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Abstract 33 
Understanding disease progression is of a high biological and clinical interest. Unlike disease susceptibility 34 
whose genetic basis has been abundantly studied, less is known about the genetics of disease progression 35 
and its overlap with disease susceptibility. Considering ten common diseases (N cases ranging from 17,152 36 
to 99,666) across seven biobanks, we systematically compared the genetic architecture of susceptibility and 37 
progression, defined as disease-specific mortality. We identified only one locus significantly associated 38 
with disease-specific mortality and show that, at a similar sample size, more genome-wide significant loci 39 
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can be identified in a GWAS of disease susceptibility. Variants that were significantly affecting disease 40 
susceptibility were weakly or not associated with disease-specific mortality. Moreover, susceptibility 41 
polygenic scores (PGSs) were weak predictor of disease-specific mortality while a PGS for general lifespan 42 
was significantly associated with disease-specific mortality for five out of ten diseases. We used theoretical 43 
derivation and simulation to propose plausible explanations for our empirical observations and account for 44 
potential index-event bias. Overall, our findings point to little similarity in genetic effects between disease 45 
susceptibility and disease-specific mortality and suggest that either larger sample sizes or different measures 46 
of progression are needed to identify the genetic underpinning of disease progression.  47 
 48 
Introduction 49 
Genome-wide association studies (GWASs) have been successful in uncovering the genetic basis of human 50 
diseases by employing a relatively simple study design that compares diseased individuals with controls 51 
(Tcheandjieu et al., 2022; Wightman et al., 2021; H. Zhang et al., 2020).  This approach is well suited to 52 
identify loci associated with disease susceptibility, but it remains unclear whether these results can also 53 
inform on the biology of disease progression. Studying the genetic basis of disease progression is relevant 54 
for at least two reasons. First, biological insights from the study of disease progression can be more relevant 55 
for drug target discovery since many medicines are developed to cure a disease rather than prevent its 56 
occurrence. Second, most individuals approach the healthcare system once they develop a disease or its 57 
symptoms, and predicting disease progression is in most diseases an important clinical challenge.  58 
In the past years, several GWAS of disease progression have been performed (see Table S1 for a detailed 59 
review), but the number of progression-specific loci discovered has been limited. 60 
In cancer, GWAS have focused on disease survival and have been generally unsuccessful in identifying 61 
genome-wide significant signals. For example, a GWAS on breast-cancer survival in over 96,000 patients 62 
did not identify any robust association (Escala-Garcia et al., 2019) and failed to replicate two loci found in 63 
the previous largest GWAS of breast-cancer survival (Guo et al., 2015). Among neurological conditions, 64 
GWAS have focused on disease survival as well as cognitive or motor decline. In one of the largest studies, 65 
researchers have identified three novel loci associated with Parkinson’s disease progression (Tan et al., 66 
2022). A recent study on multiple sclerosis progression has identified a locus pointing to involvement of 67 
the central nervous system in disease outcome as opposed to the enrichment for immunological-related 68 
signals observed for disease susceptibility (Harroud et al., 2023). However, it is worth noticing that older 69 
studies of multiple sclerosis outcomes have failed to replicate in larger ones (Pan et al., 2016; Vandebergh 70 
et al., 2021). In cardiovascular diseases, studies have focused on disease recurrence, and initial results from 71 
the GENIUS-CHD consortium showed the strongest GWAS signal for coronary artery disease was not 72 
associated with subsequent events (Patel et al., 2019). In Crohn's disease, a study has identified four loci 73 
for disease progression, indicating distinct genetic contribution from disease susceptibility (Lee et al., 74 
2017). 75 
Apart from single-variant level effects, some studies examined the aggregate effect of many genetic 76 
variants. Most of them suggested that polygenic scores (PGSs) for disease susceptibility do not transfer 77 
well to disease progression (Barbieux et al., 2019; Lee et al., 2017; G. Liu et al., 2021), although they might 78 
outperform other disease-specific biomarkers in the case of cardiovascular diseases (Cho et al., 2023). 79 
Some authors have highlighted the challenges in interpreting results from genetic studies of disease 80 
progression due to the bias induced when individuals are selected according to disease status. If common 81 
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causes of susceptibility and progression are not accounted for, association results can be unreliable due to 82 
what is called an index event bias (Yaghootkar et al., 2017) and several approaches to detect and correct 83 
for index event bias have been proposed (Dudbridge et al., 2019; Mahmoud et al., 2022). 84 
Large-scale biobanks linked with longitudinal electronic health records have accelerated the research into 85 
the genetic basis of disease progression and provide sufficient sample size to answer two key questions:  1) 86 
Do genetic predictors that influence disease susceptibility have a similar impact on disease progression? 2) 87 
Can we use PGSs for disease susceptibility to predict patients’ disease progression? In this study, we aim 88 
to provide empirical and theoretical answers to these two questions by focusing on a specific, but commonly 89 
used definition of disease progression: disease-specific mortality (Figure 1). Through an international 90 
collaboration across multiple large-scale biobanks, we systematically compared genetic architecture of 91 
disease susceptibility and mortality for ten common diseases focusing on both single variant and aggregated 92 
polygenic effects. 93 

 94 
Figure 1. In this study, using data from seven biobanks, we investigated the genetic similarity between 95 
disease susceptibility and disease progression, defined as disease-specific mortality. We selected ten 96 
diseases and ran GWASs of disease-specific mortality among disease individuals. We then compared the 97 
genetic architecture of disease susceptibility and mortality focusing on both single variant and aggregated 98 
polygenic effects. Furthermore, we attempted to interpret our empirical observations with simulations and 99 
theoretical derivations. 100 
 101 
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Results 102 
Participating biobanks and disease of interest 103 
We considered ten common diseases that substantially increase mortality risk in the general population and 104 
have a large public-health impact (Table 1). We confirmed disease association with mortality using nation-105 
wide Finnish data and observed a hazard ratio (HR) for 20-years mortality ranging from 1.31 for Type 2 106 
diabetes to 3.61 for chronic kidney disease in females (Viippola et al., 2023) (Table S2). We identified 107 
diseased individuals based on consistent disease definitions captured via electronic health records or 108 
registry data across seven longitudinal studies:  FinnGen (Kurki et al., 2023), UK biobank (Bycroft et al., 109 
2018), Estonia biobank (Leitsalu et al., 2015), Generation Scotland (Smith et al., 2013), Genomics England 110 
(Turnbull, 2018), Genes & Health (Finer et al., 2020), Dana-Farber Cancer Institute (Gusev et al., 2021) 111 
and BioMe. The number of individuals included ranged from 99,666 individuals with type 2 diabetes to 112 
17,152 individuals with Alzheimer disease (Table 1). All diseased individuals were followed up for at least 113 
three months, with a maximum follow up of 63.29 years in FinnGen. We defined disease-specific mortality 114 
based on death certificates where the disease of interest was mentioned as primary or secondary cause of 115 
death. One participating biobank did not have information on causes of death, and we used overall death 116 
instead (Supplementary Material). We observed the highest cause-specific mortality rate for Alzheimer’s 117 
disease (28.3%) in FinnGen and the lowest for Type 2 diabetes (3%) in Estonia Biobank. 118 

Disease 
Sample Size 

percentage of 
death within 2y 

percentage of 
death within 5y 

percentage of 
death within 10y N of disease 

specific deaths 
N diseased 
individuals 

Prostate cancer 3045 27682 3.02 % 6.35 % 9.13 % 

Breast cancer 2886 34849 1.70 % 4.50 % 6.59 % 
Colorectal 

cancer 3635 17787 9.69 % 17.13 % 19.73 % 

Coronary artery 
disease 10640 89249 1.74 % 3.86 % 6.79 % 

Type 2 diabetes 4886 106405 0.45 % 1.20 % 2.50 % 

Atrial fibrillation 3612 85824 0.92 % 1.99 % 3.14 % 

Chronic kidney 
disease 1751 30143 1.98 % 3.94 % 5.47 % 

Alzheimer’s 
disease 4659 17152 5.31 % 15.50 % 24.89 % 

Heart failure 1757 35285 1.72 % 2.92 % 4.08 % 

Stroke 6757 89435  1.26 % 2.89 % 5.05 % 

Table 1. Total sample sizes for disease-specific mortality GWAS for each disease and percentage of 119 
mortality by year. Also see Table S2 for details.   120 
 121 
Variants affecting disease susceptibility do not have similar effects on disease-specific mortality 122 
For each disease, we carried out a GWAS of disease-specific mortality among disease individuals using 123 
Cox proportional hazard model as implemented in GATE (Dey et al., 2022) or SPAcox (Bi et al., 2020) 124 
(Figure S1-10). On top of all common GWAS covariates, all analyses were also adjusted for age at disease 125 
diagnosis for two reasons: 1) Patients’ age is strong predictor of one’s mortality; 2) Age of onset has non-126 
trivial genetic contribution partially overlapping with disease susceptibility (Feng et al., 2020) and we are 127 
instead interested in genetic effects on disease-specific mortality.  128 
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Out of all ten diseases studied, we only identified one locus associated with disease-specific mortality at 129 
genome-wide significant level (p < 5x10-8). The locus (rs7360523) on chromosome 20, close to SULF2, 130 
was associated with disease-specific mortality among patients with heart failure.  131 
We asked whether well-established signals for disease susceptibility were associated with disease-specific 132 
mortality (Figure 2). For each disease, we compared the effect sizes from the largest published GWAS 133 
with the result from our GWAS of disease-specific mortality. Using a Bayesian approach (Pirinen, 2023) 134 
we could not confidently assign any genetic variant as having the same magnitude of effect on disease 135 
susceptibility and disease-specific mortality. In total 888 leading variants were reported from all 136 
susceptibility GWAS, whereas none of them was significantly associated with disease-specific mortality 137 
after multiple testing correction (p < 0.05/888 = 5.63 x10-5). Nonetheless, 482 showed the same effect 138 
direction, which is marginally more than expected by chance (probability of observing same direction of 139 
effect direction 0.54 [95% CI: 0.51 - 0.58], binomial test against 0.5 p = 0.01). 140 
The only disease-specific mortality locus identified for heart failure also did not show comparable effect 141 
on heart failure susceptibility (p = 0.87 in susceptibility GWAS with opposite direction of effect). The low 142 
number of genome-wide signals for disease-specific mortality were consistent with the lower estimated 143 
heritability compared to the GWAS of disease susceptibility (Table S2). 144 

 145 
Figure 2. Relationship between variant effects (one for each locus) on disease susceptibility (x-axis) and 146 
disease-specific mortality (y-axis). Variants were selected either because genome-wide significance for 147 
susceptibility in the largest disease specific GWAS or because genome-wide significance for disease-148 
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specific mortality in the current study. Only one locus for heart failure mortality was genome-wide 149 
significant. Point colour indicates group assignment for variants (disease susceptibility, disease-specific 150 
mortality, or both). Variants with assignment posterior probability > 0.9 are assigned to the group. Variants 151 
in white indicate assignment posterior probability is < 0.9 for all the three groups. Posterior probabilities 152 
are estimated using R package linemodels (Pirinen, 2023). Red line: x = 0; blue line: y = x; orange line: y 153 
= 0; Green line: linear fit for all independent variants in the plot.  Dashed lines represent 95% highest 154 
probability regions for each group. Also see Table S3-S12 for quantitative results. 155 
 156 
Statistical power does not explain the overall lack of genetic signals for disease-specific mortality 157 
To find out if the overall lack of significant genetic signals for disease-specific mortality was simply due 158 
to lower sample size compared to the GWAS of disease susceptibility, we performed a down-sampling 159 
experiment in FinnGen and UKBB by imposing the same effective sample size for both analyses. To further 160 
make the two analyses comparable, the GWAS of disease susceptibility was conducted using survival 161 
analysis with age as time scale and disease diagnosis as outcome. The GWAS of disease susceptibility 162 
returned 30 genome-wide significant loci across all diseases, except colorectal cancer and heart failure, 163 
while the GWAS of disease-specific mortality returned no genome-wide significant results (Table 2).  164 

Disease N. disease-specific 
deaths 

N. diseased 
individuals 

N. of GW-significant loci 

Disease-specific 
mortality 

Down-sampled 
disease 

susceptibility 
Prostate cancer 2623 24070 0 8 

Breast cancer 1584 27204 0 2 

Colorectal cancer 2311 11986 0 0 

Coronary artery disease 9067 67051 0 3 

Type 2 diabetes 4169 85010 0 5 

Atrial fibrillation 2943 71693 0 3 

Chronic kidney disease 1283 23744 0 1 

Alzheimer’s disease 4659 17152 0 7 

Heart failure 4203 62717 0 * 0 

Stroke 1503 31414 0 1 

Table 2. GWAS power comparison between disease-specific mortality and disease susceptibility under the 165 
same sample size and GWAS model in FinnGen and UK biobank. Number of independently associated 166 
genome-wide significant loci. *We report no significant loci for Heart Failure in contrast to what reported in Figure 2 because the 167 
GWAS was conducted only in FinnGen and UK biobank. 168 
 169 
Polygenic scores for disease susceptibility are weak predictors of disease-specific mortality 170 
We investigated the joint effects of genetic variants associated with disease susceptibility in predicting 171 
disease-specific mortality. For each disease we constructed a polygenic score (PGS) using results from the 172 
largest GWAS of disease susceptibility. All the PGSs were strongly associated with disease susceptibility. 173 
The hazard ratios (HR) for 1 standard deviation in the PGS ranged from 1.16 [1.14 - 1.17] for stroke to 1.90 174 
[1.87 - 1.92] for prostate cancer (dashed line in Figure 3). On the contrary, the same PGSs were weakly or 175 
not associated with disease-specific mortality (orange dots in Figure 3). For example, although strongly 176 
associated with disease susceptibility, a PGS for breast cancer showed no association with breast cancer 177 
mortality (HR = 0.98 [0.93-1.04]). The strongest association was observed between the heart failure PGS 178 
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and heart failure mortality (HR =  1.09 [1.06 - 1.12]), while the PGSs for chronic kidney disease and prostate 179 
cancer trend towards having a protective effect on mortality (HR = 0.95 [0.90 - 1.01] and HR = 0.96 [0.92 180 
- 1.00], respectively).  181 
To understand the robustness of these results, we performed a variety of sensitivity analyses. First, we 182 
assessed if using a less specific definition of disease progression, namely all-cause mortality, would impact 183 
the observed results. We observed significantly larger correlation coefficients of susceptibility PGSs on 184 
disease-specific mortality than on all-cause mortality in five out of ten diseases (Figure S11, Table S15). 185 
Second, we only considered individuals who developed the disease after study enrollment (Figure S12A, 186 
Table S16) as a way to account for survival bias, which might explain some of the negative associations 187 
between PGSs and cause-specific mortality. Nonetheless, results were consistent (correlation coefficient r 188 
between effect sizes	𝛽 in main analysis and sensitivity analysis = 0.94), and we continued observing a 189 
negative association between a PGS for prostate cancer and prostate cancer mortality. Third, we considered 190 
different maximum follow-up lengths (2, 5 and 10 years) because we reasoned deaths occurring shortly 191 
after disease diagnosis were more likely to be caused by the disease. However, results were overall 192 
comparable across follow-up lengths (correlation coefficient r between effect sizes in main analysis and 193 
sensitivity analysis = 0.68, 0.83 and 0.91 for 2, 5 and 10 years respectively. S12B, Table S16) and contrary 194 
to our expectation, some diseases (e.g heart failure) showed a stronger association between the 195 
susceptibility PGS and disease-specific mortality when considering longer rather than shorter follow-up 196 
lengths (effect size 𝛽 = 9.61 x 10-3, 0.03 and 0.06 for 2, 5, 10 years respectively).Finally, we evaluated if 197 
adjusting the analyses for age at diagnosis could mask an age-specific effect of PGS on cause-specific 198 
mortality, for example because such effect was only observed among young or old patients. We observed 199 
a significant difference (p < 0.005 under Bonferroni correction) for PGS effect on disease-specific mortality 200 
between lower and upper 50% quantile diagnosed age groups only for Alzheimer’s disease (Figure S13, 201 
Table S17). The association between Alzheimer disease PGS and mortality was significant only among 202 
younger, but not older patient . Finally, we tested the effect using only unrelated individuals in FinnGen 203 
and found the result to be robust (Figure S14, Table S15). We have also carried out the same analyses 204 
using non-European individuals from Genes & Health. However, due to limited power no conclusion could 205 
be drawn (Figure S16). See Figure S15 for forest plot of effects from each participant European biobanks. 206 
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207 
Figure 3. Association between PGS for disease susceptibility and either disease-specific mortality (orange 208 
dot) or susceptibility (dashed line). Disease susceptibility PGS was derived from published large-scale 209 
GWAS for each disease. PGS associations with both disease susceptibility and disease-specific mortality 210 
were carried out using a Cox proportional hazard model. The sample size reported on the y axis refers to 211 
the disease-specific mortality analyses, the sample size for association with disease susceptibility can be 212 
found in Table S13. Horizontal solid lines represent 95% confidence interval (CI). The vertical dashed in 213 
black and grey represent association with disease susceptibility HR and 95% CI respectively. 214 
 215 
A polygenic score for longevity was significantly associated with disease-specific mortality for five 216 
out of ten diseases and showed larger effects than the polygenic score for disease susceptibility 217 
Having established that susceptibility PGS are weakly associated with disease-specific mortality, we 218 
reasoned that other PGSs that are better proxies of disease-specific mortality could show stronger 219 
associations. First, we consider PGSs constructed directly from our GWASs of disease-specific mortality. 220 
For diseases where power allowed, we derived PGSs using weights from the meta-analysed GWAS results 221 
from all biobanks except for FinnGen and tested the association between PGS and disease-specific mortality 222 
within FinnGen. Surprisingly, none of the PGSs were associated with disease-specific mortality (Figure 223 
S17, Table S18).  224 
 225 
Second, we considered a PGS for general longevity derived from the largest lifespan (Timmers et al., 2019) 226 
under the assumption that it might capture some of the genetic effects related to disease survival. The 227 
longevity PGS was significantly associated with disease-specific mortality for five out of ten diseases (p < 228 
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0.005 accounting for the number of diseases tested) and it shows larger HR than a PGS for susceptibility 229 
for six out of ten diseases (Figure 4, Table S14). For prostate cancer, the association with disease-specific 230 
mortality was significantly larger for the longevity than the susceptibility PGS (HR = 1.05 [1.01 - 1.10] vs 231 
HR = 0.96 [0.92 - 1.01], t-test on effect size differences p = 4.41 x 10-3).  232 

 233 
Figure 4. Association between a PGS for disease susceptibility (orange dots) and longevity (blue dots) with 234 
disease-specific mortality. Disease susceptibility PGSs were derived from published large-scale GWAS for 235 
each disease. Also see Table S14 for quantitative results. Longevity PGS was derived from (Timmers et 236 
al., 2019). Horizontal solid lines represent 95% CI.  237 
 238 
Theoretical framework and results from simulation suggests the observed results are consistent with 239 
low heritability of disease-specific mortality and modest index event bias effect 240 
Towards better understanding of reasons behind our empirical observations, we proposed a simple 241 
framework to study the genetic effects on disease susceptibility and progression. We defined the liability 242 
to disease susceptibility under a polygenic risk model as random variable 𝑆 243 
 244 
 245 

𝑆  =  𝛽!"𝑔 +  𝜖!	246 
	247 

 248 
where 𝑔 is the random vector for standardised genotype and 𝛽#$ is the random vector of their effect sizes 249 

on the diagnosis liability, 𝜖! is the zero mean residual independent to 𝛽!
"𝑔.  250 

Vector of individual genotype 

Variant effect on susceptibility 

Environmental noise on susceptibility 

Total genetic effect on susceptibility 
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Next, we defined liability to disease progression as a random variable 𝑃 which depends both on the causal 251 
effect of diseases susceptibility (c) and some unique genetic effect on disease progression (𝛽%

"𝑔) 252 
 253 
 254 

𝑃 = 𝛽%"𝑔 + 𝑐𝑆 + 𝜖%	255 
	256 
	257 

 258 
We define the heritability of disease susceptibility (ℎ&'&) and unique genetic components of disease 259 
progression (ℎ()*#) as:  260 

ℎ&'& =
𝑉𝑎𝑟( 𝛽!"𝑔)
𝑉𝑎𝑟(𝑆)

	261 

ℎ()*# =
𝑉𝑎𝑟( 𝛽%"𝑔)
𝑉𝑎𝑟(𝑃)

	262 
 263 
Last, we define 𝜌 as the correlation of the polygenic effect between disease susceptibility and disease 264 
progression: 265 

𝜌 =
𝐶𝑜𝑣$𝛽𝑃

𝑇𝑔, 𝛽𝑆
𝑇𝑔%

&𝑉𝑎𝑟$𝛽𝑃
𝑇𝑔%𝑉𝑎𝑟$𝛽𝑆

𝑇𝑔%
 266 

First, we performed simulations by varying two main parameters: 	ℎ()*# and 𝜌 and compared the theoretical 267 
results with the empirical results of Figure 2. The empirical results match a scenario with very low 268 
heritability of disease progression (Figure 5) regardless of the correlation of genetic effects between 269 
susceptibility and progression.  270 
Second, we derived the theoretical heritability of disease progression (	ℎ()*# ) when measured within 271 
patients (Supplementary material) and showed a non-monotonic relationship with the genetic correlation 272 
(𝜌) between disease susceptibility and progression (Figure S18A). We also derived how much a polygenic 273 
signal for susceptibility (e.g. PGS) can explain the variability in disease progression by calculating 274 
theoretical coefficient of determination (R2) and showing, as expected, that it increases with 𝜌 (Figure 275 
S18B). These two results indicate that high correlation in the polygenic effect between disease susceptibility 276 
and disease progression can decrease the heritability of disease progression while making the polygenic 277 
signals for disease susceptibility a stronger predictor of progression. Finally, we derived the heritability of 278 
disease progression outside the within-patient population (Supplementary material). This is relevant if 279 
one believes that traits measured in the general population (e.g. longevity) can be a proxy of disease 280 
progression.  281 
Third, we explored the impact of index event bias by introducing a shared non-genetic risk factor accounting 282 
for various proportions of the liability in disease susceptibility and progression. We compared the simulated 283 
effect of causal genetic variants on progression with the observed effect from the progression GWAS and 284 
found larger differences when the shared non-genetic component accounted for higher liability variance, 285 
indicating higher impact of index event bias (Figure S19). A correction approach similar to slope-hunter 286 
(Mahmoud et al., 2022) reduced the bias improving the concordance with the true simulated effects. 287 
However, in the scenario of a low progression heritability (ℎ()*#), which is consistent with our empirical 288 

Effect of susceptibility liability on progression 

Environmental noise on progression 

Unique genetic effect on progression 
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findings, index event bias correction showed a limited impact as we observed no genetic variants 289 
significantly associated with disease progression before or after bias correction (Table S19). Furthermore, 290 
we do not see the impact of this correction on posterior variant classification (Figure S20).  291 

 292 
Figure 5. Relationship between variant effects (one for each locus) on disease susceptibility (x-axis) and 293 
disease-specific mortality (y-axis) in simulations when varying the heritability of disease progression 294 
(	ℎ()*# ) and the correlation of the polygenic effect between disease susceptibility and disease progression 295 
(𝜌). Variants were plotted if they were genome-wide significant for susceptibility or progression.  Point 296 
colour indicates group assignment for variants (susceptibility-specific, mortality-specific or both). Variants 297 
with assignment posterior probability > 0.9 are assigned to the group. Variants in white indicate assignment 298 
posterior probability is < 0.9 for all the three groups. Posterior probabilities are estimated using R package 299 
linemodels (Pirinen, 2023). Red line: x = 0; blue line: y = x; orange line: y = 0; Green line: linear fit for all 300 
independent variants in the plot.  Dashed lines represent 95% highest probability regions for each group. 301 
 302 
Discussion 303 
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In this study we systematically explored the overlap of genetic effects on disease susceptibility and a 304 
common measure of disease progression, disease-specific mortality, for 10 common diseases. By 305 
conducting the largest within-patient GWAS of disease-specific mortality to date we found: 1) leading 306 
variants affecting disease susceptibility do not have comparable effect sizes on disease mortality. Rather, 307 
they show little effect and no significant association with disease-specific mortality in GWAS ; 2) at a 308 
similar sample size, GWAS of disease-specific mortality identified fewer genome-wide significant loci than 309 
GWAS of disease susceptibility, suggesting that GWAS of disease progression might require larger sample 310 
size or more refined phenotypes than GWAS of disease susceptibility; 3) disease susceptibility PGSs do 311 
not transfer well on disease-specific mortality, suggesting that current PGSs are more suitable for identify 312 
individuals at high risk of developing a disease rather than those more likely to suffer from the worst 313 
consequences. Given the interest in using PGS for optimising clinical trials (Fahed et al., 2022), our results 314 
suggest PGS for disease susceptibility might not be the best choice if the trial main outcome is related to 315 
disease progression. 316 
Why do we observe limited overlap in genetic effects on disease susceptibility and disease progression? 317 
There might be several explanations.  318 
First, genetic influences on disease progression might be too small to detect. External environmental effects 319 
such as treatment choice, treatment response, quality and access to care might have a disproportionate 320 
impact on disease progression as compared to disease susceptibility, thus limiting the genetic influence. 321 
Heterogeneity in patients and their treatments plays a big role in progression for many diseases and we are 322 
not currently able to adjust for all that heterogeneity. Using data from clinical trials rather than observational 323 
studies and including finer measurements, such as disease relevant biomarkers, can obviate these 324 
shortcomings. We also notice that adjusting for age at disease diagnosis does reduce the overlap between 325 
susceptibility and progression because variants increasing disease susceptibility are often associated with 326 
earlier disease diagnosis (Feng et al., 2020). Previous studies have demonstrated impact of adjusting for 327 
age in disease progression analyses (Houlahan et al., 2023) and suggested that association between PGS 328 
and measurement of disease progression may be mediated by age. 329 
Second, our definition of disease progression might be a poor proxy for the biological mechanisms 330 
impacting disease progression. Our approach aims to compare progression across multiple diseases and 331 
comes at expenses of a tailored definition of progression for each disease. Nonetheless, disease-specific 332 
mortality has been widely used as a measure of progression (Hernesniemi, 2022; Jabbari et al., 2021; Tan 333 
et al., 2022; Wu et al., 2014). In practice, biobank-based studies of disease progression often need to 334 
converge to simple definitions to maximise sample size, and disease-specific mortality is an information 335 
typically available across biobanks. However, a definition that permits the high data availability might not 336 
be one that best reflects the genetic aetiology of a specific disease.  337 
Third, as a common concern for all studies on disease progression, we explored the impact of index event 338 
bias resulting from conditioning on diseased individuals. While this is not the main focus of this study, we 339 
found that index event bias by itself does not fully explain the lack of concordance between genetic effects 340 
on susceptibility and progression observed in our study. Our empirical observations in comparison to 341 
various simulations indicate a relatively low heritability for disease progression, defined as disease-specific 342 
mortality. Furthermore, heterogenous phenotypes like mortality, although constrained to be disease-343 
specific, can be highly polygenic. In this case, even a perfect correction for index event bias will only be 344 
able to recover effect sizes that are not likely to be detected from a progression GWAS. The fact that only 345 
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one genome-wide locus was picked up from our progression GWAS, indicating low signal-to-noise ratio 346 
in the progression GWAS, might be a bigger concern than index event bias. Furthermore, most methods to 347 
correct for index-event bias rely on fitting the relationships between variant effects on susceptibility and 348 
progression. In our case, this relationship is close to zero and thus the correction will be small and 349 
insignificant.  350 
Apart from the impact of index event bias, our theoretical framework reveals some other interesting 351 
expectations. The heritability of disease progression is not monotonically increasing with the genetic 352 
similarity between susceptibility which implies that the variance in the progression phenotype decreases 353 
when disease susceptibility and progression get more genetically similar. This suggests that discovering 354 
genetic signals that are specific to disease progression requires a fine balance in the genetic similarity 355 
between disease susceptibility and progression and data availability. A simplified definition of disease 356 
progression might be useful to increase the sample size but might not be relevant to capture genetic variants 357 
specific to susceptibility. On the contrary, when disease susceptibility and progression highly overlap, we 358 
can expect homogeneity in patients’ progression, which reduces effective sample size. Once the similarity 359 
between disease susceptibility and progression reaches a certain level, it might not be necessary carrying 360 
out a GWAS of progression, since a susceptibility GWAS might already capture sufficient information to 361 
infer the genetic bases of progression. 362 
Given the aforementioned challenges when conducting GWAS of disease progression among diseased 363 
individuals, one attractive alternative would be to study genetic signals for disease progression in a general 364 
population and subsequently adapted for within-patients prognostic prediction. For example, PGS for 365 
autoimmune conditions derived in the general population are correlated with immune-related adverse 366 
events among cancer patients treated with immune checkpoint inhibitors (Groha et al., 2022; Khan et al., 367 
2020, 2021). In our analysis, a longevity PGS derived from GWAS of lifespan was significantly associated 368 
with patients' survival for five out of ten diseases, suggesting patients’ survival could be more affected by 369 
general factors related to mortality than disease-specific factors. Methods for cross-trait PGS (Kember et 370 
al., 2021) might be leveraged to obtain progression PGS based on existing GWAS results in the general 371 
population. 372 
The study has multiple limitations. First, while we explored the similarity in genetic effects between disease 373 
susceptibility and disease-specific mortality, we cannot decisively conclude the biological underpinnings 374 
to susceptibility and progression are distinct. For example, a phenotype that serves as poor proxy for disease 375 
progression will result in attenuated effect sizes, despite genetic variants being causally associated with 376 
both susceptibility and progression. Nonetheless the poor replication rate and opposite direction of effect 377 
observed for susceptibility signals on disease-specific mortality are consistent with a scenario where at least 378 
some variants have no shared effect on both susceptibility and progression. Second, our findings do not 379 
necessarily extend outside the diseases explored in this study and further work is needed to confirm the 380 
observed trends across more disease categories. Third, whether death certificates are accurately enough 381 
capturing primary or contributing causes of death depends on the biobank and healthcare system. We tried 382 
to address these concerns by restricting the follow-up duration in sensitivity analyses, reasoning that deaths 383 
occurring shortly after disease diagnosis were more likely to be caused by the disease. Fourth, our 384 
theoretical framework mostly focuses on the generic relationship between disease susceptibility and 385 
progression and does not take the impact of non-genetic factors into account. Also, for simplicity we did 386 
not use time-to-event model in this work, which might be more relatable to our empirical experiments. 387 
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In conclusion, our current results suggest there is a limited overlap in genetic effects on disease 388 
susceptibility and progression, defined as patients’ mortality. Further refinement in inclusion criteria among 389 
the patient population and in the definitions of disease progressions can be considered in future studies to 390 
robustly identify the genetic underpinning of disease progression.  391 
 392 
Methods (details)  393 
Selection of diseases 394 
We selected ten common complex diseases spanning various disease categories for the analyses. The 395 
diseases are selected to meet following criteria: 1. Have high epidemiological hazard ratio on mortality, so 396 
that mortality can be viewed as a reasonable prognosis; 2. Constitute high global disease burden in terms 397 
of disability adjusted life years (DALYs) (Abbafati et al., 2020); 3. Relatively common (> 1% prevalence) 398 
in population and have reasonable patient bodies in all biobanks; 4. Heritable and have large scale GWAS 399 
available to construct PGS. All disease endpoints were defined as a composition of ICD-10 codes curated 400 
by the clinical expert groups from FinnGen, Institute for Molecular Medicine Finland (FIMM) and Finnish 401 
Institute for Health and Welfare (THL) (Kurki et al., 2023). Same disease definitions, in terms of ICD-10 402 
codes, were adopted by all participating biobanks to the maximum possible extent. See Table S2 for list of 403 
disease and relevant descriptive statistics. 404 
 405 
Progression definition 406 
For all selected diseases, we defined mortality as our outcome. Precisely, we were interested in both all-407 
cause mortalities, namely simple death status of the patient regardless of relevance to the disease, and 408 
disease-specific mortalities, meaning the death caused directly or indirectly by disease of interest 409 
specifically. Disease progression was evaluated as patients’ survival from each type of mortality after being 410 
diagnosed with the disease. For all mortality GWASs, we consider only disease-specific mortality whenever 411 
it is possible for each participating biobank. Whereas for the PGS analysis, both all-cause and disease-412 
specific mortalities were evaluated. Same as the disease endpoints, cause of death linked to each disease 413 
was also curated by clinical expert groups and defined in terms of ICD 10 codes (World Health 414 
Organization, 2004). The same definitions were systematically applied to all biobanks to the possible extent. 415 
See Table S2 for definition of cause-specific mortality for each disease of interest and available sample 416 
sizes from each biobank. 417 
 418 
Within-patient mortality GWAS  419 
To achieve variant level effect comparison, for each selected disease, within-patient mortality GWAS was 420 
carried out using GATE (Dey et al., 2022) for all biobanks but Generation Scotland, which used SPAcox 421 
(Bi et al., 2020) as an alternative. The event of interest in this GWAS was patients’ survival after disease 422 
diagnosis. For each disease of interest, GWAS was carried out separately within each ancestry group for 423 
biobanks that have a cause-specific mortality event count of 50 at minimum after quality control. Eligible 424 
individuals were restricted to patients having a follow-up time after diagnosis of three months (0.25 years) 425 
at minimum. We used model below to examine SNP association with patients’ survival: 426 
surv(duration of follow up after diagnosis | disease-specific mortality) ~ SNP + patient’s age of diagnosis 427 

+ patient’s birth year + sex + PCs + study specific covariates, 428 
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where study specific covariates included other available non-heritable biobank specific covariates, such as 429 
genotyping chip or batch.  430 
For analyses in the UK biobank, to minimise potential impact of survivor bias, only patients with disease 431 
diagnosed after enrollment were considered. 432 
 433 
Results quality control and meta-analysis 434 
After mortality GWAS for selected diseases were carried out within each contributed biobank, we then 435 
filtered the resulting summary statistics by imputation INFO scores and minor allele counts. We kept only 436 
variants showing an imputation INFO score > 0.7 and having at least 20 minor allele counts for each 437 
summary statistics. For GWAS summary statistics with a different human genome build, we used the UCSC 438 
LiftOver tool (Kuhn et al., 2013) to convert their genome coordinates into hg38 assembly. Subsequently, 439 
for each disease, we meta-analysed GWAS results from each biobank using fixed-effect meta-analysis 440 
implemented in METAL (Willer et al., 2010). With which, we also scanned for heterogeneity in effect sizes 441 
across different biobanks using Cochran's Q test. We applied an inverse variance weighted meta-analysis 442 
scheme whenever possible. However, since SPAcox does not have effect size or standard error output, in 443 
Generation Scotland, we estimated direction of effect under a logistic regression model using plink (Purcell 444 
et al., 2007), and subsequently proceeded with a sample-size weighted meta-analysis using the z-scores. 445 
This was done for four out of the ten diseases, for which Generation Scotland was one of the data sources: 446 
atrial fibrillation, breast cancer, coronary artery disease and type 2 diabetes. 447 
 448 
Variant level effect size comparison 449 
We compared our mortality GWAS results for each disease of interest with large-scale published GWAS 450 
on diagnosis of the same disease. For disease diagnosis GWAS, we extracted SNP effects of reported 451 
genome-wide significant leading SNPs at independently associated loci from each study. For CKD, a large 452 
GWAS on estimated glomerular filtration rate (eGFR) was considered (Wuttke et al., 2019). Specifically, 453 
we looked at independent leading SNPs’ effect sizes on binary CKD diagnosis reported from the study so 454 
that the scale of measurement is more comparable. For our meta-analysed mortality GWAS, we identify 455 
independent genome-wide loci using summary statistics based conditional analysis implemented in GCTA-456 
COJO (Yang et al., 2012). We merged 5,000 Finnish genomes, which is one of the largest GWAS cohorts 457 
in this study, with EUR from 1000 Genome as LD reference for this step. Subsequently, for each leading 458 
SNP from diagnosis or mortality GWAS, we classify them by linear relationships between their effect sizes 459 
in the diagnosis and mortality GWAS into three groups: disease diagnosis specific (slope = 0), disease 460 
mortality specific (slope = inf) and variants with effect on both diagnosis and mortality (slope = 1). The 461 
classification was carried out using a Bayesian framework implemented in R package linemodels (Pirinen, 462 
2023).  463 
 464 
Comparison of genetic architectures for disease diagnosis and mortality 465 
We compared genetic architectures between disease diagnosis and mortality in terms of SNP heritability 466 
estimated from the meta-analysed mortality GWAS summary statistics using LD score regression (Bulik-467 
Sullivan et al., 2015). For eligible traits, i.e. traits with non-zero estimated SNP heritability, we further 468 
analysed genetic correlation across disease diagnosis, mortality, and general longevity GWAS using the 469 
same tool. 470 
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 471 
Down-sampled GWAS on age of diagnosis 472 
To ensure heritability comparison between disease susceptibility and progression endpoints not being 473 
subject to power issues resulted from difference in sample sizes and GWAS models, for each disease of 474 
interest, we also ran time-to-event GWAS to find SNP association with age of diagnosis using a randomly 475 
down-sampled cohort which had comparable number of total individuals and event counts as what was 476 
available for the within-patient mortality GWAS. The down-sampled GWAS was carried out under model 477 
below: 478 

surv(follow-up from birth until diagnosis | disease diagnosis) ~ SNP + patient’s birth year  479 
+ sex + PCs + study specific covariates. 480 

This analysis was also carried out using GATE (Dey et al., 2022) but in Finngen and UKBB only, which 481 
are two of the largest participating biobanks in this study (See Table S2 for biobanks sample sizes). 482 
 483 
Computation of individual level PGS 484 
For each selected disease, we derived variant weights for PGS from GWAS summary statistics listed in 485 
Table S2 using MegaPRS (Q. Zhang et al., 2021). Heritability contributed by each variant was estimated 486 
under the BLD-LDAK model as recommended. For weight estimation, we used the “mega” option which 487 
leaves it to the software to decide the most appropriate model given the data. Since we studied mortality, 488 
apart from the ten selected diseases, we also computed PGS weights for general longevity using the largest 489 
GWAS on lifespan (Timmers et al., 2019). Due to the heterogeneous and polygenic nature of lifespan, for 490 
this trait, we used the LDAK-Thin model for SNP level heritability estimation instead. Unlike the BLD-491 
LDAK model used in variant weighting for other diseases, LDAK-Thin model does not take functional 492 
annotations into account but estimates SNP heritability only as functions of SNP allele frequencies and 493 
local linkage structures. Variant weights were derived for 1,330,820 common SNPs (minor allele 494 
frequency > 0.1) lying in the intersection of HapMap3 (International HapMap 3 Consortium et al., 2010) 495 
and 1000 Genome (1000 Genomes Project Consortium, 2015) that are available for each GWAS summary 496 
statistic. 497 
Once the SNP weights were derived, individual level PGSs for each disease and general longevity were 498 
subsequently computed as a weighted sum of effect allele counts using plink (Purcell et al., 2007). Scores 499 
were standardised to have 0 mean and 1 as variance within each ancestry group.  500 
 501 
Association between PGS and disease of interest 502 
As a baseline, we first examined if the disease PGSs were associated with their diagnoses. For each selected 503 
disease, the association was first tested using a general linear model on case-control status as below: 504 

logit(Pr(Individual is diagnosed)) ~ disease PGS + birth year + sex + PC1-10, 505 
To achieve a fairer comparison with the other experiments, we also evaluated such relationship using a 506 
survival model on the age of diagnosis as below: 507 

surv(follow-up from birth until diagnosis | disease diagnosis) ~ disease PGS  508 
+ birth year + sex + PC1-10. 509 

The two analyses above were carried out using all eligible individuals in the biobanks. Then for each 510 
selected disease, we extracted only the patient group to further conduct the following analyses. To reduce 511 
noise in measurements, we limited these within-patient analyses to individuals having a follow-up time of 512 
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at least three months (0.25 year) after the diagnosis. We tested the association of disease PGSs with our 513 
defined prognosis, namely patient survival, using the model below: 514 

surv(duration of follow up after diagnosis | mortality) ~ disease PGS + birth year 515 
+ sex + PC1-10 + age of diagnosis, 516 

as well as the association of general longevity PGS with patient survival as below: 517 
surv(duration of follow up after diagnosis | mortality) ~ general longevity PGS + birth year 518 

+ sex + PC1-10 + age of diagnosis. 519 
For both associations, we examined both all-cause mortality and cause-specific mortality within the patient 520 
group. All analyses were corrected for gender, except in analyses for breast cancer and prostate cancer, 521 
where only female/male individuals were used. 522 
These analyses were carried out independently for each ancestry group within each participating biobank. 523 
We only included biobanks where the count of events of interest in the analysed ancestry group was 50 or 524 
more. We subsequently meta-analysed effect sizes for the same ancestry group across biobanks using the 525 
inverse variance weighted approach. 526 
 527 
Construction of PGS from disease mortality GWAS and effect evaluation within FinnGen individuals 528 
For diseases with sufficient power, we derived mortality PGS weights using meta-analysed mortality 529 
GWAS results of European populations from all available biobanks except for FinnGen or Generation 530 
Scotland. Apart from FinnGen which was used as a test cohort, we also left out results from Generation 531 
Scotland for this analysis because their summary statistics did not have effect size or standard error and 532 
therefore cannot be used for inverse-variance weighted meta-analysis, which returns necessary statistics for 533 
weight derivation. After deriving PGS weights using MegaPRS (Q. Zhang et al., 2021), we subsequently 534 
computed individual level disease mortality PGS for patients of each corresponding disease within FinnGen 535 
cohort. The weights and scores are computed in the same manner as mentioned in section Computation of 536 
individual level PGS. We evaluated effects of these scores on predicting patients’ disease mortality in 537 
FinnGen using the model below: 538 

surv(duration of follow up after diagnosis | mortality) ~ disease-mortality PGS + birth year 539 
+ sex + PC1-10 + age of diagnosis 540 

 541 
Sensitivity analyses for PGS experiments  542 
We ran a series of sensitivity analyses in eligible biobanks to ensure our observations on the PGSs 543 
association were robust, under considerations listed below. Similarly, analyses were carried out per eligible 544 
ancestry within each biobank and then meta-analysed.  545 
First, to demonstrate the impact of relevance between disease progression and susceptibility as shown in 546 
our theories, we examined the association between susceptibility PGS and all-cause mortality and compared 547 
the results with disease-specific mortality in FinnGen. See Figure S1 for this result. 548 
We then consider other factors that may bias the results. 549 

● Survivor bias 550 
Depending on each biobank’s recruitment scheme, some patients were diagnosed before the start of their 551 
follow-up, which may lead to biassed results due to survivor effect. Therefore, we also ran these analyses 552 
for each disease using only samples enrolled before their first onset of the disease of interest. See Figure 553 
S12A for this result. 554 
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● Relevance between cause of mortality in death certificate and disease diagnosis 555 
In this study, we aimed to define disease progression as accurately as possible by focusing our analysis on 556 
disease-caused mortality. However, some national death registries may not precisely capture the immediate 557 
cause of death, and some mortalities, while documented with the disease as one of causes, may not be truly 558 
relevant to the diagnosed disease. To address this concern, we ran the same analysis using only patients 559 
with a restricted maximum follow-up length, since death taking place reasonably sooner after being 560 
diagnosed might have more to do with the diagnosis, compared to death taking place decades after. Under 561 
this consideration, we varied the maximum duration of follow-up after diagnosis by 2, 5 or 10 years. The 562 
minimum is still 0.25 years for this analysis. See Figure S12B and Table S16 for this result. Also see Table 563 
S2 for sample size breakdown by duration of follow-up in each biobank. As a measurement for 564 
comparability between results, we reported the regression coefficients for PGS effect sizes on ten diseases 565 
between each sensitivity analysis and main results.  566 

● The effect of diagnosed age 567 
As shown above, we have included age of diagnosis as one of the covariates in all within-patient main 568 
analyses models in order to specifically investigate PGSs’ unique genetic effect on disease progression by 569 
correcting for the diagnosis. As one of our sensitivity analyses, we also analysed the role of these diagnosed 570 
ages in more detail. We repeated all the within-patient analyses for each disease by stratifying patients into 571 
early onset and late onset group using 50% age of diagnosis quantile as a cutoff and compared the PGS 572 
effects across the two groups. See Figure S13 and Table S17 for the result. 573 

● Sample relatedness 574 
We included all eligible individuals of each biobank in our main analysis, and one may argue that could 575 
impact our effect size estimates. Therefore, we ran the same analysis in Finngen with up to second degree 576 
relatives removed. See Figure S14 and Table S15 for this result. 577 

● Results from non-European populations 578 
Since only patients were considered for most of our analyses, although some of the biobanks, e.g. UK 579 
biobank and BioMe, were known to be rather diverse, we winded up with enough power for main results 580 
only for the European super population. Nevertheless, comparison of results with other less powered, but 581 
available populations can be found in Figure S15 for reference. 582 
Forest plot for effects from each biobank is presented in Figure S16. 583 
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Theoretical framework1

Setup and notations2

We start by defining the liability of the endpoint of the disease susceptibility as the random variable S using
a simple polygenic risk model, following the lines of (Hujoel et al., 2020):

S = βT
S g + ϵS .

In the above expression, g is an m × 1 random vector of standardized genotypes1 and βS is a sparse
m× 1 zero-mean random vector of variant effect sizes on the liability of disease susceptibility. Additionally,
ϵS is the zero mean residual error vector that is independent from βSg and includes non-genetic effects and
environmental noise in disease susceptibility liability. (We use the subscript S in the above vectors as a
reminder that the respective variables correspond to the liability of disease susceptibility.) Therefore, βSg
is a zero mean random variable, from which it follows that its expectation is zero, namely

E(S) = 0.

We now define the variance of βSg as
Var(βSg) = hsus,

where 0 ≤ hsus ≤ 1. For simplicity, we normalize the variance of the random variable S to be equal to one,3

i.e., Var(S) = 1. Intuitively, this normalization implies that hsus can be interpreted as the heritablility of4

the disease susceptibility endpoint.5

Similarly, we can define the liability of the disease progression endpoint, which, in our work, is the
mortality due to the disease, as the random variable P :

P = βT
P g + f(S) + ϵP .

In the above expression, βP is the zero-mean random vector of direct variant effect sizes that play a role
specifically on the disease progression liability. Also, ϵP is the zero mean random vector that models residual
error that is independent of βT

P g and any term of f(S) in the liability of the disease progression. Since disease
progression is clinically considered as a continuation of the development of the same disease, we believe that
it is reasonable to assume that the liability of disease susceptibility will also play a role on its progression.
Therefore, we added the term f(S) in the liability of disease progression to introduce a causal contribution
for the disease susceptibility liability. To the best of our knowledge, this function f(S) has not been studied
or quantified in prior work. Therefore, for the sake of simplicity and in the absence of prior models, we
assume that f(S) it as a simple linear function, namely

P = βT
P g + cS + ϵP

= (βT
P + cβT

S )g + (ϵP + cϵS).

In the above, c is a constant and we assume that the effect of disease susceptibility liability on the progression
is non-negative, from which it follows that c ≥ 0. Recall that βP , ϵP , and S all have zero mean, implying
that E(P ) = 0. Let the variance of the progression of the genetic component βT

P g be defined as follows:

Var(βPg) = hprog,

where 0 ≤ hprog ≤ 1. Again, we normalize the variance of the random variable P to be equal to one, i.e.,6

Var(P ) = 1, which can be achieved by placing constraints on the constant c and the error term ϵP . In this7

case, hprog can be interpreted as the unique heritability of the disease progression. Given our normalization,8

it follows that c ≤ 1. As a corner case, when c = 1, ϵP and hprog must both be equal to zero, which implies9

P = S. This special case does not merit any further consideration and in the upcoming section we will only10

focus on 0 ≤ c < 1.11

We note that the random variables S and P as defined in this section indicate the liability of the two
endpoints of interest for a particular disease in general populations. However, in practice, the study of disease

1Here m could be the total number of variants in the human genome.
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progression focuses only on the patient group. Such “within-patient” measurements on a continuous scale can
be viewed, at least conceptually, as the liability of disease progression conditioned on the liability of disease
susceptibility. Therefore, we regress the liability of the progression (random variable P ) on the liability of
disease susceptibility (random variable S) to get a continuous, within-patient, progression measurement P |S:

P |S = P − αS.

The regression coefficient α can be analytically derived as follows:

α = Cov(S, P )/Var(S) = Cov(S, P )

= Cov(βT
P g, β

T
S g) + cVar(βT

S g) + cVar(ϵS)

= Cov(βT
P g, β

T
S g) + cVar(S)

= Cov(βT
P g, β

T
S g) + c.

Therefore the within-patients progression liability can be expressed as follows:

P |S = P − aS

= (βT
P + cβT

S g + cϵS + ϵP − (Cov(βT
P g, β

T
S g) + c) · (βT

S g + ϵS)

= (βT
P g + ϵP )− Cov(βT

P g, β
T
S g) · (βT

S g + ϵS)

= (βT
P g + ϵP )− Cov(βT

P g, β
T
S g) · S.

Let ρ denote the correlation coefficient between βT
S g and βT

P g. Then,

Cov(βT
P g, β

T
S g) = ρ

√
Var(βT

P g)Var(β
T
S g)

= ρ
√

hproghsus.

Finally, the within-patient disease progression liability P |S can be simplified as follows:

P |S = (βT
P g + ϵP )− ρ

√
hproghsus · S.

The ρ = 0 case12

In order to gain intuition for the more complicated analyses that will follow, we start by looking at the simple
(yet admittedly unrealistic) case where there is no genetic correlation between the disease susceptibility and
the progression due to the unique genetic factors. Mathematically, we assume that the covariance between
(βT

P g and βT
S g is equal to zero, i.e., ρ = 0. In this case, the regression parameter α is equal to c and

P |S = βT
P g + ϵP .

Heritability of within-patient disease progression13

In this case, P |S has a simple genetic component given by GP |S = βT
P g. Therefore, its heritability can be

expressed as

hprog|sus =
Var(GP |S)

Var(P |S)
.

In the above,
Var(GP |S) = Var(βT

P g) = hprog

and

Var(P |S) = Var(βT
P g + ϵP )

= hprog +Var(ϵP ).
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Recall that P is normalized so that Var(P ) = 1. Therefore, Var(βT
P g + cβT

S g + cϵS + ϵP ) = 1. Since we
assumed that βT

P g and βT
S g are independent, all terms of P are pairwise independent and

1 = Var(P ) = Var(βT
P g + cβT

S g + cϵS + ϵP )

= Var(βT
P g) + c2Var(βT

S g) + c2Var(ϵS) + Var(ϵP )

= hprog + c2Var(S) + Var(ϵP )

= hprog + c2 +Var(ϵP ).

Thus,
Var(ϵP ) = 1− hprog − c2

and

hprog|sus =
hprog

hprog + 1− hprog − c2
= (1/1−c2) · hprog.

Recall that 0 ≤ c < 1, which implies that 1/(1 − c2) ≥ 1. Therefore, when c approaches one, the constant14

before hprog increases rapidly. Intuitively, in this case, the progression endpoint liability depends heavily15

on susceptibility and little phenotypic variability among patients remains. However, the constraint on hprog16

(1− hprog − c2 > 0) implies that hprog will also have to be small in this case.17

Using disease susceptibility genetics to understand “within-patients” progression18

In our empirical evaluations using simulated data, we try to explore the association between between Poly-19

genic Scores (PGS) derived from the respective disease susceptibility GWAS and the patient disease pro-20

gression, as characterized by mortality. Equivalently, using the parlance of the previous sections, we are21

trying to explore the extent to which the “within-patients” progression can be explained by the genetics of22

the disease susceptibility endpoint.23

Within our framework, we can theoretically answer this question. Let the genetic component of disease
susceptibility liability be denoted by GS = βT

S g. We can then look at the correlation coefficient R2(GS , P |S)
using the variance-covariance ratio:

R2(GS , P |S) =

(
Cov(GS , P |S)√
Var(GS)Var(P |S)

)2

=
Cov2(GS , P |S)

Var(GS)Var(P |S)
,

where Var(GS) = Var(βT
S g) = hsus and Var(P |S) = 1− c2. Assuming ρ = 0, we get

Cov(GS , P |S) = Cov(βT
S g, β

T
P g + ϵP ) = 0.

As expected, in this setting, the genetics of disease susceptibility cannot be used to explain the “within-24

patient” disease progression.25

Using population-level disease progression genetics to understand “within-patients” progres-26

sion27

In our empirical evaluations using simulated data, we also tried to look at the behavior of general longevity28

PGS derived from lifespan GWAS (Timmers et al., 2019). Recall that in our work we defined mortality as29

the event of interest, which we will use as a proxy for genetics of the disease progression measure in the30

general population instead of only within the patient group. We are aware that getting a real “liability of31

disease progression measure in the general population” is usually impossible in practice: in most cases, a32

disease progression is not defined for individuals who do not have a disease diagnosis in the first place. This33

is only possible in special cases where the progression is defined in a general manner. For example, if instead34

of disease specific mortality, mortality due to any cause is defined as disease progression2 , we can get the35

genetic determinants of this progression from a longevity GWAS for the general population instead of just36

the patient group.37

2This measure has been widely used in prior work.
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In our proposed framework, we can simulate such measurements by defining the liability of the disease
progression in the general population as P . Then, the within-patient progression liability is defined as P |S.
Therefore, the genetics of the disease progression measure in the general population can be analyzed via
P , which includes both the unique component of the disease progression as well as the contribution of the
disease susceptibility, namely

GP = (βT
P + cβT

S )g.

Association between the longevity PRS and patients’ survival is akin to asking about the amount of vari-
ance of the within-patients disease progression that is explained by the genetics of the progression liability
assessed in the general population. We can theoretically estimate this value using the correlation coefficient
R2(GP , P |S) as follows:

R2(GS , P |S) =

(
Cov(GP , P |S)√
Var(GP )Var(P |S)

)2

=
Cov2(GP , P |S)

Var(GP )Var(P |S)
.

Assuming that βT
P g and βT

S g are independent, we get

Var(GP ) = Var((βT
P + cβT

S )g)

= Var(βT
P g) + Var(cβT

S g)

= hprog + c2hsus.

Similarly,

Cov(GP , P |S) = Cov((βT
P + cβT

S )g, (β
T
P g + ϵP ))

= Cov(βT
P g, β

T
P g)

= Var(βT
P g) = hprog.

Using the above, we can now express the correlation coefficient R2(GP , P |S) as follows:

R2
GP ,P |S =

Cov2(GP , P |S)
Var(GP )Var(P |S)

=
h2
prog

(hprog + c2hsus) · (hprog +Var(ϵP ))
.

In the extreme corner case c = 0, i.e., when disease susceptibility and progression are two completely
independent endpoints, we get

R2
GP ,P |S =

hprog

hprog +Var(ϵP )
.

In this case, we get perfect correlation (R2
GP ,P |S = 1) if Var(ϵP ) = 0, because assuming c = 0 and ρ = 0,38

disease susceptibility and progression are completely orthogonal events. Therefore, population-level disease39

progression genetics is equivalent to within-patient progression genetics, which predicts the progression status40

perfectly in the absence of noise.41

Genetic correlation across within-patient disease progression, progression in general population42

and disease susceptibility43

Finally, we can estimate the correlation between the genetic component of the “within-patient” disease
progression GP |S = βT

P g, the population disease progression liability GP = (βT
P + c · βT

S )g, and the genetics
of the disease susceptibility βT

S g. In the case where ρ = 0, it is easy to show that the genetic correlation
ρ(P |S, S) between P |S and S is

ρ(P |S, S) =
Cov(GP |S , GS)√
Var(GP |S)Var(GS)

= 0.
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We compute the genetic correlation ρ(P |S, P ) between P |S and S as follows:

ρ(P |S, P ) =
Cov(GP |S , GP )√
Var(GP |S)Var(GP )

=
Cov(βT

P g, β
T
P g + cβT

S g)√
hprog · (hprog + c2hsus)

=
hprog√

hprog · (hprog + c2hsus)

=

√
hprog

(hprog + c2hsus)
.

The genetic correlation ρ(P, S) between P and S can be computed as:

ρ(P, S) =
Cov(GP , GS)√
Var(GP )Var(GS)

=
Cov(βT

P g + cβT
S g, β

T
S g)√

(hprog + c2hsus) · hsus

=
chsus√

(hprog + c2hsus) · hsus

= c ·

√
hsus

(hprog + c2hsus)
.

We note that when c = 0, i.e., the disease susceptibility is completely independent of the progression, we get44

ρ(P, S) = 0, as expected. Similarly, when c = 1, it follows that hprog = βT
P g = 03 and we get ρ(P, S) = 1,45

again as expected.46

The ρ ̸= 0 case47

We now proceed to discuss the more interesting ρ ̸= 0 case. The resulting formulas are analogs of the48

formulas in Section , albeit more complicated to account for non-zero ρ.49

Heritability of within-patient disease progression50

Consider the case where βT
P g and βT

S g are not independent. In this setting, the genetic component for the
within-patient disease progression will be

GP |S = βT
P g − ρ

√
hproghsus · βT

S g.

Its variance can be computed as follows:

Var(GP |S) = Var(βT
P g − ρ

√
hproghsus · βT

S g)

= Var(βT
P g)− 2ρ

√
hproghsus · Cov(βT

P g, β
T
S g) + (ρ

√
hproghsus)

2Var(βT
S g)

= hprog − 2(ρ
√

hproghsus)
2 + (ρ

√
hproghsus)

2 · hsus

= hprog(1− 2ρ2hsus + ρ2h2
sus).

3I.e., the disease susceptibility and the progression are exactly the same.
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Similarly, its phenotypic variance will be:

Var(P |S) = Var(βT
P g + ϵP − ρ

√
hproghsus · S)

= hprog +Var(ϵP ) + (ρ
√

hproghsus)
2 ·Var(S)− 2ρ

√
hproghsus · Cov(βT

P g, S)

= hprog +Var(ϵP ) + (ρ
√

hproghsus)
2 − 2ρ

√
hproghsus · Cov(βT

P g, β
T
S g)

= hprog +Var(ϵP ) + (ρ
√

hproghsus)
2 − 2(ρ

√
hproghsus)

2

= hprog +Var(ϵP )− ρ2hproghsus.

Next, in order to compute the variance of ϵP , i.e., Var(ϵP ), we need to look at the variance of the disease
progression liability defined in the population. Recall that, by our normalization assumptions, Var(P ) = 1.
Therefore,

1 = Var(P ) = Var(βT
P g + cβT

S g + cϵS + ϵP )

= Var(βT
P g) + c2Var(βT

S g) + c2Var(ϵS) + Var(ϵP ) + 2cCov(βT
P g, β

T
S g)

= hprog + c2Var(S) + Var(ϵP ) + 2cρ
√
hproghsus

= hprog + c2 +Var(ϵP ) + 2cρ
√
hproghsus.

We can now conclude that
Var(ϵP ) = 1− hprog − c2 − 2cρ

√
hproghsus.

Using the above equation, the phenotypic variance of within-patient disease progression can then be expressed
as:

Var(P |S) = hprog + 1− hprog − c2 − 2cρ
√
hproghsus − ρ2hproghsus

= 1− c2 − 2cρ
√
hproghsus − ρ2hproghsus.

Finally, its heritability can be expressed as

hprog|sus =
Var(GP |S)

Var(P |S)
=

hprog(1− 2ρ2hsus + ρ2h2
sus)

1− c2 − 2cρ
√
hproghsus − ρ2hproghsus

.

Using disease susceptibility genetics to understand “within-patients” progression51

We again consider the correlation coefficient R2(GS , P |S):

R2(GS , P |S) =

(
Cov(GS , P |S)√
Var(GS)Var(P |S)

)2

=
Cov2(GS , P |S)

Var(GS)Var(P |S)
.

In the above, Var(GS) = Var(βT
P g) = hsus and

Cov(GS , P |S) = Cov(βT
S g, (β

T
P g + ϵP )− ρ

√
hproghsus · S)

= Cov(βT
S g, β

T
P g)− ρ

√
hproghsus · Cov(βT

S g, S)

= ρ
√

hproghsus − ρ
√
hproghsus · hsus

= ρ(1− hsus)
√
hproghsus.

We can now use the expression for Var(P |S) derived in the previous section to get:

R2(GS , P |S) = Cov2(GS , P |S)
Var(GS)Var(P |S)

=
(ρ(1− hsus)

√
hproghsus)

2

hsus(1− c2 − 2cρ
√
hproghsus − ρ2hproghsus)

=
ρ2(1− hsus)

2hprog

1− c2 − 2cρ
√
hproghsus − ρ2hproghsus

.
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Using population-level disease progression genetics to understand “within-patients” progres-52

sion53

We now express the “within-patient” group disease progression variance that is explained by the genetics of
the progression liability as measured in the population. Formally, R2(GP , P |S) can be expressed as:

R2(GS , P |S) =

(
Cov(GP , P |S)√
Var(GP )Var(P |S)

)2

=
Cov2(GP , P |S)

Var(GP )Var(P |S)
.

The variance of the genetic component for the “within-patient” group disease progression is:

Var(GP ) = Var((βT
P + cβT

S )g)

= Var(βT
P g) + Var(cβT

S g) + 2Cov(βT
P g, cβ

T
S g)

= hprog + c2hsus + 2cρ
√
hproghsus.

Similarly, the covariance Cov(GP , P |I) is

Cov(GP , P |S) = Cov((βT
P + cβT

S )g, (β
T
P g + ϵP )− ρ

√
hproghsus · S)

= Cov(βT
P g, β

T
P g)− ρ

√
hproghsus · Cov(βT

P g, S) + Cov(cβT
S g, β

T
P g)− ρ

√
hproghsus · Cov(cβT

S g, S)

= Var(βT
P g)− ρ

√
hproghsus · Cov(βT

P g, β
T
S g) + c · Cov(βT

S g, β
T
P g)− cρ

√
hproghsus ·Var(βT

S g)

= hprog − (ρ
√
hproghsus)

2 + cρ
√
hproghsus − cρ

√
hproghsushsus

= hprog + c(1− hsus)ρ
√
hproghsus − ρ2hproghsus.

Finally, the correlation coefficient R2(GP , P |S) can be expressed as follows:

R2(GP , P |S) = Cov2(GP , P |S)
Var(GP )Var(P |S)

=
(hprog + c(1− hsus)ρ

√
hproghsus − ρ2hproghsus)

2

(hprog + c2hsus + 2cρ
√
hproghsus)(1− c2 − 2cρ

√
hproghsus − ρ2hproghsus)

.

Note that if c = 0 and ρ = 0, i.e., the liability of disease progression and the susceptibility are uncorrelated,54

the correlation coefficient R2(GP , P |S) = hprog, which is exactly equal to the heritability of the progression55

liability.56

Genetic correlation across in-patient progression, progression endpoint in population, and57

susceptibility58

Similar to the ρ = 0 case, we can estimate the correlation coefficient between the genetic component of the59

“within-patient” group disease progression (in our notation, this component is GP |S = βT
P g− ρ

√
hproghsus ·60

βT
S g), the genetics for progression liability in the population (in our notation, GP = (βT

P + c ·βT
S )g), and the61

disease susceptibility genetics (in our notation, βT
S g).62

Recall that, by definition, GP |S has a variance equal to

Var(GP |S) = hprog(1− 2ρ2hsus + ρ2h2
sus).

Also,
Var(GP ) = hprog + c2hsus + 2cρ

√
hproghsus.

Also, by definition, Var(βgig) = hsus. We can now compute the genetic correlation R(P |S, S)) between P |S
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and S as follows:

R(P |S, S) =
Cov(GP |S , GS)√
Var(GP |S)Var(GS)

=
Cov(βT

P g − ρ
√

hproghsus · βT
S g, β

T
S g)√

hprog(1− 2ρ2hsus + ρ2h2
sus) · hsus

=
ρ
√

hsushprog − ρ
√

hsushprog · hsus√
hprog(1− 2ρ2hsus + ρ2h2

sus) · hsus

=
ρ
√

hsushprog · (1− hsus)√
hprog(1− 2ρ2hsus + ρ2h2

sus) · hsus

=
ρ · (1− hsus)√

(1− 2ρ2hsus + ρ2h2
sus)

.

The genetic correlation R(P |S, P ) between P |S and P is:

R(P |S, P ) =
Cov(GP |S , GP )√
Var(GP |S)Var(GP )

=
Cov(βT

P g − ρ
√

hproghsus · βT
S g, β

T
P g + cβT

S g)√
hprog(1− 2ρ2hsus + ρ2h2

sus) · (hprog + c2hsus + 2cρ
√

hproghsus)

=
Var(βT

P g) + c2ρ
√
hsushprog ·Var(βT

S g) + c(1− ρ
√
hsushprog)Cov(β

T
P g, β

T
P g)√

hprog(1− 2ρ2hsus + ρ2h2
sus) · (hprog + c2hsus + 2cρ

√
hproghsus)

=
hprog + c2ρ

√
hsushprog · hsus + c(1− ρ

√
hsushprog)ρ

√
hsushprog√

hprog(1− 2ρ2hsus + ρ2h2
sus) · (hprog + c2hsus + 2cρ

√
hproghsus)

=
hprog + c2ρ

√
hsushprog · hsus + c(1− ρ

√
hsushprog)ρ

√
hsushprog√

hprog(1− 2ρ2hsus + ρ2h2
sus) · (hprog + c2hsus + 2cρ

√
hproghsus)

.

Finally, the genetic correlation R(P, S) between P and S is:

R(P, S) =
Cov(GP , GS)√
Var(GP )Var(GS)

=
Cov(βT

P g + cβT
S g, β

T
S g)√

(hprog + c2hsus + 2cρ
√

hproghsus) · hsus

=
ρ
√
hproghsus + chsus√

(hprog + c2hsus + 2cρ
√

hproghsus) · hsus

=
ρ
√
hprog + c

√
hsus√

hprog + c2hsus + 2cρ
√
hproghsus

.

We note that if c = 0, then R(P, S) = ρ; if, in addition, ρ = 1, then R(P, S) = 1 as well.63

Estimating variant-level effect sizes for in-patient progression64

As part of our empirical assessment using real and simulated data, we ran disease mortality GWAS within65

the patient groups in order to compare variant level effects between disease susceptibility and within-patient66

disease progression. In our empirical evaluations, we found it difficult to replicate SNPs that are strongly67

associated with disease susceptibility in the mortality GWAS. A naive explanation for such lack of concor-68

dance is the poor definition of the disease progression endpoint as well as the low genetic similarity between69
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disease susceptibility and disease-specific mortality. We believe that there are deeper and more significant70

reasons for the aforementioned issue. Indeed, in this section, we will show that beyond real genetic distinc-71

tions between the two endpoints, the so called index event bias (Yaghootkar et al., 2017) can also play an72

important role. Intuitively, this bias arises naturally from the design of prognostic research which focuses on73

within-patient assessments. This bias can result in attenuation of effects even for variables that have exactly74

the same underlying effect size on disease susceptibility and progression in the population.75

We start by discussing two, somewhat minor, notational modifications that we will use in the remainder76

of this section compared to our work in the previous sections. First, our analysis will focus on a single variant77

instead of additive polygenic effects. Therefore, g is no longer a vector variable, and neither are βgp and78

βgi. Similarly to the previous sections, g is still standardized to satisfy E(g) = 0 and Var(g) = 1. Second,,79

we introduce the standardized variable u with E(u) = 0 and Var(u) = 1 that is independent from g, as well80

as from the error terms ϵi and ϵp; this variable u accounts for all other causal factors that could be shared81

by the disease susceptibility and the progression in the population. This new variable u has direct effects82

denoted by βui and βup on the disease susceptibility and progression liability, respectively. As a composite83

variable, u can contain genetic effects from other variants beyond the one captured by g as well as common84

non-genetic effects.85

In light of the above discussion and notations, we now model the random variables S, P as:

S = βgSg + βuSu+ ϵS ,

P = βgP g + βuPu+ cI + ϵP

= (βgP + cβgS)g + (βuP + cβuS)u+ (ϵP + cϵS).

In a disease progression GWAS, we are usually interested in the unique genetic effect on disease progression,
namely the quantity βgP . However, in a within-patient GWAS, we are interested in measuring g’s observed
genetic effect on disease progression, conditioned on disease susceptibility. We denote this within-patient
observed genetic effect as β∗

gP . Then, the expectation of the within-patient disease progression can be
expressed as

E(P |g, S) = β∗
gP g + c∗S.

In the above equation, c∗ is the observed effect size from the disease susceptibility liability as modelled by
the variable S. Using least-squares to estimate β∗

gP and c∗, we get:[
β∗
gp

c∗

]
=

[
Var(g) Cov(g, S)

Cov(g, S) Var(g)

]−1 [
Cov(g, P )
Cov(S, P )

]
.

Recall that g, u, S, and P are all standardized random variables and that ϵS and ϵP satisfy E(ϵS) = E(ϵP ) =
0. Moreover, g, u, ϵS , and ϵP are all pairwise independent. We now analytically compute each term in the
above equation, starting with Cov(g, S):

Cov(g, S) = E(gS)− E(g)E(S)

= E(βgSg
2 + βuSug + ϵSg)− 0

= βgS(E(g
2)− E2(g)) + βuS(E(gu)− E(g) · E(u)) + ϵSE(g)

= βgSVar(g) + βuSCov(g, u) + 0

= βgS .

Similarly,

Cov(g, P ) = E(gP )− E(g)E(P )

= E[(βgP + cβgS)g
2 + (βup + cβuS)ug + cϵSg + ϵP g]

= βgP + cβgS ,

ix
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and

Cov(S, P ) = E(SP )− E(S)E(P )

= E[((βgP + cβgS)g + (βuP + cβuS)u+ cϵS + ϵP )(βgSg + βuSu+ ϵS)]

= E[(βgP + cβgS)βgSg
2 + (βuP + cβuS)βuSu

2 + cϵ2S ]

= (βgP + cβgS)βgS + (βuP + cβuS)βuS + cVar(ϵS).

We can now rewrite the least square solution for the observed effect sizes as follows:[
β∗
gP

c∗

]
=

[
1 βgS

βgS 1

]−1 [
βgP + cβgS

(βgP + cβgS)βgS + (βuP + cβuS)βuS + cVar(ϵS)

]
=

1

1− β2
gS

[
1 −βgS

−βgS 1

] [
βgP + cβgS

(βgP + cβgS)βgS + (βuP + cβuS)βuS + cVar(ϵS)

]
.

Notice that in the above we analytically computed the inverse of the susceptibility matrix that appeared in
the least-squares formulation. Focusing on β∗

gP , we get

β∗
gP =

1

1− β2
gS

· [(βgP + cβgS)− βgS((βgP + cβgS)βgS + (βuP + cβuP )βuS + cVar(ϵS))]

= (βgP + cβgS)−
1

1− β2
gS

· [βgS((βuP + cβuS)βuS + cVar(ϵS))]. (1)

We can further compute the variance of ϵi, i.e., Var(ϵS), by looking at the variance of S, which is a sum of
three independent components (recall that the variance of S is normalized and equal to one):

1 = Var(S) = Var(βgSg + βuSu+ ϵS)

= Var(βgSg) + Var(βuSu) + Var(ϵS)

= β2
gS + β2

uS +Var(ϵS).

Therefore,
Var(ϵi) = 1− β2

gS − β2
uS .

Combining with eqn. (1), we get

β∗
gP = (βgP + cβgS)−

1

1− β2
gS

· [βgS((βuP + cβuS)βuS + c(1− β2
gS − β2

uS))]

= (βgP + cβgS)−
1

1− β2
gS

· [βgS(βuPβuS + c(1− β2
gS))]

= (βgP + cβgS)−
βgSβuPβuS

1− β2
gS

− cβgS

= βgP − βgSβuPβuS

1− β2
gS

.

In order to further simplify and provide intuition for the above expression, recall that u is a composite variable86

accounting for all other causal factors shared by disease susceptibility and progression, including shared87

polygenic effects, with the exception of the variant of interest g. In order to proceed with our theoretical88

analysis, we will focus on the extreme case where u’s components only include the shared polygenic effect89

and there are no environmental risk factors. In other words, in our theoretical analysis, we care more about90

how the genetic relationship between disease susceptibility and progression affects downstream analysis.91

Due to the polygenic nature of most complex diseases, a single variant usually contributes little to the
total endpoint heritability. A reasonable way to model this assumption is to approximate βup as follows:

βuPβuS ≈ ρ
√

hsushprog.

x
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Using this approximation, it follows that

β∗
gP ≈ βgP −

ρ
√

hsushprog

1− β2
gS

βgS .

The above relationship indicates that when there is no shared non-genetic risk factors, GWAS results could92

suffer from index event bias depending on the genetic similarity between variants underlying disease sus-93

ceptibility and the progression of the unique genetic components, and also the heritability of progression94

endpoint. Thus, with fixed susceptibility genetics, when the progression endpoint has really low heritability,95

the absolute biased effect size can also be relatively negligible.96

xi
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Simulation under proposed framework 584 
We carried out a simulation based on the genome of chromosome 21 (containing 111,212 HM3 SNPs) for 585 
10,000 synthetic European individuals created using Hapgen2 (Su et al., 2011).  In the simulation, we fixed 586 
heritability of disease susceptibility at ℎ&'& = 0.2, and impact of susceptibility liability on disease 587 
progression liability at c = 0.3. We further fixed the compositions of causal SNPs for each of these two 588 
endpoints so that 0.001 of total SNPs (ie. around 110 in this case) have direct effect on disease susceptibility 589 
and 0.001 have direct effect on progression. We changed the proportion of overlap between these two 590 
genetic components so that 25%, 50%, 75% of the causal SNPs were shared between susceptibility and 591 
progression. To decide effect size for each causal SNP i, we first drew a base effect independently from a 592 
standard univariate normal distribution  593 

𝛽$,/0&1 ∼ 𝑁(0, 1)	594 
and multiply it to the square root of heritability this SNP accounts for to get its final effect size. Causal 595 
SNPs shared by susceptibility and progression were simulated to have same base effect on susceptibility 596 
and progression so that expected correlation of overall polygenic effects between two endpoints 𝜌 will 597 
approximately correspond to the proportion of shared causal SNPs, in this case 𝜌 = 0.25, 0.5 and 0.75. 598 
We further vary heritability of disease progression ℎ()*# = 0.005, 0.1, and 0.2. 599 
Under each simulation setup, we run standard GWAS correcting for top 10 PCs for both susceptibility and 600 
progression liability. Note that just like we added age of diagnosis as a covariate in our empirical mortality 601 
GWAS, in the progression GWAS, we also correct for susceptibility liability. Subsequently, we clump the 602 
GWAS results using plink (Purcell et al., 2007) under parameters --clump-p1 5e-8 --clump-r2 0.5 --clump-603 
kb 250 to extract independent genome-wide significant loci from each GWAS, ran linemodels (Pirinen, 604 
2023) and plot the results just like we did in our empirical experiments.  605 
 606 
Impact of index event bias and Slope-Hunter-like adjustment 607 
To investigate the impact of index event bias, we think the most direct way would be to compare the 608 
underlying simulated SNP effects to observed effects from GWAS for disease progression. Recall that 609 
effect size for each causal SNP i is a standard normal variable multiplied by square root of its heritability, 610 
which can be expressed as 611 

β$ = :
ℎ

Var>∑ β$,/0&12
$34 𝑔$@

 612 

, where 𝛽$ is the underlying causal effect simulated, h is the endpoint heritability, gi is the genotype of 613 
causal SNP i, and n is the total number of causal SNPs for the endpoint. The same equation applies to both 614 
susceptibility and progression causal genetic effects.  615 
In this experiment as we are investigating the impact of index event bias, on top of shared polygenic effects, 616 
we introduced another component u to account for any other shared non-genetic risk factor between the 617 
two. Same as previous experiment, heritability of disease susceptibility and impact of susceptibility liability 618 
on disease progression liability were still fixed as ℎ&'& = 0.2 and c = 0.3. For this experiment, we further 619 
fixed the heritability of disease progression at ℎ()*# = 0.005. We vary 𝜌 = 0.25, 0.5 and 0.75, and 620 
contribution of the non-genetic component on variance of susceptibility and progression liability among 621 
Varu = 0, 10%, or 20%.    622 
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Under each setup, we ran GWAS on disease susceptibility and progression as described before, and for all 623 
progression causal variants, we plotted simulated SNP effects against SNP effects observed from the 624 
progression GWAS. We examined the residual sum of squares (rss) for the points around function y = x. 625 
Furthermore, based on the theory behind of Slope-Hunter, we applied adjustment on SNPs that suffer from 626 
index event bias through a procedure described as below: 627 

1. Extract all susceptibility specific causal SNPs and regress their observed effect sizes from 628 
susceptibility GWAS against progression GWAS to obtain the correction factor b. 629 

2. For each causal SNP i shared between susceptibility and progression, compute the corrected 630 
progression genetic effect 𝛽𝑖,𝑝𝑟𝑜𝑔'  as below  631 

𝛽𝑖,𝑝𝑟𝑜𝑔' = 𝛽𝑖,𝑝𝑟𝑜𝑔
∗' – 𝑏𝛽𝑖,𝑝𝑟𝑜𝑔' 	632 

, where 𝛽𝑖,𝑝𝑟𝑜𝑔
∗'  is the observed effect for SNP i from the conditioned progression GWAS, and 𝛽𝑖,𝑠𝑢𝑠' is the 633 

observed effect for SNP i from the susceptibility GWAS. Note that this experiment may demonstrate the 634 
utility of Slope-Hunter-like correction in a nearly “perfect” scenario, where the classification of SNPs 635 
(susceptibility specific, progression specific, shared or no effect in either) is given. In practice, a Bayesian 636 
or comparable approach needs to be applied for posterior variant group assignment, which can result in 637 
worse performance than shown in this manuscript. As a comparison, we show in the same plot the corrected 638 
variants effect sizes against the simulated underlying effects and examined rss. See Figure S19 for results.  639 
Note the previous experiment shows impact of index event bias and correction on all underlying causal 640 
variants for the progression, whereas in practice, such information is not a given. Therefore, subsequently 641 
we tried to examine the real impact of Slope-Hunter-like correction on observed results from GWAS under 642 
one of the conditions where the most severe index event bias could be observed (ℎ()*# = 0.005, Varu = 643 
20%, 𝜌 = 0.5). We chose 𝜌 = 0.5 rather than 𝜌 = 0.75, where more causal variants are shared, so that more 644 
susceptibility specific SNPs were available for correction factor (b) estimation and a more accurate estimate 645 
could be achieved. For this experiment, we first ran progression and susceptibility GWAS respectively as 646 
mentioned before and clumped their results to identify independent signals for each. Then using 647 
susceptibility specific SNPs, we fitted the correction factor and applied correction on all SNP effects in the 648 
progression GWAS. We also corrected for the standard errors as mentioned in (Mahmoud et al., 2022) and 649 
recomputed the p-values. Mindful of the difference from the previous experiment, that correction was not 650 
only applied on shared causal SNPs but all variants, as that would be what is done empirically. Note that 651 
here we still provided causal information for susceptibility specific variants to fit the correction factor, 652 
which was again a rather ideal use case for the method. Then, as what was done empirically, we ran 653 
linemodels (Pirinen, 2023) on SNP effect before and after the correction (Figure S20). None of the SNPs 654 
became genome-wide significant in progression GWAS after correction (Table S19), and there was no 655 
change in Bayesian classification of SNPs.  656 
 
* Citations from tables and latex document 
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BB2019_7, BB2019_8, BB2019_26, BB2020_1, BB2021_65, Finnish Red Cross Blood Service Biobank 1177 
7.12.2017, Helsinki Biobank HUS/359/2017, HUS/248/2020, HUS/150/2022 § 12, §13, §14, §15, §16, §17, 1178 
§18, and §23, Auria Biobank AB17-5154 and amendment #1 (August 17 2020) and amendments BB_2021-1179 
0140, BB_2021-0156 (August 26 2021, Feb 2 2022), BB_2021-0169, BB_2021-0179, BB_2021-0161,  1180 
AB20-5926 and amendment #1 (April 23 2020)and it´s modification (Sep 22 2021), Biobank Borealis of 1181 
Northern Finland_2017_1013, 2021_5010, 2021_5018, 2021_5015, 2021_5023, 2021_5017, 2022_6001,  1182 
Biobank of Eastern Finland 1186/2018 and amendment 22 § /2020, 53§/2021, 13§/2022, 14§/2022, 1183 
15§/2022, Finnish Clinical Biobank Tampere MH0004 and amendments (21.02.2020 & 06.10.2020), 1184 
§8/2021, §9/2022, §10/2022, §12/2022, §20/2022, §21/2022, §22/2022, §23/2022, Central Finland Biobank 1185 
1-2017, and Terveystalo Biobank STB 2018001 and amendment 25th Aug 2020, Finnish Hematological 1186 
Registry and Clinical Biobank decision 18th June 2021, Arctic biobank P0844: ARC_2021_1001. 1187 
UK Biobank 1188 
Genotyping and quality control 1189 
UK Biobank participants were genotyped by two genotyping arrays: The UK Biobank Lung Exome Variant 1190 
Evaluation (UKBiLEVE) Axiom array was used to genotype 49,950 participants. The remaining 438,427 1191 
participants were genotypes using the Applied Biosystems UK Biobank Axiom Array. Principal 1192 
Component Analysis (PCA) was performed on the genetic data and centralised quality control (QC) on 1193 
variants was performed on individuals identified to belong to the largest cluster (N=463,844) according to 1194 
Aberrant - an unsupervised clustering algorithm (Bellenguez et al., 2012). Variants were assessed for 1195 
evidence of allele frequency variation across batch, plate, sex or array and that genotypes were largely 1196 
consistent with Hardy-Weinberg Equilibrium expectations (all p-value thresholds < 10-12). If a variant failed 1197 
one or more tests within a given batch it was set to missing. See (UK Biobank, 2015) for more detailed 1198 
information on testing. 1199 
Imputation 1200 
For 487,442 individuals, imputation was performed using the IMPUTE4 (Howie et al., 2009) software. 1201 
Genetic variation from the Haplotype Reference Consortium (HRC) (McCarthy et al., 2016) and merged 1202 
UK10K+1000 Genomes (1000 Genomes Project Consortium, 2015) were used as a reference panel. Single 1203 
Nucleotide Polymorphisms (SNPs) were only included in the final imputation if they were present in both 1204 
reference panels, giving a total of 96,959,328 SNPs. 1205 
Ancestry assignment 1206 
Ancestry assignment uses methodology and scripts from GenoPred (Prediction within Ancestral 1207 
Diversity, n.d.). Individuals were stratified into one of five super populations African (AFR), American 1208 
(AMR), South Asian (SAS), East Asian (EAS) and European (EUR). The 1000 Genomes data (1000 1209 
Genomes Project Consortium, 2015) acted as a reference given the individuals are known to belong to one 1210 
of the 5 super populations. Only unambiguous SNPs also present in both the HapMap3 consortium (Gibbs 1211 
et al., 2003) and the imputed UK Biobank data were retained for PCA. SNPs within both the reference 1212 
(1000 Genomes) and target (UK Biobank) samples underwent quality control such that the minor allele 1213 
frequency (MAF) > 5%, variant missingness > 2% and Hardy-Weinberg Equilibrium p-value > 1e-6. 1214 
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467,970 autosomal SNPs remained following QC and were in the intersection of the reference and target 1215 
samples. Regions with long range linkage disequilibrium were excluded and independent SNPs (SNPs 1216 
greater than 1000kb apart and r2 < 0.2) retained. PCA was then performed in the reference sample using 1217 
PLINK v2 (Purcell et al., 2007) and a multinomial elastic-net regression was trained using 5-fold cross 1218 
validation, super population as the outcome and the first 10 PCs as covariates. PCs from the target sample 1219 
were then projected into the reference space and prediction on super population made. Classifications were 1220 
made according to the super population with the greatest probability. To be classified the max probability 1221 
must be over 0.5, otherwise it was set to missing.  1222 
PCA was performed using a random subset of 1000 individuals per super population and PC’s from the rest 1223 
of the super population sample projected onto this space. Distances from the centroid were calculated and 1224 
outliers removed. Outliers were classified as having a distance > 75 percentile + 30*Interquartile Range. 1225 
Following within-ancestry QC, 8,381, 1,063, 2,393, 447,332 and 9,435 individuals were allocated to AFR, 1226 
AMR, EAS, EUR and SAS super populations respectively. 1227 
Estonian Biobank 1228 
Genotyping and quality control 1229 
Estonian BioBank (EstBB) samples were genotyped with 4 sub-versions of Infinium Global Screening 1230 
Array-24. Samples with less than 95% call-rate were excluded. Sample sex recorded in the EstBB database 1231 
was compared with genetic sex. Samples with sex mismatch were further inspected for sex chromosome 1232 
abnormalities (X0, XXY, etc.), and samples with confirmed database vs genetic sex mismatch were 1233 
excluded. In total, 202 910 individuals passed sample quality control. SNP quality control was performed 1234 
by excluding: (a) all SNPs with less than 95% call-rate, (b) SNPs showing more than 5% AF difference 1235 
from the AF mean estimated using all genotyping batches with more than 10 000 samples per batch, (c) 1236 
SNPs with Illumina GenTrain score < 0.6 or cluster separation score < 0.4 in any genotyping batch, (d) 1237 
autosomal SNPs with HWE exact test p-value < 1e-4. In total, approximately 328K autosomal and X-1238 
chromosome SNPs with MAF > 1% passed quality control and were used in the imputation. All the variants 1239 
were processed on the human genome assembly GRCh37. 1240 
Imputation 1241 
Imputation was performed using a local Estonian imputation reference panel made of 2056 WGS samples. 1242 
Genotypes were pre-phased with Eagle v2.4.1 and imputed with Beagle 5.1 using default parameters. 1243 
Multiallelic positions were excluded from imputation output. In total, 39 546 641 variants were used in the 1244 
study. 1245 
Ancestry assignment 1246 
EstBB samples were combined with the 1000 genomes phase 3 dataset for ancestry analysis. Genetic 1247 
principal components were calculated using a subset of quality controlled and pruned genotyped SNPs. 1248 
This was further used to identify and remove samples that deviated from the main cluster via visual 1249 
inspection. In total, 481 non-european ancestry individuals based on principal components were excluded 1250 
from the analysis. 1251 
Genomics England 1252 
Genotyping and quality control 1253 
Genome sequencing was performed in DNA samples from 78,195 individuals using Illumina HiSeq X 1254 
systems (150bp paired-end format). Reads were aligned using the iSAAC Aligner (version 03.16.02.19) 1255 
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and small variants were called using Starling Small Variant Caller (version 2.4.7). Samples were aligned to 1256 
the Homo Sapiens NCBI GRCh38 assembly with decoys. 1257 
Aggregation of single-sample gVCFs was performed using the Illumina software gVCF genotyper (version 1258 
2019). Variant normalisation and decomposition were implemented by vt (version 0.57721). Genomic 1259 
annotation and calculation of allele statistics were performed using Ensembl VEP and bcftools respectively. 1260 
The multi-sample VCF dataset (aggV2) was then split into 1,371 roughly equal chunks to allow faster 1261 
processing. Only variants that passed all provided site quality control criteria were processed. 1262 
Imputation 1263 
The WGS genotypes (~722M variants) were filtered to a variant base list used for PGS model generation, 1264 
which includes 18,421,839 variants. (For further information on how the variant list was derived see: 1265 
https://research-help.genomicsengland.co.uk/pages/viewpage.action?pageId=72351761) 1266 
Genotypes were phased and imputed using the 1000G reference panel (v5a) which was lifted-over from 1267 
GRCh37 to GRCh38 using cross-map. 1268 
Ancestry assignment 1269 
The genetic ancestry of the patients was estimated using a random forest classifier and data from 1000 1270 
genomes project phase 3 (1KGP3) dataset. Firstly, all unrelated samples from the 1KGP3 were selected and 1271 
188,382 HQ SNPs were subsetted. After filtering for MAF > 0.05 in 1KGP3 (and GE data), the first 20 PCs 1272 
were calculated using GCTA and the aggV2 data were projected onto the 1KGP3 PC loadings. The random 1273 
forest model to predict ancestries was trained based on: 1274 

A. First 8 1KGP3 PCs 1275 
B. set Ntrees = 400  1276 
C. Train and predict on 1KGP3 Admixed American, African, East Asian, European, and South Asian 1277 

super-populations. 1278 
Individuals were assigned for any one ancestry with a probability of > 0.8. 1279 
Genes and Health 1280 
Genotyping and quality control 1281 
We used the latest 2021 July GNH data release including 44,190 individuals (26,537 British-Bangladeshi, 1282 
17,653 British-Pakistani). Genotyping was performed on DNA samples from saliva, using the Illumina 1283 
Infinium Global Screening Array v3, which contained 730,059 variants. GenomeStudio from Illumina was 1284 
used to perform clustering and initial quality control on the genotype data. Variants were removed if they 1285 
had low call rate, or were tagging structural variants, a positive HetExcess > 0.03, Hardy-Weinberg 1286 
equilibrium P-value < 1.0 × 10-6, cluster sep <0.57, or automated clustering (GenTrain) score <= 0.7. A 1287 
total of 637,829 variants remained with call rates of > 0.992 for female samples and > 0.995 for male 1288 
samples (including X and Y chromosomes). Sample exclusion criteria included duplicate GSA genotypes 1289 
that should not be sample duplicates, samples that should be duplicated but have not matching GSA 1290 
genotypes, and a few late withdrawals of consent. Only chip genotyped samples with valid NHS numbers 1291 
were preserved. When two chip genotype samples with the same NHS number were found, the samples 1292 
with the highest call rate were retained.  1293 
Imputation 1294 
Monomorphic SNPs, non-ACGT, palindromic (A/T, T/A, C/G, G/C), and chr Y variants were excluded. 1295 
Variants were evaluated by TOPMed QC to obtain SNPs that required strand flipping (performed in plink). 1296 
Furthermore, variants with MAF<0.0001 were excluded. The TOPMed-r2 Minimac4 Imputation Server 1297 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.10.23296544doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.10.23296544
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

(version 1.5.7, https://imputation.biodatacatalyst.nhlbi.nih.gov/#!pages/home), created by the University of 1298 
Michigan, was subsequently used to impute the genotypes. Rsq filter (imputation quality) of 0.3 was applied 1299 
within the Imputation Server.  1300 
Ancestry assignment 1301 
A total of 44,396 individuals and 355,862 directly genotyped variants (retaining only autosomal variants, 1302 
MAF>0.01, call rate >99% and those passing HWE in declared Bangladeshi individuals) were used with 1303 
the KING software to estimate pairwise relationship up to 4 degrees. PCA was performed on GNH unrelated 1304 
individuals, projecting related individuals into the PC, to obtain 50 PCs for all GNH samples. For the 1305 
ancestry assignment, we used a reference cohort consisting of 3,433 individuals from 1000G and HGDP. 1306 
A PCA up to 50 PCs was performed on the reference set (3,433 individuals and 104,552 variants) and 1307 
subsequently the GNH samples were projected into the reference PCA. Using UMAP with 7 PCs, we 1308 
genetically inferred Bangladeshi and Pakistani individuals and excluded 76 non South Asian outliers and 1309 
130 South Asian outliers (not falling into the main clusters). 1310 
Generation Scotland 1311 
Genotyping and quality control 1312 
Generation Scotland (GS) consists of ~24,000 individuals from across Scotland aged between 18-99 years. 1313 
Phenotypic data were obtained at baseline along with whole blood samples for DNA quantification. Disease 1314 
outcomes were ascertained through linkage to primary (GP) and secondary (hospital) healthcare records. 1315 
 Genotype data was assayed for 20,195 participants in two batches with 9,863 participants in the first batch 1316 
and the remainder in the second. The genotyping was performed using the Illumina 1317 
HumanOmniExpressExome-8 v1.0 BeadChip and the Illumina HumanOmniExpressExome-8 v1.2 1318 
BeadChip, respectively. Individuals or SNPs with a low call rate (<98%) and SNPs with Hardy-Weinberg 1319 
p-value<1x10-6 were removed. Mendelian errors were removed by setting the individual-level genotypes at 1320 
erroneous SNPs to missing. 1321 
 Imputation 1322 
Genotyped data were imputed using the HRC panel v1.1 (McCarthy et al., 2016). Autosomal haplotypes 1323 
were checked to ensure consistency with the reference panel (strand orientation, reference allele, position. 1324 
Pre-phasing was performed using Shapeit2 v2r837 (O’Connell et al., 2014) using the Shapeit2 duohmm 1325 
option11 (O’Connell et al., 2014) and cohort family structure in order to improve imputation quality 1326 
(O’Connell et al., 2014). Variants with low imputation quality (INFO<0.4) as well as monogenic variants 1327 
were removed from the imputed set resulting in 24,111,857 variants for downstream analysis. 1328 
 Ancestry assignment 1329 
Ancestry outliers were removed from the dataset. These were defined as individuals who were more than 1330 
six standard deviations away from the mean in a principal component analysis of GS merged with 1092 1331 
participants from the 1000 Genomes Project (1000 Genomes Project Consortium, 2015). 1332 
Dana Farber 1333 
Genotyping and quality control 1334 
DNA samples were processed from the whole blood and genotyped on either the Illumina Multi-Ethnic 1335 
Genotyping Array (MEGA), the Expanded Multi-Ethnic Genotyping Array (MEGA Ex) array, or the Multi-1336 
Ethnic Global (MEG) BeadChip (Bien et al., 2016). All germline samples were imputed to the Haplotype 1337 
Reference Consortium (HRC) reference panel (McCarthy et al., 2016) and then restricted to ~ 1.1 million 1338 
HapMap3 variants that typically exhibit high imputation accuracy across genotyping platforms and 1339 
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uniformly tag common SNP variation (Finucane et al., 2015). Small indels were not available in the HRC 1340 
reference panel due to sequencing ambiguity, and we additionally imputed small indels into the germline 1341 
genotyped data using the 1000 Genomes Phase 3 reference panel (1000 Genomes Project Consortium, 1342 
2015) and restricted to high-quality indels with INFO score (imputation confidence score) > 0.9. 1343 
Imputation 1344 
We assessed three imputation algorithms intended for low-coverage data: STITCH v1.5.3 (Davies et al., 1345 
2016), GLIMPSE v1.0.0 (Davies et al., 2021; Rubinacci et al., 2021), and QUILT v0.1.9 (Davies et al., 1346 
2021). For all analyses, OncoPanel data was aligned to hg19 using bwa and processed with the GATK 1347 
IndelRealigner. The 1000 Genomes Phase 3 release was used as a haplotype reference, targeting variants 1348 
with > 1% frequency in the European population. Tumor imputation was performed using the 1000 1349 
Genomes reference (rather than the HRC reference) because the HRC panel is not publicly available and 1350 
the HRC imputation server does not support raw sequencing data. We thus sought to use the best reference 1351 
panels that were accessible for the two data types. We note that HRC largely improves imputation accuracy 1352 
for low-frequency variants (McCarthy et al., 2016), which were not the target of our analysis. 1353 
Imputation with STITCH was carried out on all samples using aligned reads in 5-MB batches (see the 1354 
“Availability of data and materials” section for the detailed parameters and code). The potential influence 1355 
of target cohort size was evaluated by randomly downsampling to a lower number of sequenced tumors. 1356 
Imputation with QUILT was carried out using the same input and batching procedure, with default 1357 
parameters. Imputation with GLIMPSE was carried out on all samples with default parameters as 1358 
recommended in the documentation: calling genotype likelihoods from each raw BAM file, splitting the 1359 
genome into chunks, performing imputation and phasing, and ligating the chunks. An alternative, reference-1360 
only version of GLIMPSE was kindly provided to us by the authors but could not be compiled in our 1361 
computing environment. Lastly, we considered two other imputation approaches: GeneImp (Spiliopoulou 1362 
et al., 2017) and BEAGLE (Browning et al., 2021), but found that their computational requirements were 1363 
infeasible for sample sizes in the thousands. Identical reference panel data was used for all methods except 1364 
small indels, structural variants, and multi-allelic polymorphisms were excluded from the STITCH and 1365 
GLIMPSE analysis (which only allows biallelic single nucleotides). After imputation, variants were 1366 
considered “filtered” if they had a minor allele frequency > 1% and an INFO score (imputation confidence 1367 
score) > 0.4 (similar to parameters used previously (S. Liu et al., 2018)). 1368 
Ancestry assignment 1369 
Samples were projected into genetic ancestry principal components using the weights previously derived 1370 
by the SNPWEIGHTS software (Chen et al., 2013) for the continental populations. Weights were 1371 
constructed from the 1000 Genomes reference groups with ancestry from Northern/Western Europe (CEU), 1372 
Western Africa (YRI), and China (CHB+CHD). In our data, each component was projected independently 1373 
as a linear combination of the weights and individual sample dosages (using the plink2 “--score” command). 1374 
Components were then linearly recalibrated by fitting to self-reported race as an outcome (note this linear 1375 
recalibration is for interpretation purposes only and does not influence the significance of any downstream 1376 
associations). To estimate ancestry fractions, we uniformly rescaled the African and Asian components to 1377 
be between 0 and 1 and additionally uniformly scaled the ancestry of each individual to be between 0 and 1378 
1. 1379 
BioMe 1380 
Genotyping and quality control 1381 
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BioMe participants have been genotyped using Illumina’s Global Screening Array (GSA-24 v1). Samples 1382 
flagged as being contaminated, possibly duplicated, having low coverage, a call rate < 95%, or showing 1383 
genotype-exome discordance were removed. Sex discordant samples were etiher reconciled after a plate 1384 
swap resolution or removed. Sample missingness and depth of coverage were calculated using vcftools: 1385 
mean missingness was 1.24 x 10-3, mean depth of coverage for all samples was 36.4x. Variant missingness 1386 
and depth of coverage were calculated using vcftools (Danecek et al., 2011): mean missingness rate of 1.24 1387 
x 10-3, mean depth of coverage for all coding sites was 36.4x. Sites with HWE P-values < 1e-6 were retained 1388 
but flagged.  1389 
Imputation 1390 
Imputation was performed using the 1000G (1000 Genomes Project Consortium, 2015) and TOPMed 1391 
(Taliun et al., 2021) reference panel, and the software packages Beagle (Browning et al., 2021) and Impute2 1392 
(Howie et al., 2009). A filter of r2 > 0.7 was applied. Approximately 31,700 samples and 7,8M variants 1393 
passed QC and were used in downstream analyses. 1394 
Ancestry assignment 1395 
We inferred the genetic ancestry following the guidelines of the Pan UKBB (Quality Control (QC) | Pan 1396 
UKBB, n.d.). We performed a PCA using PLINK (Purcell et al., 2007), excluding relatives above 2nd-1397 
degree (kinship method, estimated using KING (Manichaikul et al., 2010)) and variants with MAF < 0.05. 1398 
We trained a random forest classifier to infer the cohort’s genetic ancestry using the 1000G labels as 1399 
reference, removed outliers (by only including the quantiles 0.25-0.90) and participants with mixed ancestry 1400 
(random forest probability ≤ 0.5). Inferred ancestry: AMR (n=5,336), AFR (n=5,660), EUR (n=7,447), SAS 1401 
(n=613), and EAS (n=728). 1402 
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Supplementary figures 1403 

 1404 
Figure S1. Manhattan plot for meta-analysed Alzheimer’s disease mortality GWAS.  1405 

 1406 
Figure S2. Manhattan plot for meta-analysed atrial fibrillation mortality GWAS.  1407 
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 1408 
Figure S3. Manhattan plot for meta-analysed breast cancer mortality GWAS.  1409 

 1410 
Figure S4. Manhattan plot for meta-analysed coronary artery disease mortality GWAS.  1411 
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 1412 
Figure S5. Manhattan plot for meta-analysed chronic kidney disease mortality GWAS.  1413 

 1414 
Figure S6. Manhattan plot for meta-analysed colorectal cancer mortality GWAS.  1415 
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 1416 
Figure S7. Manhattan plot for meta-analysed heart failure mortality GWAS.  1417 

 1418 
Figure S8. Manhattan plot for meta-analysed prostate cancer mortality GWAS.  1419 
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 1420 
Figure S9. Manhattan plot for meta-analysed stroke mortality GWAS.  1421 

 1422 
Figure S10. Manhattan plot for meta-analysed type ii diabetes mortality GWAS.  1423 
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 1424 
Figure S11. Comparison of disease susceptibility PGS association with disease-specific mortality and all-1425 
cause mortality in Finngen. In parenthesis stated number of disease-specific mortalities/number of all-cause 1426 
mortality within the total number of patients (N). Horizontal solid lines represent 95% CI. Also see Table 1427 
S15 for quantitative results. 1428 
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 1429 
Figure S12. Sensitivity analyses. Left: Association between disease susceptibility PGS with disease 1430 
specific mortality among only patients diagnosed after enrollment; Right: association between disease 1431 
susceptibility PGS with disease specific mortality among patients with various lengths of follow-up after 1432 
diagnosis. Horizontal solid lines represent 95% CI. Also see Table S16 for quantitative results. 1433 
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 1434 
Figure S13. Sensitivity analyses. Susceptibility PGS association with disease-specific mortality stratified 1435 
by age quantile. Horizontal solid lines represent 95% CI. Also see Table S17 for quantitative results. 1436 
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 1437 
Figure S14. Sensitivity analyses. Susceptibility PGS association with disease-specific mortality in FinnGen 1438 
with and without related individuals. For the without relatedness group (wo.Related), we removed up until 1439 
second degree relatedness in the analyses. Horizontal solid lines represent 95% CI. Also see Table S15 for 1440 
quantitative results. 1441 
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 1442 
Figure S15. Forest plot for effect sizes from each participant biobank. Horizontal solid lines represent 95% 1443 
CI. 1444 
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 1445 
Figure S16. Disease susceptibility PGS association with disease-specific mortality in non-European 1446 
population. As only patient cohorts are of interest in this study, for the non-European population, the only 1447 
relatively powered results we had were associations for South Asians from biobank Genes & Health in a 1448 
subset of diseases. Horizontal solid lines represent 95% CI. 1449 
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 1450 
Figure S17. Association between PGS and disease-specific mortality in Finngen for eligible diseases. We 1451 
constructed disease mortality PGS using meta-analysed mortality GWAS results with Finngen left out and 1452 
evaluated its association with disease specific mortality in Finngen, comparing with disease diagnosis PGS 1453 
and longevity PGS. Horizontal solid lines represent 95% CI. Also see Table S18 for quantitative results. 1454 
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 1455 
Figure S18. Theoretical derivation of expected genetic measurements. For both derivations, heritability for 1456 
the genetic component of disease susceptibility (hsus) has been set to fixed value 0.3 and unique genetic 1457 
components of progression endpoint in population (hprog) has been set to fixed value 0.1. Under varying 1458 
contribution of disease susceptibility on progression liability (c) and correlation of the susceptibility and 1459 
progression specific genetic component (𝜌), we derive A. Theoretical within-patient heritability of disease 1460 
progression, corresponding to the expected heritability can be observed from a within-patient progression 1461 
GWAS; B. Theoretical patient progression variance explained by susceptibility genetics, corresponding to 1462 
the expected R2 can be observed from disease susceptibility association with patients’ progression. 1463 
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 1464 
Figure S19. Impact of index event bias and slope-hunter-like correction under various conditions. In this 1465 
experiment, we fixed heritability of disease susceptibility (hsus = 0.2) and progression (hout = 0.005). Impact 1466 
of susceptibility liability on disease progression liability was also fixed at c = 0.3. Each panel corresponds 1467 
to a scenario under certain amount of shared causal variants (𝜌) and amount of shared non-genetic factor 1468 
between the two endpoints (Varu). Plot shows alignment of GWAS observed variant effects (x-axis) with 1469 
underlying causal effects (y-axis) on disease progression for all causal SNPs before and after slope-hunter-1470 
like correction on shared and susceptibility specific causal variants (note susceptibility specific causal 1471 
variants are on y = 0 axis since their underlying effects on progression are 0). Also see Table S19 for 1472 
quantitative results. 1473 
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 1474 
Figure S20. Impact of index event bias and slope-hunter-like correction on GWAS observation and SNP 1475 
classification. From all configurations demonstrated in Figure S7, we chose one of the settings where we 1476 
see most severe impact of index event bias (Varu = 0.2, 𝜌 = 0.5) and compared the linemodel (Pirinen, 2023) 1477 
classification on GWAS results before (left) and after (right) correction. We plot variant effects before and 1478 
after correction on disease progression (y-axis) against their effect on susceptibility (x-axis). The regression 1479 
line (green line) shifted after correction, whereas there was no change in variant classification. Also see 1480 
Table S19 for quantitative results. 1481 
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