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Abstract 

Predicted loss-of-function variants (pLoFs) are often associated with disease. For genes linked with 

monogenic diseases, we hypothesised that pLoFs present in apparently unaffected individuals may 

cluster in LoF-tolerant regions. We compared the distribution of pLoFs in ClinVar versus 454,773 

individuals in UK Biobank and clustered the variants using Gaussian mixture models. We found that 

genes in which haploinsufficiency causes developmental disorders with incomplete penetrance were 

less likely to have a uniform pLoF distribution than other genes (P<2.2x10-6). In some cases (e.g., 

ARID1B and GATA6), pLoF variants in the first quarter of the gene could be rescued by an alternative 

translation start site and should not be reported as pathogenic. In other cases (e.g., ODC1), pathogenic 

pLoFs were clustered only at the end of the gene, consistent with a gain-of-function disease mechanism. 

Our results support the use of localised constraint metrics when interpreting variants.   

 

  

Introduction  

Contrary to expectation, many individuals in the population harbour predicted loss of function (pLoF) 

variants in genes where haploinsufficiency is known to cause highly penetrant monogenic conditions
1–3

. 

For example, pLoF variants in genes that cause severe developmental disorders (DD) in childhood would 

not be expected to be present at appreciable levels in the general adult population. Nonetheless, we 

and others have previously shown that thousands of individuals in UK Biobank (UKB) carry pLoF variants 

in DD genes and have phenotypes consistent with incomplete penetrance or reduced expressivity, 

though very few individuals have DD diagnoses
4–7

. There are several possible explanations for this 

observation. One possibility is that genetic or environmental modifiers alter the impact of individual 

variants
8
, such that the penetrance of pathogenic variants identified in affected families or disease 

cohorts may be over-estimated. An alternative explanation is that some pLoF variants in these genes do 

not cause loss of function, either because they are technical false positives
9
 or mosaic variants, or 

because they can be rescued through a variety of mechanisms, including alternative transcription
10

, 

exon skipping
11

, escape from nonsense-mediated decay (NMD)
12

, and translation re-initiation
13

. It is 

important to distinguish between benign pLoF variants that produce near-normal levels of functional 

protein, and pathogenic variants that result in substantially reduced protein product, both for estimating 

penetrance and interpreting diagnostic results.  
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Constraint metrics derived from population variation have been extremely useful for identifying genes 

that are intolerant to pLoF variation
14,15

, and regions of genes that are intolerant to missense 

variation
16,17

. However, the location of pLoF variants in genes has not been systematically investigated at 

large scale due to lack of sequence data on large numbers of individuals. We used cluster analysis of 

exome sequence (ES) data from UKB to identify genes showing distinct patterns in the location of pLoF 

variants. We then investigated genes showing these distinct profiles of pLoF location to determine 

whether they could explain the presence of such putatively pathogenic variants in a population cohort. 

Results 

pLoF variants are more likely to be non-uniformly distributed than missense or synonymous variants  

We calculated the relative location of every coding variant detected in ES data from 454,773 individuals 

in UKB in the coding sequence (CDS) of each gene, and the relative proportion of variants grouped by 

consequence class in each transcript
18

 (synonymous, missense, pLoF) within each quintile of the CDS. 

We then used Gaussian mixtures to cluster the profile of the variants of each class within the transcripts 

into seven clusters (Fig. 1). Of these, three clusters represented variants being distributed more-or-less 

uniformly throughout the CDS (clusters 1-3; Fig. 2), and one identified genes with no variants of a 

particular class (not shown). The remaining three clusters showed distinct patterns in the location of 

variants, with at least one quintile of the CDS containing zero (or very few) variants of a given variant 

class, and most variants either being towards the first or second half of the gene (clusters 4-6; Fig 2). 

We limited our analyses to transcripts with at least five variants of each consequence class, and only 

considered MANE Select transcripts for each gene in our primary analysis (16,473 genes). We found 

that, for most genes, synonymous and missense variants fell within the uniform clusters 1-3 (99.3% and 

99.4% respectively; Fig. 3) and we excluded 114 genes with synonymous or missense variants in non-

uniform clusters 4-6 from further analysis as these could be indicative of poor coverage over large 

regions of the gene. In contrast, we found considerably more genes with pLoFs in the non-uniform 

clusters 4-6 (n=1460, 8.9%) compared to synonymous and missense (P < 2.2e-16). These distinct profiles 

for pLoF location were not driven by the possible locations of pLoF variants, based on the underlying 

sequence, where only 63 genes had non-uniform distributions. Simulations showed that, while 

constrained genes were more likely to fall into the non-uniform distribution clusters, there was an 

enrichment of genes within these clusters compared to the expected distribution (p<0.0001; Fig. 4). 

pLoF variants are more likely to be non-uniformly distributed in genes linked with autosomal 

dominant conditions 

We observed that pLoF variants in UKB were more likely to be non-uniformly distributed in autosomal 

dominant DD genes (AD-DD)
19

 versus other genes, possibly indicating regions where pLoFs are tolerated 

and do not cause severe disease. Of AD-DD genes, where pLoFs cause DD through haploinsufficiency 

(421 genes)
19

, we observed 29 with no pLoFs in UKB and 153 with <5 pLoFs (Table S1). Of the remaining 

239 AD-DD genes, pLoFs in 41.4% were non-uniformly distributed (Fig. 5), which contrasted with 3.3% 

for autosomal recessive DD (AR-DD) genes. Genes linked with a range of adult-onset autosomal 

dominant diseases (including cardiac conditions, heritable cancer syndromes and eye disorders), were 

also more likely to have non-uniformly distributed pLoFs (25.3%) than other genes. Simulations showed 

that while these genes generally had fewer pLoFs than other genes, this did not explain the non-uniform 

distributions of pLoFs (p<0.0001). 
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Applying the same clustering procedure to disease causing (pathogenic/likely pathogenic) pLoF variants 

in ClinVar
20

 we found that among 1438 genes with at least five such variants, only 51 (3.5%) were 

uniformly distributed. Across 156 AD-DD genes with at least five pLoFs in both UKB and ClinVar datasets, 

we found 83 (53.2%) genes where pLoFs fell into one of the uniform clusters in UKB, compared with 150 

(96.2%) in ClinVar (2-sided binomial P < 2.2x10
-16

). The majority of genes clustered similarly in both 

datasets; for example, pLoF variants in COL4A3 (associated with Alport syndrome, MIM #104200) are 

uniformly distributed throughout the gene in both UKB and ClinVar (Fig. 6a). In such cases, where pLoFs 

are uniformly distributed throughout a gene in both population and clinical datasets, this approach is 

not able to determine why some pLoF variants are likely to be benign whilst others are pathogenic.  

Non-uniform distributions of pLoF variants may explain incomplete penetrance through a variety of 

molecular mechanisms including alternative splicing and translation re-initiation 

In 43.6% of genes with at least five pLoF variants in both datasets, the distribution of pLoF variants 

differed substantively between UKB and ClinVar (i.e., one was uniform whilst the other was non-

uniform). We hypothesised that these might represent examples where variant location could explain 

incomplete penetrance. We examined this list of genes for examples where the difference in 

distributions was robust, based on visual inspection of the underlying pLoF variant distributions and 

sequence data, and investigated potential mechanistic explanations. 

One mechanism which might explain incomplete penetrance is the existence of alternative transcripts, 

where benign pLoF variants are clustered in exons that are excluded from other functional transcripts. 

For example, TP63 (associated with Hay-Wells syndrome, MIM #106260) has seven pLoFs in the MANE 

Select transcript in UKB, of which five are in early exons not present in the MANE Plus Clinical transcript 

(Fig. 6b). This transcript (ENST00000354600) has an alternative later start codon but contains all the 

ClinVar pathogenic pLoF variants. In addition to MANE Plus Clinical transcripts, which may be the most 

obvious candidates for alternative transcripts to explain the presence of pLoFs in apparently healthy 

individuals, other transcripts may show higher expression levels and explain non-penetrance of some 

disease genes. Examples highlighted by our analysis include two large genes, ARID1B (associated with 

Coffin-Siris syndrome, MIM #135900) and NSD1 (associated with Sotos syndrome, MIM #117550), which 

have 13 and 31 pLoFs in UKB respectively. For ARID1B, 10/13 pLoFs fall before Met584 of the MANE 

Select transcript (ENST00000346085), which also corresponds to the start of an alternative transcript 

(ENST00000414678) that shows higher expression in GTeX v7 than the MANE Select transcript
21

 (Fig. 6c). 

For NSD1, all the pLoFs in UKB occur either in the large last exon or the first exon of the MANE Select 

transcript (ENST00000439151) (Fig. 6d). The first exon is excluded from an alternative transcript, 

ENST00000354179, which has much higher expression levels in GTeX v7 than the MANE Select 

transcript. While the final exon is included in both transcripts, it lies downstream of the functional 

domains of the protein, and since pLoFs in the final exon usually escape NMD, a functional C-terminally 

truncated protein could be produced. In both cases, the pLoF variants in ClinVar are fairly uniformly 

distributed throughout the rest of the gene, but lie outside of these exons. 

It is also important to consider not only alternative transcription but also translation re-initiation in 

explaining incomplete penetrance, as alternative start sites on the same transcript could rescue some 

pLoF variants (though these may not be annotated as such). For example, GATA6 (associated with 

pancreatic agenesis and congenital heart defects, MIM #600001) has 10 pLoFs in UKB, of which eight are 

located before Met147 (Fig. 6e). This contrasts with ClinVar variants, which all lie after Met147. 
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Although there is only a single known transcript for this gene, GATA6 can be produced through 

translation re-initiation from Met147, creating a second recognised protein isoform
22

 that is shorter but 

still retains the functional domains. Unlike the many other AD-DD genes, the phenotypes linked with 

GATA6 haploinsufficiency are both specific and severe enough that we considered it implausible they 

would not be recorded in the linked electronic health records of UKB participants; importantly, we note 

that none of the 30 carriers have any indication of either pancreatic agenesis or cardiac malformations. 

Pathogenic pLoF variants at the end of genes may point towards a gain-of-function disease 

mechanism 

Finally, we also found a small number of AD-DD genes where pLoF variants were uniformly distributed in 

UKB but non-uniformly distributed in ClinVar. For example, in ODC1 (associated with Bachmann-Bupp 

syndrome, MIM #165640), all 11 pLoFs in UKB occur before the penultimate exon, whilst ClinVar 

pathogenic variants all occur in the last or penultimate exons (Fig. 6f). Here, despite being annotated as 

pLoF, there is no evidence that haploinsufficiency causes disease, and pathogenic variants at the end of 

the gene are likely to result in a gain-of-function (GoF), for example, by causing resistance to normal 

degradation
23

.  

Discussion 

Using cluster analysis, we have identified 1460 genes which show distinct patterns of pLoF location 

within UKB, of which 16.4% are in genes where haploinsufficiency causes monogenic diseases that are 

generally assumed to be fully penetrant. We have also highlighted specific examples of well clinically 

characterised genes, including GATA6 and ARID1B, where we were able to suggest potential molecular 

mechanisms that may explain the presence of pLoF variants in apparently healthy individuals. These 

examples show the importance of examining alternative transcription and alternative translation to 

understand the clinical impact of pLoFs. 

Haploinsufficient genes can be divided into three groups based on the distribution of population genetic 

variation in UKB: (1) those where we observe too few pLoF variants to be able to cluster them effectively 

(37.4%); (2) those where we observe distinct non-uniform patterns of pLoF variant distribution (20.9%); 

and (3) those where we observe a broadly uniform distribution of pLoF variants (41.6%). For the first of 

these groups, the low numbers of pLoFs in UKB may be the result of haploinsufficiency in these genes 

being genuinely highly penetrant. For the second group we have demonstrated how this distribution can 

explain incomplete penetrance of pLoF variants in many of these genes. The final group of genes (where 

we observe uniform distributions of pLoFs in UKB) is perhaps most puzzling; although a subset may 

exhibit patterns of pLoF variant locations that are below the resolution captured by the quintiles used in 

our clustering approach, this is unlikely to be the case for all of them. Similarly, although a subset may 

cause unrecognised developmental disorders in some individuals, this is unlikely to be true for the 

majority given the known ascertainment bias towards healthy individuals in UKB
24

. However, some 

genes (such as SRCAP
25

) contain pLoFs that cause clinically distinct DDs via different mechanisms based 

on their location, with phenotypes ranging from mild to severe. For other genes with uniformly 

distributed pLoFs, the presence of incompletely penetrant pLoF variants may instead indicate the 

presence of modifiers, potentially in other genes or nearby non-coding regions. Understanding the 

mechanisms which modify the penetrance of these genes will require sequence data on large numbers 

of affected individuals to compare to healthy controls and is beyond the scope of this study, but would 

enable assessment of genotype-phenotype correlations and disease mechanisms at a sub-genic level. 
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While our study has identified genes where distinct patterns of pLoFs point toward mechanisms that 

may explain incomplete penetrance, there are some notable limitations. The use of quintiles to 

normalise the position of variants within genes means there will be patterns which are missed by our 

clustering approach, as their distribution is below the resolution captured by quintiles. Also, as 

demonstrated by the simulation analyses, there are a number of genes which will fall into clusters with 

distinct patterns of pLoF distribution by chance, rather than being driven by underlying biological 

mechanisms. Identifying these genes and separating them from those where the patterns of pLoFs are 

informative requires additional data and may not always be possible with high confidence. However, we 

believe that we have demonstrated the utility of our approach, which will improve with larger datasets. 

Additionally, while none of the individuals in UKB carrying pLoFs in the genes highlighted have been 

diagnosed with any of the conditions in question, there may be relevant phenotypes not captured in the 

UKB data. Increasing the sample size would also allow us to increase the robustness of the clustering, 

especially for highly constrained genes with few carriers in UKB. 

We have shown how genes associated with assumed fully penetrant childhood-onset conditions through 

haploinsuffiency can have regions where predicted pathogenic variants are tolerated and don’t cause 

disease. Excluding such variants from both diagnostic pipelines and studies of disease penetrance is 

crucial. For example, within GATA6 and ARID1B, we suggest that pLoFs occurring in the first quarter of 

the CDS of the MANE Select transcript (corresponding to the first 146 and 583 amino acids of the 

proteins, respectively) do not cause disease and should not be reported diagnostically. We have also 

demonstrated the benefits of using regional rather than gene-wide constraint metrics to understand the 

potential impact of pLoF variants, and our results may be helpful in determining whether pLoF variants 

in genes associated with monogenic conditions cause disease. 
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Methods 

Classification of variants in UK Biobank 

Variants from exome sequencing (ES) data within the UK Biobank were called centrally by the UKB team 

using graphTyper
26

. We used the Ensembl VEP v104
18

 with the LOFTEE plugin
14

 to annotate the variants 

with their predicted functional consequences. We excluded variants which were flagged for removal by 

UKB due to low depth. Within each protein-coding transcript, we grouped variants into synonymous 

(VEP classification “synonymous_variant”), missense (“missense_variant”), and pLoF (variants classified 
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by LOFTEE as “LoF”). No frequency threshold was used, and variants were all counted once regardless of 

minor allele frequency. We further separated pLoF variants into SNVs, and frameshift insertions or 

deletions (indels). For our main analyses we considered all pLoF variants together; pLoF SNVs were used 

as a sensitivity analysis to ensure patterns were not driven by indels spanning quintiles of the gene. 

Using start and end locations for exons within each transcript from Ensembl (downloaded on 01-04-

2022), we calculated the relative position of each variant within the coding sequence of each transcript, 

considering only exonic variants (i.e., excluding splice donor and splice acceptor variants). We then 

divided each transcript into quintiles, and for each class of variants (synonymous, missense, pLoF) we 

calculated the number of variants within each quintile as a proportion of the number of variants of that 

class. 

Cluster analysis  

We applied principal components analysis (PCA) to the proportion of variants in each quintile of the 

gene transcript, separated by variant class. PCA loadings were calculated based on locations of 

synonymous, missense, and all pLoF variants. We then projected the PCA onto SNV pLoFs, possible 

pLoFs, simulations, and ClinVar variants. 

We clustered the PCA profile of variants of each class within each transcript using Gaussian Mixtures, 

allowing seven clusters, trained using the profile of synonymous, missense and all pLoFs. For each class 

of variant within each transcript we obtained the most likely cluster, as well as the probability for its 

inclusion in each cluster. We projected the SNV pLoFs, possible pLoFs, simulations and ClinVar variants 

into the clusters to obtain their most likely cluster and probabilities. Seven clusters were chosen to allow 

for multiple clusters with different non-uniformly distributed variants. We performed sensitivity 

analyses varying the number of clusters to ensure that our results were robust to the number of clusters 

chosen. 

Sensitivity analyses 

Possible locations of pLoF variants 

We examined the coding sequence of each transcript and calculated the locations of all possible pLoF 

SNVs. We clustered these in the same way as observed pLoF variants (see below) to verify that any 

patterns we identified were not driven by the underlying coding sequence, and the possible locations of 

pLoF SNVs. The clustering of these variants was compared to that of observed pLoF SNVs. 

Simulations 

To estimate the rate at which genes with a given number of variants of a given class clustered into each 

cluster, we used simulations to create synthetic sets of genes with varying numbers of variants. We took 

the relative positions of all variants in the UKB ES data, and randomly selected a number of these based 

on the number of pLoF variants within each gene in UKB. We repeated this 10,000 times. Simulated 

genes were then clustered to estimate the number of genes falling into each cluster by chance. 

ClinVar variants 

We downloaded clinically annotated variants from ClinVar (02/10/2022) and calculated the proportion 

of pathogenic/likely pathogenic pLoF variants within each quintile of each transcript and clustered them 

to compare to the UK Biobank pLoF clusters.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.11.23296535doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.11.23296535
http://creativecommons.org/licenses/by/4.0/


Disease gene lists 

We examined the clusters which pLoFs fell into in genes linked with monogenic diseases from the 

Gene2Phenotype database to investigate whether these could elucidate the variable penetrance of 

these genes. Gene lists were downloaded from https://www.ebi.ac.uk/gene2phenotype/ (accessed 04-

06-2021) and split into those causing severe developmental disorders (DD), and those causing later 

onset diseases (cancer, cardiac, eye, and skin). These were further subdivided into monoallelic 

(autosomal dominant) and biallelic (autosomal recessive) genes with "absent gene product” 

mechanisms; G2P genes with other inheritance classes or disease mechanisms were excluded. 
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Figure 1: Flow diagram showing the experimental design. 
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Figure 2: Profile of variant locations in each identified cluster. 

Frequency density plots of the relative position of all variants in all genes falling into each cluster. Shown 

are the 6 clusters which identified genes where variants of a particular class are present. The 7
th

 cluster 

identified genes where there were no variants of a given class. 
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Figure 3: Proportion of genes falling into each cluster, separated by variant class. 

For each class of variant (synonymous, missense, pLoF) we present the relative proportion of genes 

where variants of that class were included in each of the 6 clusters where variants are present. The 

seventh cluster identifying genes with no variants of a particular class was excluded from the relative 

proportion calculations. 
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Figure 4: Proportions of genes in cluster 4-6 in UKB compared with simulations. 

The proportion of genes where pLoFs in UK Biobank are clustered into clusters 4-6 against the number 

of pLoFs in that gene is shown in blue. The proportion of simulated genes where pLoFs clustered into 

clusters 4-6 against the number of variants in the gene is shown in red. The green line shows the 

number of genes with each number of pLoFs in UK Biobank. 
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Figure 5: Proportion of genes with pLoFs in each cluster, including subsets of disease genes, locations of 

possible pLoFs, and simulation analyses. 

The relative proportion of genes where pLoFs are included in each of the six clusters with at least five 

pLoF variants is shown for different sets of genes, locations of possible pLoFs, and simulations: All (all 

genes with at least five pLoFs); AD-DD G2P genes (genes where pLoFs cause developmental delay 

through haploinsufficiency); AR-DD G2P genes (genes where pLoFs cause developmental delay through 

recessive mechanisms); other AD G2P genes (genes where pLoFs cause adult onset diseases, including 

cancer syndromes and heritable cardiac, eye or skin conditions); other AR G2P genes (genes where 

pLoFs cause adult onset diseases through recessive mechanisms); genes with high probability of LoF 

intolerance (pLI
15

) scores >0.9; possible LoF variants based on the underlying sequence of each gene; 

simulations of all genes (simulated genes matched to the number of pLoFs in each gene in UKB); 

simulations of AD-DD genes (simulated genes matched to the number of pLoFs in AD-DD genes in UKB). 

AD = autosomal dominant; AR = autosomal recessive. 
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Figure 6: Profiles of variants of each class within selected genes 

Locations of variants of each class in UK Biobank individuals, and ClinVar pathogenic/likely pathogenic 

variants in COL4A3, TP63, ARID1B, NSD1, GATA6, and ODC1 are shown. The top panel of each figure 

shows a frequency density plot of the relative position of variants of each class in UKB, plus ClinVar 

pathogenic/likely pathogenic variants. The middle panels show rug plots of the relative positions of each

variant of each class in separate panels. The bottom panels show the locations of start codons, and a 

diagram of either the relative positions of domains within the protein (for COL4A3, GATA6, ODC1), or a 

depiction of the exons included in the labelled transcript (TP63, ARID1B, NSD1). The location of the final 

exon is indicated by the dark bar above the transcript diagram. 
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