative probes on array; Table S4). Thus, we detected and validated outlier DMRs at 477 

higher resolution using an orthogonal approach. 478 

 479 

Rare Outlier DMRs in Unsolved DEEs 480 

We narrowed down outlier DMR calls for individuals with unsolved DEEs to determine high-priority 481 

candidates for further study based on DMR recurrence across multiple individuals, population 482 

frequency14, functional annotations (Methods), and manual inspection of DMR plots for each 483 

DMR. We identified 11 individuals with unsolved DEEs with one or more rare, potentially disease-484 

associated DMRs and performed follow-up studies (Table 1, Table S2A). One individual had 485 

multiple DMRs due to a balanced translocation between chrX and chr13, four individuals had a 486 

DMR due to expanded CG-rich repeats, and six individuals had DMRs due to underlying CNVs.  487 

 488 



   
 

   
 

22 

Rare Outlier DMR Analysis Detects Hypermethylation of chr13 Due to X;13 Translocation 489 

One female with the DEE syndrome, epilepsy of infancy with migrating focal seizures (EIMFS), 490 

had 27 rare outlier hypermethylated DMRs across chr13 (Figure 1A, Figure S7), none of which 491 

were present in >23,000 controls14. The DMRs were replicated on a second, independent 492 

methylation array from the same individual and validated using targeted EM-seq (Figure S6). 493 

Methylation array analysis of both parents revealed that all rare hypermethylated DMRs occurred 494 

de novo in the proband (Figure 1B). Whole-genome ONT long-read sequencing also confirmed 495 

the hypermethylated DMRs and identified a balanced translocation between chrX and chr13 496 

(Figure 1C), annotated as 46,XX,t(X;13)(q28;q14.2). The translocation provides a mechanism 497 

whereby random X-inactivation induces hypermethylation on the portion of chr13q attached to the 498 

large piece of the X chromosome. The translocation breakpoints were confirmed by PCR and 499 

Sanger sequencing of peripheral blood-derived DNA as chrX:152,092,342 to chr13:47,005,269 500 

and chr13:47,005,271 to chrX:152,092,344 (GRCh38/hg38). Parental methylation studies and 501 

short-read GS confirmed that the translocation occurred de novo. The translocation is likely 502 

causative in this individual given the de novo occurrence, absence of clearly pathogenic sequence 503 

variants by trio sequence (Table S5), and report of a similar translocation in a female individual 504 

with intellectual disability and bilateral retinoblastoma64. 505 

 506 

Rare Outlier DMR Analysis Detects Hypermethylation Caused by Underlying Triplet Repeat 507 

Expansions 508 

We detected two individuals with unsolved DEEs and one control individual with hypermethylation 509 

spanning the 5’UTR and intron 1 of the Casein kinase 1 isoform epsilon (CSNK1E, MIM:600863, 510 

Figure 2A) gene. Although present in one control and reported in 6/23,116 controls14, an individual 511 

with DEE and probable haploinsufficiency due to a de novo splicing variant (c.885+1G>A) in 512 
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CSNK1E has been reported65, suggesting further study is warranted to determine if variation in 513 

this gene causes DEE. Segregation analysis revealed that the hypermethylation in one proband 514 

was inherited (Family 1, Figure S8), whereas the other arose de novo (Family 2). After validation 515 

of hypermethylation with targeted EM-seq for both probands (Figure S5), long-read sequencing 516 

of the proband (whole-genome) and parent (targeted) from Family 1 confirmed the presence of 517 

an expanded CGG motif in both (Figure 2B), as previously reported in individuals with 518 

hypermethylation of CSNK1E at fragile site FRA22A and reduced expression in lymphoblastoid 519 

cells14. Through GeneMatcher66, we identified Family 3 consisting of a proband with the same 520 

CSNK1E hypermethylated DMR inherited from his parent, who is mildly affected by learning, 521 

speech, and sleep difficulties (Supplemental Phenotype data). Expression analysis in available 522 

fibroblasts from Families 2 and 3 showed that individuals with CSNK1E hypermethylation had 523 

decreased expression of CSNK1E compared to hypermethylation-negative controls (Figure 2C). 524 

Analysis using the OUTRIDER algorithm48 confirmed “drop-out” of CSNK1E 525 

(ENSG00000213923) expression compared to publicly available fibroblast controls49 (Figure 2C, 526 

Figure S9). Thus, we report 3 individuals with unsolved DEEs harboring inherited and de novo 527 

CSNK1E hypermethylation due to an underlying repeat expansion (n=4 LRS) that leads to 528 

approximately 50% reduction in CSNK1E expression (n=3 RNA-seq drop-out). No other 529 

candidate gene variants for these 3 probands were found by trio GS analysis. However, due to 530 

finding this abnormality in seemingly unaffected individuals, one control and one parent (Family 531 

1) in our cohort and others14, further work is required to determine whether variations in CSNK1E 532 

cause or contribute to the DEEs.  533 

A male individual with unsolved DEE displayed inherited hypermethylation of the DIP2B 534 

(MIM:611379) promoter region and exon 1 (Figure S10), which is due to an underlying CGG-535 

repeat expansion and fragile site FRA12A67. Loss of DIP2B is associated with an autosomal 536 
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dominant neurodevelopmental disorder (NDD) with variable penetrance, including a DIP2B repeat 537 

expansion in an individual with epilepsy67.  538 

We detected a rare hypermethylated DMR on the X chromosome in exon 1 of an 539 

uncharacterized gene (BCLAF3/CXorf23) in a male with unsolved DEE (Figure S10), that was 540 

absent in >23,000 unaffected controls (>8,000 males)14. We validated hypermethylation using 541 

targeted EM-seq (Figure S5), and ONT long-read sequencing of the proband and his parent 542 

revealed a novel CGG repeat expansion in the proband (~2,500-3,000bp, Figure S11) inherited 543 

from his parent, who had a smaller expansion (~1,700-1,900bp). LRS and standard X-inactivation 544 

studies68 show that the parent has skewed X-inactivation (Table S6) of the allele with the 545 

expansion, which explains why outlier hypermethylation is not detected from her methylation array 546 

data. There are no other candidate variants for the proband’s DEE by trio GS. Collectively, these 547 

results highlight the detection of repeat-expansion-associated loci based on outlier DMR analysis 548 

of DNA methylation array in individuals with unsolved DEEs. 549 

 550 

Rare Outlier DMR Analysis Detects Copy Number Variants 551 

Six individuals displayed DMRs that were found to be due to underlying CNVs. One control and 552 

an individual with unsolved DEE had ~10-15 hypomethylated DMRs along chr2 spanning ≥144Kb 553 

(Figure S12A). Short and long-read sequencing analysis revealed this “DMR” was due to a 554 

homozygous ~182Kb deletion encompassing outlier DMRs (Figure S12C). Segregation testing 555 

found that the proband inherited the deletion from both parents, who were heterozygous carriers. 556 

The CNV was also found on DNA methylation array using the R tool conumee69 (Figure S12B).  557 

Four individuals with unsolved DEEs and one control had a 686bp hypomethylated DMR 558 

in intron 2 of the gene LINGO1 (MIM:609791). DNA methylation array analysis for a proband’s 559 

parent found that the hypomethylation was at least in part inherited, and short and long-read 560 
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sequencing revealed that hypomethylation was caused by an underlying ~4Kb inherited deletion 561 

(Figure S13).  562 

Another individual with unsolved DEE had hypermethylation in the 5’UTR of 563 

CFAP36/CCDC104 (Figure S14A), which was not present in >23,000 controls14. DNA methylation 564 

array analysis of both parents indicated it was inherited (Figure S14B), and targeted ONT long-565 

read sequencing revealed a ~500Kb tandem duplication from chr2:55,034,228-55,536,971 566 

(GRCh38/hg38). Collectively, these results indicate that outlier DNA methylation can be due to 567 

underlying CNVs and that the 850K methylation array may not have sufficient coverage to detect 568 

smaller CNVs. Due to the high population frequencies and inheritance status of the CNVs we 569 

found, we determined they are unlikely to contribute to the individuals’ phenotypes. Still, these 570 

findings illuminate ways in which detected DNA methylation changes are influenced by underlying 571 

DNA variation. 572 

 573 

Episignature Screening Validates Pathogenicity of Genetic Diagnoses and Resolves 574 

Variants of Uncertain Significance 575 

We next performed episignature analysis, using the EpiSignTM v4 classifier, including 70 576 

conditions associated with 96 genes/genomic regions (Figure 3). To validate our approach, we 577 

included several individuals with causal variants in episignature genes or CNVs and an individual 578 

with a VUS. These included sixteen individuals with variants in CHD2 (n=15 pathogenic, n=1 579 

VUS) and one individual each with a pathogenic variant in KDM5C, SETD1B, KMT2A, or 580 

SMARCA2 (Table S2B). We also included two individuals with CNVs, including chr17p11.2 581 

deletion and duplication. Fifteen of the individuals with variants in CHD2 were positive for the 582 

epileptic encephalopathy of childhood (EEOC) episignature18, also known as the developmental 583 

and epileptic encephalopathy 94 (DEE94) episignature. However, one individual with a VUS in 584 
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CHD2 was negative for the episignature, and in combination with other clinical evidence the VUS 585 

was reclassified as likely benign (Supplemental Phenotype data). The individuals with variants in 586 

KDM5C (MIM:314690), SETD1B (MIM:611055), KMT2A (MIM:159555), and SMARCA2 587 

(MIM:600014) were all positive for the episignatures associated with their disorders. While these 588 

individuals were considered solved before episignature screening, the finding was used to support 589 

the genetic diagnosis of the individual with a KDM5C variant.  590 

Additionally, we identified two individuals with inconclusive results for episignatures 591 

despite definitive genetic and clinical findings for the associated syndromes. Inconclusive findings 592 

are caused by methylation profiles that partially overlap existing signatures but are not a definitive 593 

match. This included an individual with a 17p11.2 deletion inconclusive for the Smith-Magenis 594 

syndrome episignature (SMS_del) and a female individual with a 17p11.2 duplication inconclusive 595 

for the Potocki-Lupski syndrome episignature (PTLS, Figure S15). In each case, the inconclusive 596 

episignature finding is concordant with the genetic diagnosis but yields an inconclusive result 597 

potentially attributable to variability introduced by differential CNV breakpoints. Because of this 598 

and other factors, inconclusive EpiSignTM results are reported with the caveat that further follow-599 

up or investigation may be warranted if there is a clinical phenotype consistent with the 600 

inconclusive episignature in question. 601 

 602 

Episignature Screening Solves Genetically Unsolved DEEs 603 

We then tested our cohort of 516 individuals with unsolved DEEs for 70 clinically validated 604 

episignatures, leading to a likely diagnosis in five individuals (Table 2). All methylation variant 605 

pathogenicity (MVP) scores for episignatures and detailed genomic variant information are in 606 

Table S2C. Two unrelated individuals with unsolved DEEs were positive for the KGB syndrome 607 

episignature (KGBS_MRD23) caused by pathogenic variants in ANKRD11 (Figures S16 and 608 
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S17). Exome or genome sequencing analysis revealed de novo pathogenic stop-gain variants in 609 

both individuals, and phenotypes for each individual are consistent with the diagnosis 610 

(Supplemental Phenotype data). One proband had affected siblings and family members (n=8, 611 

Figure S17). However, none harbored the ANKRD11 episignature and neither affected sibling 612 

harbored the variant, indicating that there is likely a different explanation for this familial epilepsy. 613 

One individual with unsolved DEE was positive for the episignature associated with SETD1B 614 

(Figure S18). Exome sequencing revealed a pathogenic stop-gain variant in SETD1B. Another 615 

individual with unsolved DEE harbored the episignature for TET3 and had an inherited pathogenic 616 

stop-gain variant in TET3 on GS (Figure S19). This remains the likely cause of the individual’s 617 

DEE as the parent has a milder phenotype including macrocephaly and learning difficulties 618 

(Supplemental Phenotype data). One male individual with unsolved DEE was positive for the 619 

UBE2A episignature (Figure S20). Through exome sequencing, we identified a predicted 620 

damaging inherited missense variant absent in gnomAD (c.376G>A, p.Ala126Thr). Although the 621 

variant does not reach likely pathogenic classification using existing ACMG criteria, the prediction 622 

scores (REVEL=.776, CADD=26.4, and PolyPhen-2=1.00) support pathogenicity; the variant is 623 

inherited in an X-linked intellectual disability disorder; and the individual shares multiple 624 

phenotypic features with UBE2A disorder. Thus, the variant has been determined to be the most 625 

likely genetic cause of disease.  626 

Of the high-confidence episignature findings, only one individual had an established 627 

genetic diagnosis in another gene. This individual harbored a de novo variant in PTEN with a 628 

consistent phenotype of macrocephaly and focal epilepsy but also had the episignature for 629 

KDM2B. Further analysis identified an inherited missense variant in KDM2B. We performed 630 

methylation array analysis for the unaffected parent who also harbored the KDM2B episignature. 631 

This variant is predicted to be likely pathogenic (LP) by ACMG criteria due to its putative effect on 632 

splicing regulation, though assessment of this variant with SpliceAI predicts that it does not have 633 
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a high likelihood of affecting splicing (Δ score for Donor Gain:0.01). When this criterion is taken 634 

away, the designation of LP is reduced to a VUS; other computational predictors assess the 635 

impact to be uncertain (REVEL=0.517). Thus, while it is unlikely that this KDM2B variant explains 636 

the individual’s phenotype, it still represents an underlying DNA change detected through 637 

episignature screening. Collectively, we have identified positive episignatures and causal genetic 638 

etiologies in five previously unsolved individuals with DEEs through episignature screening. 639 

An additional 40 individuals with DEEs (80% unsolved) and nine controls had inconclusive 640 

results for episignatures (Figure S20). Of the individuals with DEEs, 4/40 were run across multiple 641 

methylation array batches. Three individuals did not reproduce their inconclusive episignature 642 

result in the other sample(s). While one individual’s inconclusive result did replicate across the 643 

different batches, no pathogenic variants were found by GS in the associated genes(s). Of all the 644 

individuals with available sequencing data (n=27), none harbored pathogenic variants in the 645 

genes associated with episignature findings. While some had overlapping clinical features, most 646 

were discordant with the described phenotypes for their inconclusive episignature finding. 647 

Additional follow-up will be required to determine whether these inconclusive results are due to 648 

array artifacts or have underlying biological or disease-associated meaning. If technical artifacts 649 

are ruled out, an inconclusive result may be caused by episignatures in other genes that are yet 650 

to be defined and trained against for specificity of the classifier. 651 

 652 

Redefining the CHD2 Episignature on the 850K EPIC Array 653 

While episignatures are proven to be clinically useful for diagnosis, little work has been done to 654 

investigate how episignatures may inform disease biology by studying DMRs that may impact 655 

gene expression. Here, we performed refinement and in-depth analysis of the episignature for the 656 

DEE gene CHD2. The CHD2 episignature was originally derived using overlapping 450K and 657 
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850K DNA methylation array probes representing individual CpG sites in n=9 individuals with 658 

pathogenic CHD2 variants18. We refer to this signature as the CHD2 450K episignature (Figure 659 

4A upper, Figure S21A, Table S7). Here, we refine the CHD2 episignature exclusively on 850K 660 

EPIC methylation array probes with data from a cohort of n=29 individuals with pathogenic CHD2 661 

variants (Figure 4A lower, Figure S21B, Table S7). We refer to this signature as the CHD2 850K 662 

episignature. Of the 200 probes included in the CHD2 850K episignature, 79/200 are specific to 663 

the 850K EPIC array. 664 

 665 

Comparison of the CHD2 Episignature to 55 Other Clinically Validated Episignatures 666 

We then compared the CHD2 450K and 850K episignatures to 55 other NDD episignatures (57 667 

total including CHD2)20 by examining shared probes (Figure 4B, Figure S22), Euclidean clustering 668 

(Figure 4C), probe mean methylation differences (Figure S23), and functional annotations (Figure 669 

S24). As expected, the CHD2 850K episignature shares the most probe overlap with the CHD2 670 

450K episignature (86/200 or 43%, Figure 4B, Figure S22). Euclidean clustering was used to 671 

examine the relatedness of the episignatures by probe overlap and directionality. The CHD2 850K 672 

episignature shares the closest branchpoint with the MRXSCJ episignature for KDM5C of which 673 

it shares 7% of its top 500 DMPs. Collectively, both 450K and 850K episignatures do not share 674 

immediate branches (other than the primary branchpoint) with many other episignatures. This 675 

may indicate different sets of predominant pathways underlying CHD2 pathophysiology compared 676 

to the other episignatures. Additionally, the CHD2 850K episignature represents more 677 

hypermethylated regions than the CHD2 450K episignature, as depicted by the mean methylation 678 

differences in Figure 4C and Figure S23. We also performed functional annotation of episignature 679 

probes for CpG characteristics and gene regions in relation to the 55 other NDD episignatures 680 

(Figure S24). We found that both CHD2 850K and 450K DMPs map to predominately the coding 681 

regions of genes (46% and 41%, respectively) with a significant difference in the distribution of 682 
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DMPs in these regions compared with the background probe distribution (P<9.06 x10-69 and 683 

P<2.02 x10-79, respectively). Though the CHD2 850K episignature represents a higher portion of 684 

interCGI regions compared with the 450K episignature (43% vs. 31%, respectively), both are 685 

enriched in interCGI regions relative to background probe distribution (P<2.26x10-121 and 686 

P<9.17x10-144).  687 

 688 

The CHD2 Episignature is Associated with Differentially Methylated Regions 689 

Since CHD2 encodes a chromatin remodeler that has been shown to regulate gene 690 

expression70,71, we investigated whether individual episignature probes are contained within larger 691 

DMRs between cases and controls. DMRs could potentially provide a link to downstream gene 692 

expression. We first investigated DMRs in an unbiased genome-wide manner by calling DMRs 693 

from the 850K DNA methylation array data (n=16 CHD2, n=18 controls) using bumphunter and 694 

DMRcate. We predicted 1,684 DMRs from bumphunter and 963 DMRs from DMRcate. These 695 

DMRs were intersected, requiring an overlap in the same direction (hyper/hypo) of at least 50bp, 696 

to derive a high-confidence DMR list of 712 overlapping regions (349 hyper, 363 hypo). 697 

Representative images of these DMRs are shown in Figure S25. These DMRs directly coincide 698 

with 86/200 (43%) CHD2 450K episignature probes and an increased 90/200 (45%) CHD2 850K 699 

episignature probes (Figure S26, Table S8). Thus, the CHD2 episignature is characterized by 700 

DMRs, and this overlap increases by four probes for the CHD2 850K episignature. 701 

 702 

Increased CpG Resolution and Genomic Coverage of Differentially Methylated Regions 703 

Using Whole Genome-Bisulfite Sequencing 704 

Due to limited genomic coverage, DNA methylation arrays can be skewed in their representation 705 

of CpGs across the genome, as evidenced by their tendency to bias gene set analyses72. To 706 

better understand the DMR landscape of CHD2 and investigate DMRs at higher CpG resolution, 707 
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we performed WGBS with coverage of >20,000,000 CpGs on three CHD2 trios and one singleton. 708 

We derived 11,019 DMRs from DSS, 4,078 DMRs from DMRcate, and 3,665 DMRs that overlap 709 

between both callers (2420 hyper, 1235 hypo). To determine the robustness of this approach, we 710 

manually inspected DMRs with a methylation difference of at least 20% (n=207 DMRs, 146 hyper, 711 

61 hypo) by examining the reads in all 3 trios in IGV and confirmed 169/207 DMRs, yielding a 712 

true call rate of 81.6%. Representative DMRs called from WGBS are shown in Figure S27. We 713 

then investigated the overlap of episignature probes with the WGBS DMRs with a methylation 714 

difference of at least 5% and found direct overlap with 76/200 (38%) CHD2 450K episignature 715 

probes and an increased 94/200 (47%) CHD2 850K episignature probes (Figure 4D, Figure S26). 716 

Thus, considering the increased genomic coverage afforded by WGBS and increased DMRs, it 717 

is unsurprising that a higher proportion of CHD2 850K episignature probes overlap with DMRs 718 

(Figure S26, Table S8). Notably, for nearly all probes found within DMRs, those DMRs could be 719 

better visualized from the WGBS data due to the lack of probe coverage on the array. Thus, we 720 

have confirmed using an orthogonal approach with higher CpG coverage that the CHD2 721 

episignature is characterized by DMRs. 722 

We further investigated DMR calls by functionally annotating them using the annotatr. We 723 

first examined the representation of CpG islands, CpG shores, CpG shelves, and interCpG Island 724 

(interCGI) regions for DMRs (Figure S28). We find that most DMRs called exclusively from WGBS 725 

are located at interCGI regions compared to DMRs called from the array or overlap of both, likely 726 

due to the bias of gene-enriched regions on the array compared with increased genomic coverage 727 

of WGBS. We also annotated DMRs with gene annotations (Figure S29) and found similar 728 

patterns across DMRs called by the 850K array, WGBS, or both, especially for DMRs called with 729 

a methylation difference of at least 5% between CHD2 and controls. Notably, we show how the 730 

global CHD2 episignature is characterized by DMRs (Figure S30) that correspond to gene 731 

regulatory regions and therefore, likely affect underlying disease biology.  732 
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 733 

DISCUSSION 734 

A major challenge in rare disease genetics is determining molecular causes in unsolved cases. 735 

Even if ES or comprehensive GS of trios identifies all de novo and recessively inherited coding 736 

and noncoding variants, prioritizing and functionally interpreting candidate variants is challenging. 737 

In the case of the DEEs, this difficulty is further compounded by immense phenotypic and genetic 738 

heterogeneity. Genome-wide DNA methylation analysis represents an innovative approach to 739 

discovering genetic etiologies by investigating rare DMRs and screening for DNA methylation 740 

signatures. Notably, rare DMRs and episignatures can be assessed with cost-effective, high-741 

throughput DNA methylation arrays using blood-derived DNA. Here, we performed genome-wide 742 

DNA methylation analysis on 516 individuals with unsolved DEEs and identified causal or 743 

candidate etiologies in 10 individuals: five from rare DMR analysis (Table 1) and five from 744 

episignature screening (Table 2). Thus, the diagnostic yield of genome-wide methylation analysis 745 

in individuals with unsolved DEEs is nearly 2%, similar to the added diagnostic yield of GS after 746 

ES or gene panel73,74. A study of unsolved ND-CA showed a similar 2-3% increase in diagnostic 747 

yield using episignature analysis52. 748 

We have performed rare outlier DMR analysis of methylation array data for a cohort of 749 

individuals with unsolved DEEs and uncovered various underlying DNA variants using ONT long-750 

read sequencing. These include a X;13 translocation, CGG repeat expansions, and copy number 751 

variants. We first validated a subset of outlier DMRs using targeted EM-seq enriched for 3.98M 752 

CpGs, a highly effective bisulfite-free, enzyme-based conversion method for detecting CpG 753 

methylation by sequencing. Targeted EM-seq has several advantages to bisulfite-based array 754 

approaches, including minimizing DNA damage, lowering input requirements (picograms of DNA), 755 

and detecting more CpGs34. We found that all DMRs were confirmed using the EM-seq approach, 756 

and the greater number of CpGs detected compared to the methylation array afforded higher 757 
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resolution to interpret DMRs. Future high-throughput DNA methylation analyses could consider 758 

using EM-seq for validation or discovery. 759 

We report an individual with 27 outlier hypermethylation events along chr13q detected 760 

through the rare DMR analysis. Using ONT whole-genome long-read sequencing, we identified a 761 

de novo X;13 translocation showing that the hypermethylation identified the likely cause of 762 

disease. This discovery was enabled without the need for live cellular material, which is typically 763 

required by classical cytogenetics approaches. This child passed away in infancy due to the 764 

severity of the disease, and this approach provided a diagnosis postmortem using banked 765 

genomic material.  766 

We also found that several individuals displayed hypermethylation of loci associated with 767 

known or novel CG-rich repeat expansions. These regions include the 5’UTR and intron 1 of the 768 

epilepsy candidate gene CSNK1E, the 5’UTR of the neurodevelopmental disorder gene DIP2B, 769 

and the 5’UTR of the uncharacterized gene BCLAF3. We report the occurrence of 770 

hypermethylation, a CGG repeat expansion, and reduced expression of CSNK1E among three 771 

unrelated individuals with unsolved DEEs and a mildly affected parent. CSNK1E has been 772 

implicated in the circadian rhythm75,76, and variation causes a familial advanced sleep phase 773 

syndrome (FASPS)77. Variation also produces a rapid eye movement phenotype in a knockout 774 

mouse model78. Interestingly, all our probands with DEEs and the mildly affected parent with 775 

CSNK1E hypermethylation and a repeat expansion report sleep-related phenotypes 776 

(Supplemental Phenotype data). Our results indicate that there is an enrichment of CSNK1E 777 

hypermethylation in individuals with DEE compared to controls in our cohort combined with those 778 

previously reported14 (Fisher’s Exact P=0.0185), suggesting that further studies to determine if 779 

CSNK1E variation contributes to DEEs are warranted.  780 

One male proband with unsolved DEE displayed de novo outlier hypermethylation in a 781 

region annotated as intergenic on the GRCh37/hg19 genome build and at the 5’UTR of BCLAF3 782 
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on the GRCh38/hg38 genome build. Using ONT long-read sequencing, we discovered a novel 783 

CGG repeat expansion in exon 1 of BCLAF3 in this proband inherited from his unaffected parent. 784 

The parent’s long-read data displayed skewed X-inactivation against the expanded allele, and 785 

this was confirmed to be more global using an enzyme-based DNA methylation assay to profile 786 

the AR and HUMARA loci (Table S6)68. Skewed X-inactivation may explain why the parent does 787 

not have a detectable DNA methylation abnormality at this locus and could provide a mechanism 788 

to circumvent any functional consequences of the BCLAF3 abnormality. While BCLAF3 has been 789 

previously predicted to be a potential disorder-associated gene on chrX79, little is known about its 790 

function or disease associations. Thus, further work is needed to investigate whether this 791 

abnormality is present in other individuals and if loss of this gene on chrX in males could cause a 792 

DEE. 793 

We performed episignature screening of our unsolved DEE cohort using the EpiSignTM v4 794 

classifier, which contains 90 episignatures representing 70 disorders encompassing 96 795 

genes/genomic regions. We found six individuals with unsolved DEEs harbored positive 796 

episignatures concordant with their phenotypes. We reviewed or reanalyzed available or newly 797 

generated ES or GS data and identified pathogenic variants in the episignature-associated genes 798 

in 5/6 individuals. In the individual with a pathogenic SETD1B variant, one parent was unavailable 799 

for genetic testing to segregate the sequence variant. Thus, the positive episignature finding 800 

provided supportive information for genetic diagnosis in lieu of inheritance data. Episignatures 801 

can serve to screen for disorders that have broad, overlapping phenotypes and identify individuals 802 

who may not have the classical features of a specific neurodevelopmental syndrome or DEE. For 803 

instance, most DEEs have a phenotypic spectrum, so individuals with different etiology, 804 

developmental trajectories, or subtle dysmorphic features may escape diagnosis until a molecular 805 

etiology is found. 806 
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The top 27 most implicated genetic causes of DEEs explain 80% of DEEs7. However, only 807 

1/27 genes (CHD2) has a clinically validated episignature. Like CHD2, 58/59 genes with robust 808 

episignatures localize to the nucleus and are associated with DNA binding, transcriptional 809 

regulation, and histone interactions. Since DNA methylation occurs in the nucleus, most genes 810 

for which episignatures have been derived are directly or indirectly involved in the epigenetic and 811 

transcriptional machinery. Whereas the top 27 DEE genes are associated with a range of cellular 812 

processes5, only a minority are associated with direct DNA interactions, and only 10 of the top 27 813 

most frequent DEE genes are annotated to localize to the nucleus at least partially. The only gene 814 

with a clinically validated episignature not involved in any nuclear activity is SLC32A1, which 815 

encodes solute carrier family 32 member 1 (SLC32A1, MIM:616440) responsible for inhibitory 816 

neurotransmission, and variants in this gene cause a DEE80. Unfortunately, SLC32A1 is not 817 

among the most common ~60 DEE genes. Therefore, the diagnostic utility of episignatures for 818 

DEEs would increase when we can confidently derive episignatures for more DEE genes, such 819 

as ion channel, synaptic transmission, and metabolic genes. 820 

Episignature derivation is further complicated by the existence of variant-specific 821 

episignatures that exist for a subgroup of variants within a gene (e.g.SMARCA250,81) or a set of 822 

common genes within similar pathways (e.g.Coffin-Siris syndrome episignature, due to variants 823 

in ARID1A (MIM: 603024), ARID1B (MIM:614556), SMARCB1 (MIM:601607), and SMARCA4 824 

(MIM:603254), and SOX11 (MIM:600898)50. Thus, there is not only a need to derive episignatures 825 

for more epilepsy-related genes but also to analyze variants for testing based on variant type (i.e. 826 

missense, nonsense) and protein domain, which may segregate with phenotypes. For instance, 827 

our cohort included two females with solved DEEs and pathogenic truncating variants in the 828 

SMC1A gene located on chromosome X. Neither had a positive episignature for SMC1A for 829 

Cornelia de Lange syndrome (CdLS), which is usually due to missense or in-frame small indels 830 

proposed to have a dominant negative effect. Truncating, loss-of-function variants, however, are 831 
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found exclusively in girls with DEEs. The difference in underlying disease mechanism likely 832 

impacts the composition of the distinct probe sets contained within the episignatures. Discordant 833 

or unusual findings like this example underscore additional considerations when deriving and 834 

interpreting episignatures. We came across five individuals reported as male whose methylation 835 

pattern on the X chromosome suggested two X chromosomes. Of 2/5 of these individuals who 836 

had LRS, a genotype of XXY was confirmed, which is consistent with a diagnosis of Klinefelter 837 

syndrome. More unexpected and incidental findings will arise as a greater number of 838 

episignatures are derived, and methylation testing becomes more routine. 839 

Episignatures for many epilepsy-related genes are currently in development. As more 840 

episignatures are clinically validated, re-analysis of previously generated methylation array data 841 

from unsolved individuals will identify pathogenic findings, akin to re-analysis of exome 842 

sequencing data for new epilepsy genes years after initial sequencing was performed82. We found 843 

that episignature analysis was useful for clarifying VUSs, including an individual annotated as 844 

solved for CHD2 displaying a VUS, which was re-assessed as benign based on a negative CHD2 845 

episignature result. We anticipate that episignatures will also be useful for interpreting the impact 846 

of noncoding variants. 847 

There are additional considerations when determining the utility of DNA methylation 848 

analysis for the molecular diagnosis of individuals with DEEs. Firstly, the diagnostic utility will vary 849 

depending on when the individual receives the test relative to other genetic testing modalities. In 850 

our study, we analyzed DNA from individuals with DEEs who had remained unsolved after 851 

undergoing extensive genetic testing, including gene panels, microarrays, exome, and genome 852 

sequencing. As DNA methylation testing becomes increasingly accessible to newly diagnosed 853 

individuals with DEEs and as the number of epilepsy-relevant genes with robust episignatures 854 

grows, the utility of DNA methylation analysis in unsolved DEEs may increase and guide which 855 

regions should be sequenced to identify causal variants.  856 
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DNA methylation information can be readily assessed from both ONT long-read 857 

sequencing and PacBio long-read sequencing data. Therefore, when long-read sequencing 858 

becomes more available, there is potential for an “all-in-one” approach to genetic testing whereby 859 

individuals can simultaneously be assessed for sequence variants, structural abnormalities, and 860 

rare DNA methylation changes. While it is advantageous to study rare DMRs and their potential 861 

underlying DNA defects using the same technology, applying episignatures to long-read 862 

sequencing data is uncertain and may require new computational approaches to re-derive and 863 

validate episignatures on each platform. As long-read sequencing produces far more data than 864 

arrays (>20,000,000 CpGs versus ~850,000 CpGs), this will offer an opportunity to interrogate 865 

DNA methylation more broadly and deeply. 866 

As advances in sequencing technologies allow DNA methylation datasets to get larger, 867 

there will be a need to analyze comparative data from controls to generate population-level 868 

reference information. For our DMR analysis, we leveraged 450K DNA methylation array outlier 869 

DMR calls generated from peripheral blood-derived DNA for >23,000 control individuals14. Where 870 

possible, we used these data to approximate population frequencies for the DMRs we derived. 871 

However, this reference information is not available for 850K exclusive DMRs or whole-genome 872 

sequencing DMRs. Thus, interpreting DNA methylation data for unsolved DEEs and other 873 

unsolved genetic disorders will improve as we understand more of the methylome, including 874 

regions that were only recently resolved on the T2T genome build83, using appropriate reference 875 

datasets from diverse populations. 876 

While episignatures provide a robust readout of the genetic etiology, they are composed 877 

of individual array probes representing singular CpG sites that may not contribute to 878 

understanding the underlying disease mechanism. Given that CHD2 is the most frequent DEE 879 

genes with a robust episignature and has a biological role as a chromatin remodeler, we were 880 

interested to use the episignature to understand how DNA methylation relates to underlying CHD2 881 
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pathophysiology. First, we re-defined the episignature on exclusively 850K array probes with an 882 

increased sample size from n=9 to n=29 individuals with CHD2 pathogenic variants. Using DNA 883 

methylation array and WGBS, we show that the CHD2 episignature is associated with DMRs 884 

between cases and controls. In a recent study, investigators derived DMRs for individuals with 885 

pathogenic HNRNPU (MIM:617391) variants versus controls in methylation array data from 886 

peripheral blood-derived DNA and reported 19 DMRs called with DMRcate (Fischer P<0.01, 887 

betacutoff=0.05, minCpG=5)84. The comparative number of DMRs we derived for CHD2 versus 888 

control methylation array data under the same conditions using DMRcate is 474 DMRs. This 889 

increased number of DMRs may represent the inherent function of CHD2 as a chromatin 890 

remodeler that interacts directly with the DNA, whereas HNRNPU forms complexes with RNA. 891 

Furthermore, a subset of CHD2 episignature probes overlap with DMRs in the TSS/5’UTR of 892 

developmentally relevant genes and might regulate expression (Table S7). For instance, a cluster 893 

of hypermethylated episignature probes for the CHD2 450K and 850K episignatures are 894 

contained within a larger hypermethylated DMR in the TSS and 5’UTR of HOXA4 (Figure S31). 895 

However, HOXA4 is not expressed in the blood, and, therefore, would not be expected to be 896 

impacted by differential methylation. Thus, we have shown that CHD2 is associated with DMRs 897 

in the blood that correspond with the episignature. Our work suggests that future studies should 898 

investigate the CHD2 episignature in disease-relevant tissue types where DMRs are likely to 899 

contribute directly to gene dysregulation and disease pathogenesis.  900 

Here, we have utilized various DNA methylation analyses to identify causative and 901 

candidate etiologies in 2% of our cohort of 516 individuals with unsolved DEEs. While DNA 902 

methylation does not explain the majority of DEEs, methylation array yield is comparable to the 903 

current added utility of GS4,73 and remains a low-cost approach that can detect missed genetic 904 

etiologies and propose new molecular candidates. Importantly, this yield is expected to increase 905 

over time as we interrogate the functional consequences of rare DMRs and better understand 906 
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which genes and pathways exhibit episignatures, including unraveling inconclusive episignature 907 

results. We have also investigated the episignature for the DEE gene CHD2 in-depth and have 908 

provided evidence that the CHD2 episignature is associated with DMRs. DMRs may affect gene 909 

expression, especially in disease-relevant tissue types. Furthermore, CHD2 episignatures and 910 

associated DMRs may have potential as a biomarker readout for therapeutic testing, as the DNA 911 

methylation might potentially be reversed with targeted treatment. Thus, our work highlights the 912 

impact of investigating DNA methylation in DEEs, both for the genetic diagnosis of unsolved cases 913 

and to augment our understanding of underlying disease function toward the future development 914 

of targeted therapies. 915 
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Tables and Table Legends 1213 

Table 1. Summary of epivariants and underlying DNA defects identified in this study. 
Location Gene Direction Underlying DNA Defect Inheritance Probands (n) 

chr13 chr13:multiple Hyper X;13 translocation (p) De novo 1 

Xp22 BCLAF3 Hyper CGG repeat (c) De novo 1 

22q13 CSNK1E Hyper CGG repeat (c) Inherited 2 + 1 match 

12q13 DIP2B Hyper CGG repeat (c) Inherited 1 

2p16 CFAP36/CCDC104 Hyper Tandem duplication (b) Inherited 1 

2q37.3 chr2:multiple Hypo Deletion (b) Inherited 1 

15q24 LINGO1 Hypo Deletion (b) Inherited 4 
List of epivariation findings from screening cohort with unsolved DEEs for rare outlier DNA methylation changes. Molecular 
findings are considered p=pathogenic, c=candidate, and b=benign. 

 1214 

Table 2. Summary of episignatures and causative sequence variants identified in this study. 
Gene Signature MVP Genomic Variant (hg38) Consequence Inheritance 

ANKRD11 KGBS/ 

MRD23 

0.854 chr16:89284030   G>A p.Arg838Ter (p) 

 

De novo 

0.989 chr16:89279671   C>A p.Glu2291Ter (p) 

 

De novo 

SETD1B IDDSELD 0.763 chr12:121822939 C>T p.Arg1454Ter (p) 

 

Unknown 

TET3 BEFAHRS 0.327 chr2:74102031     dup   p.Thr1749HisfsTer5 (p) Inherited  

UBE2A  MRXSN  0.149 chrX:119583172   G>A  p.Ala126Thr (p) 

 

Inherited  

KDM2B  KDM2B  0.982 chr12:121520986 C>G  p.Arg349Pro (u) Inherited  
List of episignature findings from screening unsolved. Methylation Variant Pathogenicity (MVP) scores shown. Molecular 
findings are considered p=pathogenic or u=variant of uncertain significance. 
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Figures and Figure Legends 1216 

 1217 

Figure 1: Rare outlier DMR analysis identifies chromosomal hypermethylation caused by X;13 1218 

translocation. A. Graphical representation of chr13 rare hypermethylation events in a proband 1219 

with unsolved DEE. The upper portion of the track displays the genes on chr13 for which 1220 

hypermethylation events were called. The two grey panels (upper=line, lower=dot) depict β-1221 

values for the average of the proband’s array replicates (red) and the average of the parents' 1222 

array data (black) for a representative probe within each DMR (n=27). Subtle hypermethylation 1223 

hovering around ~25% can be seen for the proband compared to the parents. The lower track 1224 

shows chromosomal locations of the DMRs of the X;13 translocation. B. Pedigree showing that 1225 
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chr13 hypermethylation events and the X;13 translocation occured de novo. C. IGV view of ONT 1226 

LRS data for chrX (left) and chr13 (right). Some, but not all, reads spanning the translocation are 1227 

colored to show that they span the breakpoint. 1228 
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 1230 

Figure 2: Rare outlier DMR analysis identifies tandem repeat expansions. A. DMR plot depicting 1231 

outlier hypermethylation of the CSNK1E 5’UTR and intron 1 in two probands with unsolved DEEs 1232 

(three replicates across both for a total of five samples), one parent, and one unaffected control 1233 
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(total n=7 red lines) detected through epivariation analysis. B. The upper panel shows expression 1234 

values from RNA-seq of human-derived fibroblasts for individuals with CSNK1E hypermethylation 1235 

compared to control methylation levels. Significance between groups was determined by a two-1236 

tailed paired t-test (p=0.029 for gene counts and p=0.0169 for transcripts per million or TPM). A 1237 

representative predicted expression plot from drop-out analysis using the OUTRIDER algorithm 1238 

is shown at the lower portion of the panel. See Figure S9 for the individual OUTRIDER plots for 1239 

each family and significance information. C. Unphased IGV view of LRS data showing CpG sites 1240 

that are methylated (red) and unmethylated (blue). The CGG repeat expansion seen in the 1241 

proband was inherited from the parent and is shown as purple squares denoting insertions in the 1242 

reads (black arrows); not all reads that are methylated show the insertion as they terminated 1243 

within the inserted sequence and are clipped by the alignment process. 1244 
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 1247 

Figure 4: Insights from the CHD2 Episignature. A. Multidimensional scaling (MDS) plot showing 1248 

clustering of individuals with pathogenic CHD2 variants (red, upper) for the previously described 1249 

CHD2 450K (n=9) episignature with shared 450K and 850K array probes clusters away from the 1250 

controls (blue) The refined CHD2 850K (n=29) episignature (red, lower) clusters away from 1251 

unaffected controls (blue). B. Circos plot representing shared probes between episignatures. 1252 

Differentially methylated probes (DMPs) shared between the CHD2 850K cohort (bold red), CHD2 1253 
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450K cohort (red), and 55 other episignatures on EpiSign with functional correlation analysis 1254 

previously published20. The thickness of the connecting lines corresponds to the number of probes 1255 

shared between the cohorts. C. Tree and leaf visualization of Euclidean clustering of 1256 

episignatures. Tree and leaf visualization for all 57 cohorts using the top 500 DMPs for each group 1257 

(for cohorts with less than 500 DMPs, all DMPS were used). Cohort samples were aggregated 1258 

using the median value of each probe within a group. A leaf node represents a cohort, with node 1259 

sizes illustrating relative scales of the number of selected DMPs for the respective cohort, and 1260 

node colors are indicative of the global mean methylation difference, a gradient of 1261 

hypomethylation (blue) or hypermethylation (red). D. Circular karyotype plot showing overlap of 1262 

CHD2 450K episignature probes (inner circle, n=200), with CHD2 850K episignature probes 1263 

(middle circle, n=200), and WGBS DMRs derived with at least a 15% methylation difference for 1264 

the condensed visual representation (outer circle, n=411). Each line depicts a probe or DMR 1265 

where red denotes hypermethylation and blue denotes hypomethylation. The purple tracks depict 1266 

coverage of the 450K array probes (inner), 850K EPIC array probes (middle), and WGBS reads 1267 

(outer). Refer to Figure S29 for linear karyotype DMR plots for chr1-22. 1268 


