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Abstract 1 

BACKGROUND 2 

The development of artificial intelligence (AI)-based medical systems heavily relies on the 3 

collection and annotation of sufficient data containing disorders. However, the preparation of 4 

data with complete disorder types and adequate annotations presents a significant challenge, 5 

limiting the diagnostic capabilities of existing AI-based medical systems. This study introduces 6 
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a novel AI-based system that accurately detects a broad spectrum of disorders without requiring 7 

any disorder-containing data. 8 

 

METHODS 9 

We obtained a training dataset of 21,429 disorder-free head computed tomography (CT) scans 10 

and proposed a learning algorithm called Inverse Supervised Learning (ISL). This algorithm 11 

learns and understands disorder-free samples instead of disorder-contained ones, enabling the 12 

identification of all types of disorders. We also developed a diagnosis and visualization software 13 

for clinical usage based on the system's ability to provide visually understandable clues. 14 

 

RESULTS 15 

The system achieved Area Under the Curve (AUC) values of 0.883, 0.868, and 0.866 on 16 

retrospective (127 disorder types, 9,967 scans), prospective (117 disorder types, 3,054 scans), and 17 

cross-center (46 disorder types, 554 scans) datasets, respectively. These results demonstrate that 18 

the system can detect far more disorder types than previous AI-based systems. Furthermore, the 19 

ISL-based systems achieved AUC values of 0.893 and 0.895 on pulmonary CT and retinal optical 20 

coherence tomography (OCT), respectively, demonstrating that ISL can generalize well to non-21 

head and non-CT images. 22 

 

CONCLUSIONS 23 

Our novel AI-based system, utilizing ISL, can accurately and broadly detect disorders without 24 

requiring disorder-containing data. This system not only outperforms previous AI-based 25 
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systems in terms of disorder detection but also provides visually understandable clues, 26 

enhancing its clinical utility. The successful application of ISL to non-head and non-CT images 27 

further demonstrates its potential for broad-spectrum medical applications. (Funded by 28 

National Key R&D Program of China, National Natural Science Foundation of China) 29 

 

Over the past decade, artificial intelligence (AI) has made significant strides and has been 30 

applied in various fields. In the medical field, the accumulation of medical image data has enabled 31 

many AI diagnostic techniques to achieve radiologist-level performance in recognizing, 32 

classifying, and quantifying specific diseases. For example, AI has been used for cerebral 33 

hemorrhage recognition1 and COVID-19 recognition2 from CT images. These breakthroughs have 34 

led us to envision that AI diagnostic techniques can assist in clinical decision-making from medical 35 

images and alleviate the severe shortage of expert radiologists in many areas and hospitals. 36 

 

Despite the significant progress made in AI techniques, there is still a gap between these 37 

techniques and real clinical decision-making. Current AI techniques primarily focus on 38 

recognizing specific types of disorders from input medical data. However, for a clinical decision-39 

making workflow, the most basic and essential task is to identify all possible disorder types that 40 

could be diagnosed from the medical image. For instance, in the case of brain CT, more than one 41 

hundred types of disorders could be diagnosed from it. Therefore, a decision-making diagnostic 42 

system for brain CT must be capable of detecting a broad spectrum of disorders, as missing the 43 

detection of any disorder type is unacceptable. Existing medical AI techniques are developed based 44 

on widely-used AI paradigms, which involve deciding the disorder types to be handled, collecting 45 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 3, 2024. ; https://doi.org/10.1101/2023.10.10.23296794doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.10.23296794


4  

sufficient disorder-contained samples, and constructing recognition/localization/segmentation 46 

models for the disorders. This paradigm works well when the disorder types are limited, and the 47 

samples are easily accessible. However, developing a broad-spectrum disorder detection system 48 

using this paradigm requires collecting data and constructing models for all types of disorders, 49 

which is extremely difficult and inefficient, especially for unusual diseases. Therefore, it is 50 

impractical to use the widely-used AI paradigms to achieve real clinical decision-making. 51 

 

To address the challenges mentioned above, we propose a novel AI solution called Inverse 52 

Supervised Learning (ISL). Instead of using disorder-contained data, which requires hundreds of 53 

disorder types and a large number of samples for each type, we use disorder-free medical images 54 

for supervision. In theory, we use the opposite problem (detecting no-disorder samples) to replace 55 

the original problem (detecting all types of disorders). Therefore, instead of training hundreds of 56 

models to recognize all possible types of disorders, we train just one model to understand the 57 

concept of disorder-free fully. Consequently, all disorders can be identified as they differ from the 58 

disorder-free samples used in training. With our paradigm, the challenges mentioned above are 59 

fully resolved as there is no need for samples of all possible disorder types. 60 

 

To achieve ISL, we utilize the traditional computer vision task of image inpainting in a novel 61 

framework. Image inpainting aims to restore the content of a partially missing image based on the 62 

context of non-missing information. Specifically, in this case, an image inpainting network is 63 

trained to replenish masked regions in a medical image, where the replenished content always 64 

reflects healthy tissue because the training dataset contains only disorder-free medical images. If 65 
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any disorder exists in the image and the disorder region is masked off, the reconstructed disorder- 66 

free image would be significantly different from the original one. Conversely, for an image without 67 

disorders, no matter which region is masked, the reconstructed image should always be similar to 68 

the original one as they are both healthy and consistent with the rest of the healthy images. By 69 

masking, inpainting, and comparing all the image regions, ISL can detect various types of disorders 70 

and locate the disorder regions. Our proposed solution, ISL, (1) does not require the deliberate 71 

collection of data for any disorder type; (2) ensures that the data used to develop systems are easily 72 

accessible; (3) does not require experts to manually annotate the data; (4) enables the developed 73 

system to recognize broad-spectrum disorders rather than specific ones; and (5) provides experts 74 

with clinical clues, such as disorder locations. 75 

 

In this study, we utilized ISL to construct a system for broad-spectrum disorder detection on 76 

unenhanced brain computed tomography (CT) scans.3, 4 CT is a first-line diagnostic modality for 77 

assessing brain abnormalities due to its quick acquisition and non-invasive nature. The ISL-based 78 

system was developed using only disorder-free head CT images. It achieved expert-level accuracies 79 

on a retrospective dataset with 127 disorder types and a prospective dataset with 116 disorder types, 80 

surpassing the number of detectable disorder types in previous works. We also applied ISL to build 81 

two additional systems: one for pulmonary disorder detection in CT images and another for retinal 82 

disorder detection in optical coherence tomography (OCT) images. The results demonstrate that 83 

ISL can generalize well to non-brain and non-CT-based disorder detection. 84 

 

Results 85 
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Building an ISL based system for clinically applicable broad-spectrum head disorder 86 

detection. Our proposed ISL-based disorder detection system for brain CT comprises a de-disorder 87 

network (DeDN), a disorder recognition network (DRN), and a disorder locating module. Firstly, 88 

a CT image is processed with specific window width and window locations and then fed into the 89 

DeDN to generate its corresponding de-disorder image. Next, we obtain a difference image by 90 

subtracting the original and generated images. Finally, the difference image is inputted into the 91 

DRN to determine whether any disorder exists in the image. Additionally, the disorder locating 92 

module can be used to locate the disorder. Our goal is to provide an effective tool that can assist 93 

physicians and researchers in quickly identifying images that may contain disorders from a large 94 

volume of CT images for further analysis and diagnosis. 95 

 

To develop the system, we collected CT scans from the Chinese PLA General Hospital 96 

(PLAGH), a leading national hospital that serves patients throughout China. We constructed a 97 

training dataset of 21,429 healthy brain CT scans (March 2012 - July 2019) retrieved from the 98 

picture archiving and communication systems (PACS). The retrieval process involved matching 99 

the fixed description (“No abnormality is observed”) of healthy CT scans with historical diagnosis 100 

reports, resulting in a training dataset that was efficiently obtained without requiring expert effort 101 

or disorder annotation. 102 

 

Performance on the broad-spectrum head disorder detection. To evaluate the system, we 103 

obtained a retrospective test dataset from the PLAGH (9,967 scans, 88.23% with 127 types of 104 

disorders, March 2012 - July 2019) and a prospective test dataset from the PLAGH (3,054 scans, 105 

88.70% with 116 types of disorders, July 2019 - August 2021). To demonstrate the clinical 106 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 3, 2024. ; https://doi.org/10.1101/2023.10.10.23296794doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.10.23296794


7  

applicability of our system, we counted all types of disorders described in clinical reports from the 107 

PLAGH using a rule-based NLP algorithm and manual selection by radiologists. We sorted out 108 

127 and 116 types of disorders for testing, respectively. To our knowledge, these test datasets have 109 

the broadest coverage of head disorder types. The number of scans for each disorder is shown in 110 

Supplementary Table 1 and 2. 111 

 

We employed a disorder-contained/free classification testing strategy for each type of 112 

disorder, with testing carried out at the scan-level. This means that the system predicted whether 113 

the entire scan contained any disorder or not. Scan-level classification is practical for clinical use 114 

as it enables radiologists to quickly identify the presence of disorders, which is particularly useful 115 

in emergency treatment.5 The label of each scan was determined using disorder-related keywords 116 

in its associated report and then confirmed by radiologists based on the report and CT images. 117 

 

For the retrospective and prospective test datasets, the area under the receiver operating 118 

characteristic curve (AUC) with 95% confidence interval (CI) for the two datasets, along with the 119 

true positive rate (TPR), false positive rate (FPR), and the overall receiver operating characteristic 120 

(ROC) curves, are presented in Supplementary Table 1, 2, 4, and Supplementary Figure 1. 121 

Additionally, Supplementary Table 1 and 2 also present the sensitivity and specificity with 95% 122 

CI for the disorders. On the retrospective dataset, the system achieved an AUC > 0.95 for 43 123 

disorders and an AUC > 0.90 for 74 disorders. On the prospective dataset, the system achieved 124 

an AUC > 0.95 for 30 disorders and an AUC > 0.90 for 50 disorders. These results demonstrate 125 

that our system is capable of detecting a broad spectrum of disorders in brain CT. 126 
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Analysis of lesion detection efficacy by size and urgency of treatment. In our comprehensive 127 

analysis, we delved into the challenges of disorder detection. We identified two primary categories 128 

of challenging cases in disorder detection: those that are small and easily missed, and those that do 129 

not require immediate treatment, which may also be overlooked due to their subtler characteristics. 130 

To conduct a thorough analysis, we divided the cases into three groups based on these dimensions. 131 

 

In terms of lesion size, we classified the cases as large, medium, or small. The classification 132 

outcomes are detailed in Supplementary Table 7. We computed the Area Under the Curve (AUC) 133 

values with 95% CI (Table 1) and plotted ROC curves (Figure 1) for each size category. The AUC 134 

results for different lesion sizes demonstrate AUC accuracies of 0.941, 0.943, and 0.887 for large, 135 

medium, and small lesions, respectively. These figures underscore our model’s high accuracy in 136 

detecting even smaller lesions, maintaining a commendable level of recognition precision. 137 

 

When classifying based on the urgency of treatment, we sorted the cases into high, medium, 138 

and low urgency levels, calculating the corresponding AUC values for each. The categories were 139 

defined as follows: Emergency intervention. This group encompasses severe disorders 140 

necessitating immediate medical attention, such as certain cancers and other conditions that could 141 

be life-threatening. Selective intervention. Disorders in this category may not require urgent 142 

treatment but could necessitate medical intervention as they evolve. Non-intervention. This group 143 

includes disorders that generally do not require treatment and have minimal impact on patient 144 

quality of life. Detailed classification results are shown in Supplementary Table 8. 145 
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Table 1. Performance for disorder types across different lesion sizes. 

Performance vs. Lesion sizes 

  AUC Sensitivity Specificity 

Large 0.941 (0.941, 0.942) 0.883 (0.882, 0.885) 0.865 (0.864, 0.867) 

Medium 0.943 (0.943, 0.944) 0.885 (0.883, 0.886) 0.875 (0.873, 0.876) 

Small 0.887 (0.887, 0.888) 0.885 (0.884, 0.887) 0.771 (0.770, 0.773) 
 

Table 2. Performance for disorder types based on urgency of treatment. 

Performance vs. Urgency of treatment 

  AUC Sensitivity Specificity 

High 0.942 (0.941, 0.942) 0.859 (0.858, 0.861) 0.897 (0.895, 0.898) 

Medium 0.853 (0.853, 0.854) 0.849 (0.848, 0.851) 0.727 (0.726, 0.729) 

Low 0.859 (0.859, 0.860) 0.838 (0.836, 0.840) 0.737 (0.736, 0.739) 

 

The AUC accuracies and ROC curves for lesions of high, medium, and low urgency are 146 

shown in Table 2 and Figure 2. The AUC results were 0.946, 0.859, and 0.861, respectively. These 147 

results indicate that our model is proficient in identifying lesions with varying degrees of urgency, 148 

effectively recognizing even those with less pronounced features. 149 

 

Evaluation of system generalizability. To be practical, an AI-based system should be able to 150 

generalize to new data from different centers and hospitals. In order to evaluate the generalizability 151 

of the ISL-based system, we constructed a cross-center test dataset from the Brain Hospital of 152 

Hunan Province (BHHP), which served as an independent test cohort from PLAGH. This dataset 153 

consisted of 554 scans, of which 59.01% had 46 different types of disorders. It is worth noting that 154 

in the cross-center experiment, we made efforts to collect as much available data as possible to 155 

ensure the comprehensiveness of the tested disorders. However, this approach resulted in a smaller 156 

number of samples for certain disorders (e.g., the total sample size for Basal Ganglia Cerebral 157 

Infarction was 5). As a result, the performance of these specific disorder types may deviate when 158 

compared to the retrospective test set. 159 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 3, 2024. ; https://doi.org/10.1101/2023.10.10.23296794doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.10.23296794


10  

 160 

Figure 1. ROC curves for disorder types across different lesion sizes. 

 

Figure 2. ROC curves for disorder types based on urgency of treatment. 

 161 

The AUCs with 95% CI for the 46 types of disorders, along with the overall ROC curve are 162 

presented in Supplementary Table 3 and Supplementary Figure 1. The average AUC was 0.866, 163 

which was only 0.017 lower than that of the retrospective intra-center test. These results 164 

demonstrate the generalizability of the system across different centers. 165 

 

Evaluation of improving expert performance. In clinical practice, a computer-aided diagnosis 166 

(CAD) system should provide understandable clues to support prediction results. Our model can 167 

quickly and intuitively locate the disorder region based on the generated de-disorder image, as 168 
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shown in Figure 3a. Additionally, we developed a CAD software for clinical use, as shown in 169 

Figure 3b. The software takes a CT scan as input and outputs possible disorder regions, improving 170 

the diagnosis performance of radiologists. 171 

 

To quantitatively evaluate the improvement, we conducted an experiment involving four 172 

radiologists with diverse levels of experience, ranging from 5 to 14 years. Each radiologist was 173 

tasked with independently reviewing a set of 300 randomly chosen samples from our cross-center 174 

test dataset, which comprised 100 cases with identified disorders and 200 cases deemed healthy. 175 

Initially, the radiologists performed their assessments without the support of our software, relying 176 

solely on their expertise. Subsequently, we introduced the diagnostic suggestions provided by our 177 

software to examine its influence on the radiologists’ ability to diagnose accurately. 178 

 

The incorporation of software’s insights led to a notable enhancement in diagnostic precision. 179 

The average sensitivity across the four radiologists increased by 0.035, while the specificity saw a 180 

marginal improvement of 0.006. the advancements are visually represented in Figure 4.  181 
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Figure 3. Visualization examples for head disorder detection. a) Typical examples of our 

system’s performance are shown, including the original CT image, the corresponding de-disorder 

image generated by our system, and the heatmap indicating the probability of containing disorders. 

Warmer colors in the heatmap indicate a higher probability of disorders. The heatmaps provide 

visual clues to the system’s decision. b) We also developed a diagnosis and visualization software 

that takes a CT scan as input and outputs possible disorder locations in the form of a heatmap. The 

heatmap can be displayed on a 2D slice or on a 3D reconstruction scan. 
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Figure 4. The performance of four radiologists before and after considering the system 

recommendation. The radiologists have 5 (pink), 7 (blue), 10 (green) and 14 (orange) years of 

working experience. 

 

The observed improvements underscore the potential of our software to serve as a valuable tool for 182 

radiologists, particularly in the accurate detection of disorders. The integration of our software into 183 

the diagnostic workflow promises to refine disorder screening processes and support radiologists 184 

in delivering more precise and reliable diagnoses. The radiologists reported that the system 185 

effectively reduced their workload by accurately identifying a broad spectrum of disorders, and 186 

contributed to lowering the rate of missed diagnoses. They appreciated the system's ability to 187 

provide visually understandable clues, which greatly assisted in their diagnosis process. 188 

 

Analysis of system explainability. Our system not only detects the disorder location in a slice but 

also provides the disorder distribution in a scan. Figure 5b shows two example scans with different 

disorder distributions. Based on the distribution curves supplied by our system, we can observe that 

the disorders in the two scans have centralized and dispersive distributions, respectively. Figure 5c 
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Figure 5. Patterns of disorder distribution in CT scans. The x-axis of the graph represents the 

slice index of a CT scan, while the y-axis represents a slice’s abnormal score. A higher score 

indicates a greater likelihood of lesions in the slice. a) The correspondence between slice indexes 

and brain tissues is shown. b) Two example scans with dispersive and centralized distributions are 

presented. c) The average disorder distributions of some typical disorders in the retrospective 

dataset are displayed. 

 

shows the average disorder distributions for some typical disorders in the retrospective dataset. The 189 

average distributions are close to the occurrence frequency at different brain tissues in reality, 190 

demonstrating the effectiveness of the system’s explainability. 191 

Performance contributions from different modules. This section elaborates on the reasons for 192 
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adopting each module and demonstrates their contributions to the final performance. The results are 193 

presented in Figure 6. 194 

 195 

Figure 6. Iterative performance improvement by de-disorder network (DeDN) and disorder 

recognition network (DRN). Original ct input: original CT slices + DRN; D-score evaluation: 

DeDN + pixel value sum; Network evaluation: DeDN + DRN. The comparison was performed on 

the prospective test dataset. 

 

Performance contribution from de-disorder network. In ISL, the evaluation of the probability of 196 

disorder containment depends on the difference image difx , where ddx  is a de-disorder image generated by a 197 

de-disorder network (DeDN). Original medical images are too complex for a system to learn disorder-related 198 

information solely based on them. Therefore, we do not directly apply original images for evaluation. Using 199 

difference images for evaluation is more intuitive, as the greater the difference between the original and de-200 

disorder images, the higher the probability of disorder containment. 201 

 

To numerically demonstrate the effectiveness of the difference image generated by the DeDN, we also 202 

applied the original-image-based method for evaluation. As shown in Figure 6, on the prospective test dataset, 203 

the average AUC with 95% confidence interval is 0.657 and 0.752, respectively, where the result from the 204 

original-image-based method (Original CT input) is significantly lower than that from the difference-image-205 
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based method (D-score evaluation). The improved result highlights the value of the DeDN. 206 

 

Performance contribution from disorder recognition network. After obtaining the difference image 207 

xdif  with a DeDN, we used a disorder recognition network (DRN) to evaluate the probability of 208 

disorder containment. Although we could determine the probability directly based on the pixel 209 

value sum of the difference image, we did not adopt this strategy. This is because a DeDN cannot 210 

produce perfectly healthy tissue, meaning that even for a healthy area, the pixel value sum of that 211 

area may still be positive. As a result, the accumulated pixel value sum of all healthy areas would 212 

negatively influence the probability evaluation. 213 

 

Instead, we used the pixel sum-based evaluation (D-score evaluation) and DRN-based 214 

evaluation (Network evaluation) based on the difference image, as shown in Figure 6. The 215 

average AUC of the two methods on the prospective dataset were 0.752 and 0.868, respectively, 216 

demonstrating the superiority of the DRN. 217 

 

Evaluation of inverse-supervised learning generalizability. To assess the generalizability of ISL 218 

across different body parts and medical image types, we employed it to develop two additional 219 

systems. The first system is designed for detecting pulmonary disorders in CT images, while the 220 

second system is designed for detecting retinal disorders in optical coherence tomography (OCT) 221 

images. 222 

 

Performance of pulmonary disorder detection. In addition to brain CT, we developed an ISL-based 223 

system for detecting disorders in pulmonary CT scans. The data used for system development were 224 
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collected from the First Affiliate Hospital of Guangzhou Medical University (FAHGMU), another 225 

leading national hospital that serves patients from across China. We constructed a training dataset 226 

consisting of 3,410 healthy pulmonary CT scans and a test dataset that included 6 types of 227 

pulmonary disorders (82 pneumothorax, 86 pneumonia, 96 bronchiectasis, 88 bullae, 82 atelectasis, 228 

and 46 effusion), as well as 600 healthy scans. The AUCs and detection examples for each type of 229 

disorder are presented in Table 3 and Figure 7a. The average AUC was 0.893, indicating that ISL 230 

can generalize well across different body parts. 231 

Table 3. Performance on the pulmonary CT test dataset for pulmonary disorder detection. 

 
Pulmonary CT 

  Num AUC Sensitivity Specificity 

pneumothorax 82 0.992 (0.992, 0.992) 0.996 (0.995, 0.996) 0.937 (0.935, 0.939) 

pneumonia 86 0.911 (0.909, 0.912) 0.874 (0.869, 0.878) 0.830 (0.828, 0.831) 

bronchiectasis 96 0.811 (0.807, 0.811) 0.697 (0.689, 0.704) 0.816 (0.815, 0.817) 

bullae 88 0.786 (0.782, 0.787) 0.589 (0.582, 0.595) 0.827 (0.826, 0.828) 

atelectasis 82 0.952 (0.951, 0.952) 0.984 (0.982, 0.986) 0.853 (0.852, 0.855) 

effusion 46 0.958 (0.956, 0.958) 0.999 (0.999, 1.000) 0.883 (0.880, 0.885) 

avg 6/6 0.893 (0.891, 0.894) 0.838 (0.834, 0.842) 0.854 (0.853, 0.855) 

 

Table 4. Performance on the retinal OCT test dataset for retinal disorder detection. 

 
Retinal OCT 

  Num AUC Sensitivity Specificity 

CNV 1,220 0.939 (0.938, 0.940) 0.847 (0.844, 0.851) 0.904 (0.900, 0.907) 

DME 1,600 0.913 (0.912, 0.914) 0.838 (0.835, 0.841) 0.890 (0.888, 0.893) 

DRUSEN 1,220 0.827 (0.826, 0.829) 0.760 (0.757, 0.764) 0.762 (0.758, 0.765) 

avg 3/3 0.895 (0.894, 0.896) 0.817 (0.814, 0.820) 0.855 (0.852, 0.858) 

 

Performance of retinal disorder detection. To demonstrate the ability of ISL to generalize across 232 

different medical image types, we developed a retinal disorder detection system based on optical 233 

coherence tomography (OCT) images. We used the dataset collected by Kermany et al.,6 which 234 

includes 108,312 images (37,206 with choroidal neovascularization, 11,349 with diabetic macular 235 
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edema, 8,617 with drusen, and 51,140 normal). Following the development procedure of ISL, 236 

we used only the normal OCT images as the training dataset. The model was tested with 1,000 237 

images (250 from each category) from 633 patients, as in Kermany et al.6 The AUCs with 95% 238 

confidence interval (CI) on the scan-level are summarized in Table 4. The AUCs for choroidal 239 

neovascularization (CNV), diabetic macular edema (DME), and drusen were 0.939, 0.913, and 240 

0.827, respectively. Despite being developed using only normal OCT images, our system achieved 241 

clinically acceptable results, indicating that ISL is applicable to different medical image types. 242 

Detection examples for each type of disorder are shown in Figure 7b. 243 
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Figure 7. Examples of our system on the CT-based pulmonary disorder detection and the 

OCT-based retinal disorder detection. 

 244 

 

Discussion 245 

We introduced a learning strategy called inverse supervised learning (ISL) and utilized it to 246 

develop a head disorder detection system that requires no disorder data or annotation during the 247 
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development process. The system’s detectable disorder coverage is comparable to that of a human 248 

expert. Additionally, the system’s excellent generalizability and explainability enhance its clinical 249 

applicability. 250 

 

Annotated and disorder-contained data. Most existing deep-learning medical systems rely on 251 

supervised learning, which requires a substantial amount of annotated data to achieve 252 

generalizability, accuracy, and recognition gratuity. However, obtaining sufficient annotated data in 253 

medical image research is challenging due to the time-consuming and expert knowledge-intensive 254 

nature of the notating process. For instance, even for an experienced expert, it may take several 255 

minutes to annotate a medical image at the region-level, which provides strong supervision for 256 

disorder detection by indicating the exact lesion region. Consequently, research works that rely on 257 

region-level annotation, such as Nikolov et al.7 and Monteiro et al.,8 are limited by the amount of 258 

annotated data, which hinders the generalizability and accuracy of the system. 259 

 

To reduce the dependence on annotated data, researchers have explored alternative learning 260 

strategies for medical image research. For instance, weakly-supervised learning9, 10, 11 allows each 261 

training sample to lack a label or have an incorrect label, significantly reducing the annotation cost 262 

for experts. Unsupervised learning, on the other hand, uses unannotated training data to enhance 263 

the feature representation capacity of a deep learning network, thereby reducing the number of 264 

required annotated samples. Self-supervised learning is a recent representative unsupervised 265 

learning method12, 13 that annotates each sample by itself instead of relying on human experts. 266 

However, these learning strategies require a substantial amount of disorder-contained data to 267 
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ensure accuracy. Collecting enough disorder-contained data is challenging for general researchers 268 

due to ethical and legal considerations, limiting related research to large medical institutions. For 269 

example, Chilamkurthy et al.5 collected over 300,000 brain CT scans from more than 20 medical 270 

centers, which is beyond the reach of most researchers. 271 

 

Compared to previously adopted learning strategies in medical image research, the proposed 272 

ISL tackles a challenging task where no annotated or disorder-contained data is available. The only 273 

available data is disorder-free data, which can be easily obtained by any medical institution capable 274 

of medical imaging scans. 275 

 

Disorder coverage. The clinical application of medical image research is an important goal. 276 

However, most existing works focus on only one or two common disorder types,5, 14 even for 277 

systems developed by institutions with abundant medical resources. For instance, the system5 is 278 

derived from over 300,000 scans, yet it can only recognize four types of disorders. This challenge 279 

arises from two aspects. Firstly, it is impractical for researchers to construct models for each disorder 280 

type due to the difficulty of collecting and annotating medical images. Secondly, developing models 281 

for rare disorders with previous learning strategies is challenging when only a few samples are 282 

available. With ISL, researchers do not need to collect data or construct models for specific 283 

disorders, enabling the built system to achieve broad-spectrum disorder detection. 284 

 

Anomaly Detection. Distinguishing disorder-contained images from disorder-free ones can be 285 

viewed as an anomaly detection problem, which is a popular research field in machine learning. 286 

An intuitive assumption is that anomalies lie outside the distribution of normal samples. Therefore, 287 
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it is natural to train a classifier to differentiate abnormal samples from normal ones.15, 16 288 

 

Recent works have utilized generation networks for anomaly detection, employing two 289 

primary approaches: (1) utilizing the latent feature;17, 18, 19 and (2) utilizing the reconstructed 290 

image.20, 21, 22 In the first approach, a generation network produces a latent feature and a 291 

reconstructed image when an image is inputted. The latent features can be used to determine 292 

whether the im- age is abnormal. In the second approach, a generation network produces a 293 

corresponding normal image for a given image. If the original image contains abnormal 294 

characteristics, it can be recognized based on the difference between the original and generated 295 

images. In the field of medical image analysis, two types of methods have achieved certain results 296 

in specific diseases.23, 24, 25 For instance, Yao et al.23 used the second approach to generate healthy 297 

pulmonary CT images, which were used to determine whether the lungs contained COVID-19. 298 

 

However, both approaches have limitations when applied to broad-spectrum disorder 299 

detection in medical images. In the first approach, medical images are complex, which results in 300 

complex latent features. Therefore, recognizing disorder-contained images based solely on latent 301 

features is challenging. To demonstrate this, we compared our method with a baseline method that 302 

directly fed original medical images into the disorder recognition network. The baseline method 303 

achieved an average AUC of 0.653 on the prospective dataset, which is inferior to the results (AUC 304 

0.868) obtained by our method. In the second approach, existing generation-based methods 305 

reconstruct the original disorder tissues of a medical image due to the strong feature representation 306 

capability of generative networks, which fails to achieve abnormal recognition. With the 307 

generation strategy in ISL, only context images and global structure information are provided, 308 
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allowing the generation network to eliminate the interference of the original disorder tissue and 309 

conceive healthy tissues like a radiologist. To showcase the efficacy of our system in comparison to 310 

existing techniques, we conducted a comparative analysis with other representative reconstruction-311 

based anomaly detection methods, specifically Auto-Encoder,26 AnoGAN,17 GANomaly,27 312 

pix2pix,28 and Cycle-GAN.29 The experiment was carried out on the task of detecting pulmonary 313 

disorders. The results of the analysis are presented in Supplementary Table 12. Our system 314 

outperformed the baselines, with the highest AUC of 0.846 achieved by GANomaly, which is 0.047 315 

lower than our method. This significant improvement underscores the ability of our ISL-based 316 

system to successfully accomplish disorder recognition tasks. 317 

 

Methods 318 

CT scan collection. Initially, we retrieved 954,508 scans from the PACS of the PLAGH between 319 

March 2012 and July 2019. These scans contained CT images stored in DICOM (digital imaging 320 

and communications in medicine) format, and all DICOMs were de-identified before data analysis. 321 

We then screened the scans by excluding reconstructed scans (processed with algorithms in CT 322 

machines), non-axial-section scans (coronal section and sagittal section scans), non-head scans 323 

(scans of breast and full-body, etc.), and non-origin scans (scans of CTA and CTP, etc.). The 324 

inclusion and exclusion criteria of the screening process are detailed in Figure 8. After screening, 325 

a total of 62,239 CT scans with an average slice number of 28 were selected. 326 

 

Disorder types statistics. Each retrieved scan includes a clinical report written by an interpreting 327 

radiologist during the examination. To determine the disorder types to be interpreted by our system, 328 
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we first applied a rule-based NLP algorithm to the clinical reports. This algorithm counted the 329 

occurrence frequencies of different word phrases. We then invited three radiologists to analyze the 330 

frequency statistics results and select the disorder types to be evaluated. Ultimately, 127 types of 331 

disorders were selected. 332 

 

Our method selection was primarily driven by the desire to create a system capable of 333 

handling the most common types of disorders encountered in actual clinical practice, while also 334 

ensuring a comprehensive coverage of various disorder types. Our dataset, which spans nearly 335 

seven years (2012 to 2019) and includes data from 301 hospitals, is believed to encompass most 336 

types of disorders. By focusing on the most frequently occurring disorder types, we aimed to 337 

enhance the practicality of our system, ensuring it is well-equipped to manage common disorders 338 

while maintaining a broad scope of disorder types. 339 

 

Training dataset and test dataset. The construction of the development and test datasets relied 340 

on the clinical reports, which were considered the gold standard. The training dataset only included 341 

disorder-free CT scans, and their reports uniformly described them as “No abnormality is observed.” 342 

Therefore, we could efficiently obtain disorder-free CT scans. Ultimately, we selected 22,602 343 

disorder-free scans, which were divided into two parts: the training dataset (21,429 scans) and the 344 

negative samples in the retrospective test dataset (1,173 scans), detailed data statistics are shown 345 

in Supplementary Table 5. 346 

 

Regarding the positive samples (disorder-contained scans) in the test dataset, we initially 347 

retrieved 18,514 scans using stated disorder-related keywords. We then invited 30 board-certified 348 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 3, 2024. ; https://doi.org/10.1101/2023.10.10.23296794doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.10.23296794


25  

radiologists with 6 to 15 years of experience to label each scan based on the images and its 349 

associated report. The radiologists assigned a binary label (i.e., 0, 1) to each scan, where 1 indicated 350 

that the scan contained the expected disorder type. Ultimately, 8,794 scans were labeled as 1 and 351 

selected as the positive samples in the retrospective test dataset. The prospective and cross-center 352 

test datasets were constructed similarly. However, due to the smaller data amounts compared to the 353 

retrospective dataset, they also contained a smaller number of disorder types, specifically 116 and 354 

46, respectively. Please refer to Supplementary Table 9-11 for the detailed data statistics. 355 

 

Developing a system with inversed-supervised learning. ISL allows for the training of a deep 356 

learning network without accessing disorder-contained samples, enabling researchers with only 357 

general and healthy images to build a broad-spectrum disorder detection system. ISL is built on 358 

two technologies: missing information completion and data distribution estimation. Missing 359 

information completion enables a system to reconstruct healthy tissues of masked parts of a medical 360 

image using a de-disorder network (DeDN) derived from general and healthy images. The scanning 361 

medical images of the human body are relatively standardized. Therefore, for healthy images, the 362 

reconstructed version should be very close to the original version. And for a medical image 363 

containing any disorders, the reconstructed image will differ significantly from the original. Data 364 

distribution estimation requires the estimation of the distribution of healthy difference images, 365 

which are calculated using healthy images and their reconstructed images generated by a DeDN. 366 

If an image contains any disorders, its difference image will fall outside the distribution and be 367 

detected. Notably, unlike many existing disorder detection algorithms, ISL can detect a 368 

significantly increased number of disorder types. 369 
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CT slice conversion. In our dataset, the pixel values in a CT scan are represented by 14-bit 370 

numbers, which exceed the range of human perception. To address this, we converted each CT 371 

slice into a 3-channel 8-bit image, conforming to the standard image format and suitable for 372 

display. Radiologists typically use specific window locations (WL) and window widths (WW) to 373 

observe various types of disorders. Building on this, we applied specific WL and WW settings for 374 

the image conversion, with the specific settings outlined in Supplementary Table 16.375 
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Figure 8. The process of constructing the datasets. Left, 954,508 scans (March 2012 - July 2019) 

were collected from the PLAGH by retrieving head CT-related keywords. After a series of filtering 

steps, a training dataset and a retrospective dataset were constructed. The training dataset consisted 

of 21,429 healthy scans, and the retrospective dataset consisted of 1,173 healthy scans and 8,794 

disorder-containing scans. Right, we collected 255,076 scans (July 2019 - August 2021) from the 

PLAGH and 29,805 scans (April 2018 - May 2019) from the BHHP. We used these data to 

construct the prospective and cross-center test datasets using the same process. 
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Problem Formulation. ISL is designed to address binary-classification problems by predicting 376 

the probability of the presence of any disorder type in a medical image. For example, in brain CT 377 

scans, the input of an ISL-based system is a slice ix  from a brain CT scan for a CT scan 378 

 
1

N

i i=
x , where N is the slice number of this scan. The system output ip  indicates the probability 379 

of any disorder type in the slice ix . During deployment, the slice-level outputs  
1

N

i i
p

=
 are 380 

aggregated to a scan-level output 'p  by averaging the probabilities of all the slices in the scan, 381 

where 
1

1
'

N

i

i

p p
N =

=  . We adopt the slice-wise processing method because we believe that, for 382 

the initial assessment of disorders in medical image analysis, the information provided by a single 383 

image is already adequate. Slice-wise processing offers a more efficient strategy, where sequential 384 

information is utilized to confirm the precise categories of disorders. As the ISL-based system 385 

processes individual slices, we have omitted the subscript number of slices in a scan for the sake 386 

of conciseness in the following method introduction. 387 

 

An ISL-based system comprises two networks: a de-disorder network (DeDN) and a disorder 388 

recognition network (DRN). Given a medical image x , we first use a DeDN to generate a de- 389 

disorder image ddx  of x . If x  contains a disorder, the disorder tissues in the area are converted 390 

into healthy ones. Then, the difference image 
dif dd= −x x x  is input into the DRN network, which 391 

predicts the probability p of disorder containment in the image. The overview of ISL is shown in 392 

Figure 9. 393 
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 394 

 

Figure 9. The overview of ISL, a learning algorithm for developing broad-spectrum disorder 

detection systems. The training dataset consists only of healthy scans, and a de-disorder network is 

learned to generate de-disorder images. A disorder recognition network is then employed to predict 

the probability of disorder containment based on the difference image obtained by subtracting the 

input and de-disorder image. This approach enables the developed model to achieve broad- 

spectrum disorder detection even without any disorder-contained data. 

 

De-disorder network. Given a masked image, = x x m , where m  is an image mask of x , a deep 395 

encoder-decoder network (DeDN) can predict the masked region and generate a reconstructed image 396 

x̂ . The detailed architecture of the DeDN is shown in Supplementary Table 15, which has been 397 

proven to be effective in many image generation tasks. In our architecture comparison 398 

experiment (Supplementary Table 13), we found that the adopted architecture has already captured 399 

the most salient features necessary for generating high-quality medical images. In this study, we 400 

utilized the DeDN to generate de-disordered medical images. Specifically, we divided a medical 401 

image x  into K × K grids of uniform size. For each grid with coordinates ( , )i j , where 1 ≤ i ≤ 402 

K and 1 ≤ j ≤ K, we applied a mask ( , )i j
m  to erase it and obtain a masked image. The DeDN was 403 
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then used to reconstruct the masked image and generate the reconstructed image ( , )
x̂

i j  Finally, we 404 

combined the K × K generated images into a reconstructed de-disordered medical image using the 405 

following equation: 406 

( )( , ) ( , )

1 1

1ˆ
= =

=  −x x m
K K

i j i j

dd

i j

                                               (1) 

We will use ddx  for comparative analysis with the original image x . A deep encoder-decoder 407 

network (DeDN) takes as input a masked image ( , )
x

i j  and multiple image edge maps  
1

en

k k=
e  of 408 

x . Edge maps retain structural information of the masked region, which can improve the quality of 409 

the reconstructed image. Edge maps can be constructed using mature image processing schemes, 410 

such as the Canny Edge Detector.30 The DeDN G generates the reconstructed image ( , )
x̂

i j  using 411 

the following equation: 412 

   ( )( , ) ( , )

1
ˆ , e

=
= xx

cni j i j

k k
G .                               (2)  

We trained the network using a joint loss: 413 

1 1 perc style    = + + +de adv adv p s ,                               (3)  

which includes an ℓ1 loss, adversarial loss, perceptual loss, and style loss. The ℓ1 loss minimizes 414 

the reconstruction error between ( , )
x̂

i j  and x . The adversarial loss 
adv

 ensures the reality of the 415 

generated image and is defined as: 416 

( )
 ( )( )( , )

( , )

( ) 1,
[log ( )] log 1 ,

=

 = + −
  x x m

x x e
e

i j

ni j

adv k k
D D G ,                       (4) 
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where D is the discriminator network. We also included perceptual loss 
perc 

 and style loss 
style 

, 417 

following Nazeri et al.31 The perceptual loss 
perc 

 penalizes reconstructed images that are not 418 

perceptually similar to the original ones and is defined as a distance measure between activation 419 

maps of a pretrained network: 420 

perc ( ) 1

1
(ˆ( ) ) 

 
= − 

 
x x xi i

i an
,                                          (5) 

where i  is the activation map of the 
thi  layer of the pretrained VGG-19 network, and an  is the 421 

number of layers. We chose the output of the first ReLU activation layer in each of the five blocks31 422 

of VGG-19 pretrained on the ImageNet dataset.32 This choice was based on its proven effectiveness 423 

in capturing image features. The comparison experiment on the cross-center test dataset showed similar 424 

results to ResNet34 (Supplementary Table 14), indicating the robustness of our model to the choice of 425 

architecture for perceptual loss calculation. 426 

 

The style loss is calculated based on these activation maps and is an effective tool to alleviate 427 

the “checkerboard” artifacts caused by transpose convolution layers. The loss measures the 428 

differences between covariances of the activation maps and is defined as: 429 

style ( )
1

1
( ) ( )ˆ  

= − 
 
x x xi i

i i

i a

G G
n

,                                               (6) 

where =
 i T

i i iG  is a Gram matrix constructed from the activation map i . The Gram matrix of an 430 

activation map captures the correlation between different channels and the texture structure of its 431 

corresponding image. For a real medical image, the Gram matrix resembles the identity matrix, with larger 432 
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diagonal values indicating strong correlations within the same feature and smaller off-diagonal values 433 

reflecting feature in-dependence. Conversely, a blurry and texture-lacking generated image results in a 434 

constant Gram matrix with similar values for each element, indicating a lack of feature differentiation. To 435 

optimize the model, we minimize the difference between the Gram matrices of the real and generated 436 

images. 437 

 

Disorder recognition network. To minimize the impact of reconstructed noise on disorder 438 

detection and improve the performance further, we developed a disorder recognition network that 439 

takes the difference image difx  as input and extracts an embedded representation in the latent space. 440 

We designated the embedding distribution of difference images from disorder-free data as the 441 

reference distribution. The disorder recognition network should ensure that the embeddings of 442 

disorder-free data are centralized and compact, while the embeddings of disorder-contained data 443 

are random and as far as possible from the reference distribution. In this case, the distance between 444 

an embedded representation and the center of the reference distribution can effectively indicate the 445 

possibility of disorder presence. 446 

 

Inspired by the support vector data description (SVDD) algorithm33 and the contrastive 447 

learning method,34 we developed the DRN based on augmentation views. In addition to a given 448 

healthy medical image x , the DRN uses two augmented views, −
x  and +

x , generated from x  for 449 

network training. −
x  is produced with rotation and flipping transformations, yielding an 450 

appearance akin to x . +
x , on the other hand, is generated with cutout transformation, which can 451 

damage healthy tissues in  x . As a result, +
x  disrupts the inherent distribution of the healthy 452 

image  x  and is thus considered a disorder-contained view. For DRN, the main basis for 453 
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judgment is the size of the pixel difference and the range of difference. Therefore, by applying 454 

cutout transformation to the original healthy image, we can obtain images with large pixel 455 

differences and a wide range of differences. This difference, or ’anomaly’, is what DRN is trained 456 

to detect.  457 

 

After training the DeDN, the input of the DRN consists of three parts: the reference 458 

difference image difx , the negative difference image ˆ− − −= −x x xdif dd , and the positive difference 459 

image ˆ+ + += −x x xdif dd , where 
+

x̂ and 
−

x̂  denote the reconstructed images of −
x  and +

x , 460 

respectively. The DRN extracts embedded representations of the difference images, denoted as h , 461 

−
h , and +

h . The DRN learns reasonable embedded representations of disorder-free input by 462 

maximizing the similarity between −
h  and h  while distinguishing +

h  from h . In this study, we 463 

used the Euclidean distance as the metric to measure the similarity of the embeddings. We pre-464 

trained the network using MoCo12 and averaged the embeddings of the wide-ranging training 465 

dataset. The averaged embedding c is considered the center of the reference distribution. Setting 466 

the center as an anchor, we designed a compactness loss to maximize the similarity between the 467 

negative embeddings: 468 

  ( )com ( ) 2 2
−

− = − + −
 

‖ ‖
h h

h c h c
  ，                                        (7) 

where com minimizes the distances between the embeddings h , −
h and the reference center, which 469 

ensures that the DRN can extract consistent features for disorder-free difference images. To further 470 

improve the discriminative ability of the network, we used a discrimination loss dis , which forces 471 
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the network to maximize the distance between the reference center and the embedded 472 

representation of 
+x : 473 

( )dis 2
+

+ = − −
 h

h c .                                                    (8) 

The overall loss function utilized to train the DRN is defined as:  474 

com dis  = +c d ,                                                 (9) 

where c  and d  are the weights of the loss functions com  and dis , respectively. 475 

 

Disorder visualization. The ISL-based system is capable of identifying the locations of disorders, 476 

which is crucial for clinical applications.35, 36, 1 Higher pixel values in the image regions of difx  477 

indicate a higher likelihood of the presence of a disorder. To enhance the visual appeal of the results, 478 

we conducted several post-processing steps on difx   : (1) Eliminating the bias caused by the normal 479 

range reconstruction. Pixels with values below a certain threshold t were set to zero. (2) Reducing 480 

reconstruction noise. After normalizing the pixel values to the range of [0, 1], we added the values 481 

of the s × s region surrounding each pixel to itself. This smoothing technique reduced the noise in 482 

the image. (3) Enhancing the disorder area. We utilized an exponential function to manipulate the 483 

pixel values, resulting in an amplification of the differences in values among pixels. This process 484 

serves to accentuate the presence of disorder within the region of interest.  485 

With processed difx , which is denoted as *
xdif

, we employed the Average Pixel Difference 486 

Score (APDS) as a metric to quantify the discrepancy between the original and the reconstructed 487 
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images. The APDS is computed by averaging the pixel values of the processed difx ,  within the 488 

effective pixel area. This area encompasses human body structures and is differentiated by non-489 

zero pixel values. Formally, given an image x , its APDS is calculated as the ratio of the sum of 490 

pixel values in the original image x  to the number of non-zero pixels in the corresponding 491 

processed difference image *
xdif

, denoted as *( ) / ( 0)x xdifsum count . Our experimental results 492 

revealed that the APDS for normal images was approximately 5 × 10-5. In contrast, for images 493 

with lesions, this metric typically escalated to an order of 5 × 10-4. The observed difference in 494 

these metrics is substantial enough to effectively distinguish between normal images and those 495 

with lesions. 496 

 

Model selection and statistical analysis. Since we were unable to access data containing disorders 497 

for model evaluation during training, we selected the model when the training loss did not decrease 498 

for 5 consecutive epochs. The primary parameters of our system, including the network 499 

architectures, hyperparameter values, and optimization strategies, are presented in Supplementary 500 

Tables 15 and 16. To ensure statistical significance, we applied 95% confidence interval (CI). 501 

Specifically, for each iteration, we randomly sampled 30% of CT scans from the test dataset for 502 

evaluation. We repeated this procedure 1,000 times and calculated the 95% CI of the evaluation 503 

metrics for the model. To determine the optimal classification threshold, we used a derivative-based 504 

method, specifically by maximizing the harmonic mean of sensitivity and specificity. This is 505 

expressed in the following optimization criterion: [Maximize (2 * sensitivity * specificity) / 506 

(sensitivity + specificity)]. This criterion is known as a variant of the F1 score, which balances 507 
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sensitivity and specificity to achieve the best trade-off between the two. 508 

 

Code and software availability. The system was developed using standard libraries and scripts 509 

available in Porch. The developing code is at https://gitlab.com/heyuwei403/islcode. The code will 510 

be made publicly available after the acceptance. A demo video of our diagnosis and visualization 511 

software is at https://gitlab.com/heyuwei403/isl-system-demo. 512 

 

Data availability. The datasets to develop our head and pulmonary disorder detection system are 513 

not publicly available due to the privacy requirement of the PLAGH and FAHGMU. The cross- 514 

center dataset (554 scans and experts’ annotations) from BHHP is allowed to be distributed for 515 

research purposes from the corresponding author upon reasonable request. The development and 516 

evaluation dataset for retinal OCT disorder detection can be downloaded from https://data.mendeley.com/ 517 

datasets/rscbjbr9sj/2. 518 
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