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Abstract 

Quantifying how difficult it is to control an emerging infectious disease is crucial to public health 

decision-making, providing valuable evidence on if targeted interventions e.g., quarantine and 

isolation, can contain spread or when population-wide controls e.g., lockdowns, are warranted.  

The disease reproduction number, R, or growth rate, r, are frequently assumed to measure 

controllability because R=1 and r=0 define epidemic stability. Outbreaks with larger R or r are 

therefore interpreted as less controllable and requiring more stringent interventions. We prove 

this common interpretation is impractical and incomplete. We identify a positive feedback loop 

among infections intrinsically underlying disease transmission and define controllability from 

how interventions disrupt this loop. The epidemic gain and delay margin, which describe how 

much we can scale infections and delay interventions on this loop before losing stability, yield 

rigorous measures of controllability. Outbreaks with smaller margins necessitate more control 

effort. Using these margins, we quantify how presymptomatic spread, surveillance limitations, 

variant dynamics and superspreading shape controllability and show that R or r only measures 

controllability when interventions do not alter timings between infections and are implemented 

without delay. Our margins are easily computed, interpreted and reflect complex relationships 

among interventions, their implementation and epidemiological dynamics. 

Keywords: infectious diseases; feedback control; stability margins; reproduction numbers; 

non-pharmaceutical interventions, growth rates. 

Introduction 

Understanding and quantifying the effort required to control or contain outbreaks is a principal 

goal of infectious disease epidemiology [1]. During emergent stages of a potential epidemic, 

when populations are immunologically naïve, assessments of disease controllability provide 

critical evidence on whether targeted interventions, for example contact tracing, isolation and 

quarantines, are sufficient to curb spread [2] or whether non-selective controls, such as 

population-level lockdowns and closures, are necessary [3]. These assessments typically rely 

on mathematical models [4] that combine disease surveillance data (e.g., infection times and 

cases) with intervention mechanisms (e.g., how isolation interrupts transmission chains), to 
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estimate controllability (in some sense) and have informed the public health responses for 

influenza, measles, SARS, Ebola virus disease and COVID-19, among others [2,3,5–7]. 

Despite these applications, a systematic and rigorous definition of controllability is lacking [8–

10]. While key factors influencing the difficulty of controlling epidemics such as transmissibility, 

superspreading levels, the efficiency of contact tracing and the proportion of presymptomatic 

infections are known [1,8,11], studies generally compute the reproduction number, R, or (less 

commonly) the growth rate, r, under proposed interventions to measure controllability [12]. For 

example, the impact of contact tracing efficiency and presymptomatic spread on controllability 

are assessed by how they effectively change R [1,13,14]. As R=1 or r=0 defines the point at 

which the epidemic becomes critically stable (i.e., infections neither increase nor decrease) 

[4], it seems reasonable to base controllability on the distance of R-1 or r-0. 

We therefore expect that larger R or r signifies reduced controllability, justifying more stringent 

interventions, while smaller R or r indicates augmented robustness to transmissibility changes 

or intervention relaxations. The common interpretation is that we must scale infections by 1/R 

within timeframes proportional to 1/r to stabilise the epidemic [12]. Note that R and r are linked 

by the generation time distribution of the disease [15], w, which captures the times between 

infections. This interpretation further underlies related measures of intervention efficacy such 

as the herd immunity threshold (i.e., the proportion of the susceptible population that must be 

vaccinated or acquire immunity) [4,12] and the proportion of infections that must be targeted 

by contact tracing [2] (both relate to 1-1/R), as well as the speed at which isolation or digital 

tracing [9,13,16] must be applied to suppress infections (both relate to log(2)/r). 

Here we demonstrate that the above interpretations are only valid under impractical and quite 

restrictive assumptions. We start by recognising that, intrinsically, an epidemic represents a 

positive feedback loop between past and upcoming infections. Interventions are then control 

actions that disrupt this loop. This reframing of the disease transmission process allows us to 

adapt tools from control theory [17] and derive epidemic transfer functions that capture how 

incident infections are generated under arbitrary generation time distributions, (linear) control 

actions and imported infection time series. We then propose a rigorous controllability measure 

defined by the gain and delay margin of the epidemic. These, respectively, quantify how much 

we must scale infections and delay interventions to achieve critical epidemic stability [18]. A 

gain margin of 2 and delay margin of 7 days, for example, mean our epidemic is stable unless 

we more than double infections or introduce delays longer than a week. 

This framework yields a number of advantages and results. First, our margins more accurately 

describe what R and r only attempt to quantify – the scale and speed of required control effort. 
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We demonstrate that scaling infections by 1/(kR) for some k>1 only controls epidemics as we 

might expect (i.e., leads infinite delay margin and a gain margin of 1/k) if interventions reduce 

infections without inducing dynamics and are implemented without delays. This is unrealistic 

given mounting evidence that interventions change generation time and other key distributions 

(which is how control actions induce dynamics) and that practical outbreak control constraints 

always cause lags [7,19–22]. Further, we find that while r is the dominant pole of the epidemic 

transfer function, it only quantifies the asymptotic epidemic growth rate [23] and does not factor 

in how other poles modulate performance (e.g., these poles can cause unwanted oscillations 

in infections) and may interact with the induced controller dynamics to set controllability. 

Second, our transfer function and margin-based approaches are flexible and both generalise 

and unify earlier frameworks [1,8]. We characterise how presymptomatic spread, transmission 

heterogeneities emerging from superspreading, multitype epidemics or co-circulating variants 

and surveillance limitations (e.g., reporting delays and underreporting) all affect controllability. 

These complexities can be commonly evaluated using our pair of margins, which always have 

the same interpretation. This is beneficial because R or r is not always clearly defined or even 

meaningful for some of these complexities [24,25]. Importantly, our margins yield thresholds 

of controllability under these complexities that can be directly compared to decide the relative 

effectiveness of targeted and population-level interventions. These thresholds reduce to more 

conventional 1-1/R type results under the restrictive conditions mentioned above. 

Last, our margins offer a more complete measure of controllability. Because induced dynamics 

from interventions, implementation delays and surveillance imperfections are pervasive, even 

if proposed interventions are expected to drive R<1 or r<0, this does not reliably inform about 

the required control effort and the robustness of the epidemic once controlled by these actions. 

We find ample evidence of controlled (R<1) epidemics with gain margins under 1/R, indicating 

losses in robustness to increases in infections below what is conventionally expected. We also 

show that some of these controlled epidemics possess delay margins of 1-2 weeks, signifying 

that if the combined lag from surveillance and intervention delays rises above this value (e.g., 

due to reducing sustained surveillance or control) then the epidemic will become destabilised. 

Neither r nor R can expose this issue. Our methodology probes the concept of controllability 

and raises questions about the understudied knock-on effects of interventions. 

Results 

We start by exploring the conventional assumption that larger 𝑅 or 𝑟 signals a less controllable 

epidemic [1,10,26]. This belief is sensible as increases in 𝑅 cause infections to multiply more, 

while rises in 𝑟 engender faster multiplication. When 𝑅 > 1 and hence 𝑟 > 0 the interpretation 
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is that we must reduce transmission by a scale factor of 𝑅−1 i.e., block a fraction 1 − 𝑅−1 of 

active infections, before 𝑟−1log 𝑅 time units elapse or we fail to keep up with growth (note that 

𝑟−1log 2 is known as the epidemic doubling time). Accordingly, when 𝑅 < 1 and hence 𝑟 < 0 

we maintain stability for perturbations (e.g., due to pathogen fitness changes) or intervention 

relaxations that increase transmission by at most 𝑅−1 within a time frame of 𝑟−1log 𝑅.  

Here we show that these almost ubiquitous interpretations are only true under restrictive and 

idealistic intervention (i.e., control action) assumptions. We then leverage tools from control 

theory to construct a rigorous measure of epidemic controllability that accurately reflects the 

control effort needed to stabilise a growing epidemic and the robustness to perturbations of a 

controlled epidemic. To maintain analytic tractability and as we focus on deriving fundamental 

insight into controllability, we only study constant 𝑅 or 𝑟 and model spread as a deterministic 

renewal process (see Methods). In later sections we discuss relaxations of these assumptions 

and show that our framework can measure the impact of variant dynamics, presymptomatic 

spread, superspreading, intervention lags and surveillance biases on controllability. 

Epidemic models, feedback control and transfer functions 

The renewal process is widely used to model acute infectious diseases such as COVID-19, 

Ebola virus disease and measles and says that new or incident infections at time 𝑡, 𝑖(𝑡) result 

from multiplying all active infections by 𝑅 [27,28]. Past infections are active if they can still be 

transmitted, the probability of which is determined by the generation time distribution of the 

disease 𝑤(𝑡). The convolution ∫ 𝑤(𝑡 − 𝜏)𝑖(𝜏) d𝜏
𝑡

0
 captures this dynamic, weighting the past 

incidence 𝑖(𝜏) by the probability 𝑤(𝑡 − 𝜏) that a primary infection causes secondary infections 

𝑡 − 𝜏 time units later. Imported infections from other regions 𝑚(𝑡) also contribute to onwards 

transmission and become included within the convolution [29].  

We detail the uncontrolled renewal process with importations in Eq. (M1) of the Methods but 

here focus on extending it to include control. We define a generic control strategy as one that 

reduces infections to 𝜆(𝜏) ≤ 𝑖(𝜏) so that ∫ 𝑤(𝑡 − 𝜏)𝜆(𝜏) d𝜏
𝑡

0
 drives the controlled epidemic. 

The controller achieves this reduction by weighting past infections by a kernel 𝑘(𝜏). When this 

kernel only has mass at the present with 𝑘(0) = 𝑘, we get constant (memoryless) feedback 

control 𝜆(𝑡) = 𝑘𝑖(𝑡). Generally, 0 ≤ 𝑘(𝜏) ≤ 1 as we aim to reduce infections. However, if the 

epidemic is already stable, we let 𝑘(𝜏) > 1 to assess robustness to perturbations in infections 

i.e., we want to know the largest 𝑘(𝜏) for which critical or marginal stability is just achieved.  
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We can define the controlled renewal model with the expressions in Eq. (1). These reduce to 

the standard renewal model by removing control i.e., by setting constant control at 𝑘 = 1. 

𝑖(𝑡) = 𝑚(𝑡) + 𝑅 ∫ 𝜆(𝜏)𝑤(𝑡 − 𝜏) d𝜏
𝑡

0

, 𝜆(𝑡) = ∫ 𝑖(𝜏)𝑘(𝑡 − 𝜏) d𝜏
𝑡

0

.     (1) 

We analyse Eq. (1) in the complex frequency 𝑠 domain by applying Laplace transforms (see 

Methods) with 𝐼(𝑠), 𝑀(𝑠) and 𝑊(𝑠) as the transformed infection incidence, importations and 

generation time distribution. Because convolutions are products in this domain our controller 

satisfies Λ(𝑠) = 𝐾(𝑠)𝐼(𝑠). We can represent these operations as a block diagram. We sketch 

this structure in Fig 1A, where we identify that, fundamentally, an epidemic involves a positive 

feedback loop between past and upcoming infections. Control aims to disrupt this loop. 

Using this structure, we can define transmission dynamics by the properties of the closed loop 

transfer function (TF), 𝐺(𝑠) = 𝐼(𝑠)𝑀(𝑠)−1, which describes how imports drive total incidence. 

We can write this in terms of the simpler loop TF 𝐿(𝑠), obtained by taking the product of blocks 

along the loop as 𝐺(𝑠) = (1 + 𝐿(𝑠))
−1

 [18]. The poles of 𝐺(𝑠) determine the dynamics and 

stability of the epidemic and are complex number solutions of 𝐿(𝑠) = −1 + 𝑗0 (see Methods 

for details). We obtain these central TFs from Eq. (1) as in Eq. (2) below. 

𝐿(𝑠) = −𝐾(𝑠)𝑅𝑊(𝑠), 𝐺(𝑠) =
1

1 − 𝐾(𝑠)𝑅𝑊(𝑠)
.     (2) 

The uncontrolled epidemic TFs are recovered by setting 𝐾(𝑠) = 1. We can interpret Eq. (2) 

by recognising that an unstable epidemic (at least one pole of 𝐺(𝑠) has positive real part) 

successively multiplies infections along the loop. This constitutes the positive feedback in Fig 

1A. Interventions or control actions with magnitude |𝐾(𝑠)| < 1 reduce this positive feedback 

by interfering with the loop to attenuate the multiplication. Modification of the intrinsic epidemic 

dynamics 𝑅𝑊(𝑠) by controller 𝐾(𝑠) within the loop achieves this goal. A stable epidemic (all 

poles of 𝐺(𝑠) have non-positive real parts) is also multiplicative, but infections reduce along 

the loop. We can apply |𝐾(𝑠)| > 1 as an amplifier of infections to study the robustness of the 

epidemic to any destabilising perturbations (e.g., increases in transmissibility). 

There are two important corollaries of Eq. (2). First, the poles of the epidemic TF 𝐺(𝑠) are the 

roots of the characteristic polynomial 1 − 𝐾(𝑠)𝑅𝑊(𝑠). Solving this (see Methods), we find the 

epidemic growth rate 𝑟 is the dominant pole i.e., it is the major contributor to the dynamics of 

the system (see Eq. (M4)) and its variations reflect the impact of the controller 𝐾(𝑠). Second, 
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𝐾(𝑠) directly modulates both 𝑅 and the generation times. For constant control 𝐾(𝑠) = 𝑘, the 

epidemic has an effective reproduction number of 𝑘𝑅. These observations seemingly support 

the common paradigm of modelling interventions and assessing controllability directly from 

how 𝑅 or 𝑟 (or related parameters such as infectiousness) change [12].  

 

Fig 1: Epidemic architecture and controllability definition. Panel A shows that the renewal 

epidemic model is a positive feedback system in which a signal 𝐹(𝑠) is successively fed back 

across a loop and added to imported infections 𝑀(𝑠). The loop TF 𝐿(𝑠) (negative for a positive 

feedback loop by convention) determines the poles of closed loop TF 𝐺(𝑠), which completely 

expresses how imports combine with the epidemic dynamics to generate new infections 𝐼(𝑠). 

When we intervene or initiate control action, we disrupt the feedback loop via a controller 𝐾(𝑠). 

Panel B sketches a hypothetical polar plot of 𝐿(𝑠) for all complex frequencies 𝑠 = 𝑗𝜔. The 

closeness of this plot to the critical -1 point describes the controllability of the epidemic. At that 

point 𝐿(𝑠) + 1 = 0, 𝐺(𝑠) blows up and the epidemic is critically stable. We can measure the 
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distance from -1 using the gain margin 𝑀𝐺 , which defines how much we can scale 𝐿(𝑠) to get 

to -1 and either the phase 𝑀𝑃 or delay 𝑀𝐷 margin. Both define the angle we can rotate 𝐿(𝑠) 

to get to -1 but 𝑀𝐷 expresses this in terms of the maximum system delay we can sustain (this 

is 𝑒−𝑠𝑀𝐷 in the 𝑠 domain. Computation of these margins depend on phase 𝜔𝑃𝐶 and gain 𝜔𝐺𝐶 

crossover frequencies (see text). Epidemics with larger margins are more controllable.  

A framework for investigating epidemic controllability  

However, these corollaries actually expose why these parameters are insufficient for defining 

controllability i.e., the effort required to stabilise an unstable epidemic, or the intensity of the 

perturbations required to destabilise a stable epidemic. Specifically, the difficulty of controlling 

the epidemic in real time also depends on its other poles (which may be oscillatory) [18] and 

only asymptotically are infections completely determined by the dominant pole 𝑟. Additionally, 

the assumption that 𝐾(𝑠) is constant and introduces no dynamics is unrealistic (e.g., isolation 

is known to reduce generation times [20,21]) and only likely true in very limited circumstances. 

We therefore need to account for transient and intervention-induced dynamics [23,30]. 

To investigate the implications of these corollaries, we propose a new framework for defining 

epidemic controllability, which adapts classical control theory as well as generalises and more 

rigorously quantifies the interpretation frequently ascribed to 𝑅 or 𝑟. Fig 1B sketches the polar 

plot of 𝐿(𝑠) in the complex plane. We know from Eq. (2) and stability theory [17] that as 𝐿(𝑠) 

approaches −1 +  𝑗0 the closed loop 𝐺(𝑠) becomes critically stable i.e., it is on the verge of 

instability with 𝑟 = 0. The gain 𝑀G and delay 𝑀D margins [18] precisely determine the distance 

of 𝐿(𝑠) from −1 +  𝑗0 (see Methods for how to compute these and related margins) [17]. 

For stable epidemics (𝑟 < 0 i.e., all 𝐺(𝑠) poles are in the left half of the complex plane), 𝑀G 

and 𝑀D respectively measure how much we can scale up or delay infections before the system 

becomes critical [31]. Accordingly, for unstable epidemics (𝑟 > 0 i.e., at least one 𝐺(𝑠) pole 

is in the right half plane) they quantify how much we must scale down or limit delay to stabilise 

an epidemic (assuming certain conditions [17]). Stability is rigorously defined as when 𝐾(𝑠) =

1 in Eq. (2) then 𝑟 matches 𝑅 − 1 in sign and is the dominant 𝐺(𝑠) pole so 𝐿(𝑠) = −1, 𝑅 = 1 

and 𝑟 = 0 all correspond. There is an analogous association with the effective 𝑅 and 𝑟 when 

some control is acting (𝐾(𝑠) ≠ 1). The crucial distinction we make is that the distance of 𝐿(𝑠) 

from -1 and not that of 𝑅 from 1 or 𝑟 from 0 is what actually determines controllability.  

The margins we propose to measure this distance precisely and holistically characterise the 

essence of earlier notions of control effort by quantifying the magnitude and time by which we 
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must alter infections to attain the brink of stability. Computing these for Eq. (2), we get 𝑀G =

|−𝐾(𝑠 = 𝑗𝜔PC)𝑅𝑊(𝑠 = 𝑗𝜔PC)|−1 [17] with 𝜔PC as the frequency where the phase of 𝐿(𝑠) 

crosses a critical angle (see Fig 1B) and |. | indicating magnitude i.e. |𝜎 + 𝑗𝜔| ≝ √𝜎2 + 𝜔2. 

Note that from the properties of distributions, 𝑊(0) = 1. We confirm this in the Methods for a 

universal class of phase-type generation time distributions [32], which include realistic models 

of 𝑤(𝑡) for many infectious diseases [15,28]. Accordingly, when 𝜔PC = 0, 𝑀G = |−𝐾(0)𝑅|−1. 

Critical stability exists when 𝑀G = 1 (see Fig 1B). The control effort needed to define epidemic 

controllability, based on the gain margin, is therefore 𝐾∗ = |𝐾(0)| = 𝑅−1. 

We show in Fig 2 for constant controllers applied to epidemics with various generation time 

distribution shapes (Fig 2A) that 𝜔PC = 0 is true and unique. For stable epidemics, we find 

𝑀D → ∞ (not shown but code provided in a link at the end of the paper). Consequently, under 

these conditions, controllability is completely established by the size of 𝑅−1 (Fig 2C), which 

correlates well with the Euclidean distance in the complex plane between 𝐿(𝑠) and -1 (inset).  

When the epidemic is unstable the gain margin is also set by 𝑅−1 but there may be ways of 

removing system lag that also define a dimension of control. However, if we apply a constant 

controller (so system lag does not change) with 𝑘 = 𝛼𝑅−1 with 𝛼 < 1, the controlled epidemic 

has an effective reproduction number of 𝛼 and hence a controllability set by 𝛼−1. Epidemics 

with the same controllability can still have diverse responses to imported infections (Fig 2D). 

The dominant pole and hence the effective growth rate also shifts, from being the solution of 

𝑅𝑊(𝑠) = 1, to that of (𝑘𝑅)𝑊(𝑠) = 1. As this equation is only scaled, the growth rate is now 

related to the effective reproduction number 𝑘𝑅. For gamma distribution generation times with 

parameters (𝑎, 𝑏) for example (see Methods), the growth rate changes from 𝑏−1( √𝑅
𝑎

− 1) to 

𝑏−1( √𝑘𝑅
𝑎

− 1) [15]. Consequently, if 𝜔PC = 0, we can completely describe the controllability 

of an epidemic using the size of reproduction numbers or growth rates. As growth rates are 

asymptotic (i.e., other poles decay in impact as 𝑡 → ∞) we can equally describe controllability 

from exponential growth models that approximate complex renewal processes (Fig 2B). 

Our framework therefore supports the conventional definition that larger 𝑅 or 𝑟 indicates lower 

controllability but reveals that this requires 𝜔PC = 0 and that control is constant. Under these 

conditions we cannot destabilise the epidemic by perturbations that only add delay (or change 

phase). This holds across broad classes of fixed generation time distributions. We show next 

that our more generalised controllability definitions are necessary because these settings are 

strongly restrictive and unlikely in practice i.e., control often introduces dynamics (for example 
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by changing incubation periods, generation times and infectiousness durations). Further, we 

know that presymptomatic spread, superspreading, delays to interventions and surveillance 

biases all impact controllability and our definitions can rigorously unify these complexities. 

 

Fig 2: Epidemic controllability under ideal conditions. We assess controllability via gain 

and delay margins for epidemics subject to constant (non-dynamical) control 𝐾(𝑠) = 𝑘 with 

phase crossover frequencies of 0 (see text). Panel A shows the generation time distributions 

𝑤(𝑡) of simulated epidemics that we analyse, which have fixed mean generation time 𝑔 (taken 

from COVID-19 [3]) but feature markedly different shapes. Panel B plots the growth rate 𝑟 of 

these epidemics (colours match panel A), which is the dominant pole 𝑝 (solid) of the resulting 

TFs 𝐺(𝑠). These strongly match the dominant pole 𝑝1 (dashed) of an approximating epidemic 
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described by 𝑖(𝑡) = 𝑖(0)𝑒𝑝1𝑡. Panel C plots the gain margin 𝑀𝐺  or critical controller 𝐾∗ that 

drives the system to the brink of instability (the delay margin 𝑀𝐺  here is infinite). The 𝐾∗ curves 

from every 𝑤(𝑡) exactly equal 𝑅−1. These curves correlate well with 𝐷 (inset), the Euclidean 

distance between 𝐿(𝑠) and -1. Panel D demonstrates that although controllability is the same, 

transient dynamics of infections may differ (they also depend on non-dominant system poles). 

We plot incident infections 𝑖(𝑡) in response to stable numbers (main) of imported infections 

(𝑚(𝑡) = 𝑚) and to a 1-day pulse (inset) of 𝑚 imports (colours match panel A).  

Problems with existing controllability definitions 

Previously, we established conditions under which our generalised framework for assessing 

controllability reduces to the popular but informal definition applied in epidemiology. However, 

the conditions that allow this interpretation are strongly restrictive for two reasons. First, the 

only controller guaranteed to satisfy |𝐾(0)| = 𝑅−1 and have unique 𝜔PC = 0 is the constant 

𝐾(𝑠) = 𝑘. This controller seems unrealistic given that interventions not only scale infections 

but also change the distribution of generation times and other epidemiological quantities and 

hence induce additional dynamics (and poles in 𝐺(𝑠)) [20–22]. Any realistic intervention (e.g., 

social distancing or contact tracing) likely scales infections and slows them from occurring. 

We demonstrate this for the generation time distributions in Fig 2A using simple controllers of 

form 𝐾(𝑠) =
1

9

(1+𝑔1𝑠)

(1+𝑔2𝑠)
, which induce minimal dynamics by adding one pole. Here 𝐾(𝑠) can 

model interventions that change the effective reproduction number as well as the generation 

time properties of the epidemic. For example, if the uncontrolled epidemic has an exponential 

𝑤(𝑡) with mean 𝑔1 then 𝑊(𝑠) =
1

(1+𝑔1𝑠)
 and the loop TF changes from 

−𝑅

(1+𝑔1𝑠)
 to 

−𝑅

9(1+𝑔2𝑠)
 i.e., 

the control scaled down infections by a factor of 9 and forced the mean generation time to 𝑔2. 

This illustrates how controllers can realistically alter dynamics. Intervention-driven changes to 

generation times have been observed for malaria, COVID-19 and other diseases [19,20]. 

When 𝐾(𝑠) is applied to epidemics with 𝑅 = 4, if 𝜔PC = 0, then 𝑀G = |−𝐾(0)𝑅|−1 =
9

4
. This 

controller is strongly stabilising (we can multiply infections by 
9

4
 before facing critical stability), 

attenuating infections so that the effective reproduction number of the controlled epidemic is 

4

9
. However, this standard interpretation is misleading and incomplete. Some controllers of this 

form cause 𝜔PC ≠ 0. In Fig 3A we analyse one 𝐾(𝑠) that maintains 𝜔PC = 0 and another 

that violates this setting. For the first (𝑔1 = 1, 𝑔2 = 8) the gain and delay margins as well as 

response to a stable input of 𝑚(𝑡) = 10 infections over time is in accordance with Fig 2. 
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Strikingly, for the 𝜔PC ≠ 0 case (𝑔1 = 8, 𝑔2 = 1), the response is markedly different, showing 

oscillations and large infection peaks. The gain margin for these cases falls from 
9

4
 to about 2 

but, importantly, the delay margin for one of the 𝑤(𝑡) in Fig 2A becomes finite and small (not 

shown but 𝑀D ≈ 3.8 days). This effect is more pronounced and smaller and finite 𝑀D values 

occur for more types of 𝑤(𝑡) if we apply the slightly more complex control 𝐾(𝑠) =
1

9

(1+𝑔1𝑠)

(1+𝑔2𝑠+𝑠2)
 

(not shown). Our generalised controllability formulation is necessarily more accurate, even in 

categorising infection scaling, and exposes important destabilising factors.  

The finite delay margin is especially valuable as in reality we rarely apply interventions without 

some latency [13]. If control is applied after a 3.5-day delay, we obtain infection curves as in 

Fig 3B. There we observe that the red curve approaches instability and realise that there is a 

hard limit from 𝑀D on how late we can respond to an epidemic if we want control to work. The 

importance of delays in epidemic control is a known issue [9,16] but it is rarely factored into 

epidemic controllability directly. Our (𝑀D, 𝑀G) framework is comprehensive and exposes the 

pitfalls of measuring controllability only in terms of 𝑅 or 𝑟 (while not shown, the dominant poles 

and hence 𝑟 in Fig 3 are similar for both the finite and infinite 𝑀D cases as well). 

 

Fig 3: Controllers introducing additional dynamics. We simulate epidemics that are forced 

by a constant supply of imported infections (𝑚(𝑡) = 10). Panel A shows the resulting curves 
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of incidence for epidemics with generation time distributions from Fig 2 (excluding the green 

one because this becomes unstable, curves match in colour) when non-constant control 𝐾(𝑠) 

is applied. There are major discrepancies among responses to interventions (controllers) that 

change the phase crossover frequency 𝜔𝑃𝐶 (solid) and those maintaining 𝜔𝑃𝐶 = 0 (dashed). 

The former show salient transients that disrupt controllability and feature smaller gain 𝑀𝐺 and 

finite delay 𝑀𝐷 margins (conventional interpretations expect 𝑀𝐺 =
9

4
 , 𝑀𝐷 → ∞). The steady 

state incidence 𝑖(∞) remains, however, unchanged for all our controllers. In panel B we apply 

a perturbation of a 3.5-day delay (𝑒−3.5𝑠 in the 𝑠 domain). This pushes the curve from panel 

A with finite 𝑀𝐷 ≈ 3.8 days towards instability. The value of a two-margin description is clear. 

The second major problem with conventional definitions of controllability is that they are not 

easily computed, interpreted or compared when practicalities such as presymptomatic spread, 

superspreading, variant dynamics and surveillance imperfections (e.g., reporting delays and 

incomplete case ascertainment) occur [1,24]. In the next two sections, we expand our models 

and demonstrate that the (𝑀D, 𝑀G) framework presents a unified and interpretable approach 

to measuring and monitoring epidemic controllability under all of these complexities. No matter 

the specific model structure, the boundaries of controllability specified by our (𝑀D, 𝑀G) pair 

are directly comparable and possess exactly the same interpretation as in Fig 1. 

Surveillance limitations and presymptomatic spread 

Until now we have assumed that we can observe and apply control to all new infections. This 

is unrealistic as commonly we can only count cases or deaths, which are delayed and scaled 

versions of infections [33,34]. Here we generalise Eq. (1) and Eq. (2) to include these effects. 

We denote the proportion of infections that we observe as cases by probability 0 ≤ 𝜌 ≤ 1 and 

model the latency in observing these cases with a distribution ℎ(𝑡). Our controller acts on the 

incidence of cases 𝑐(𝑡), and 𝑖(𝑡) − 𝑐(𝑡) infections remain unobserved. This yields Eq. (3). 

𝜆(𝑡) = ∫ 𝑐(𝜏)𝑘(𝑡 − 𝜏) d𝜏,
𝑡

0

     𝑐(𝑡) = 𝜌 ∫ 𝑖(𝜏)ℎ(𝑡 − 𝜏) d𝜏.
𝑡

0

     (3) 

The unobserved infections continue to propagate the epidemic as they remain uncontrolled. 

We therefore construct the combined renewal model of Eq. (4) below. 

𝑖(𝑡) = 𝑚(𝑡) + 𝑅 ∫ (𝑖(𝜏) − 𝑐(𝜏))𝑤(𝑡 − 𝜏) d𝜏
𝑡

0

+ 𝑅 ∫ 𝜆(𝜏)𝑤(𝑡 − 𝜏) d𝜏
𝑡

0

 .     (4) 
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This collapses into Eq. (1) when reporting is perfect i.e., 𝜌 = 1 and ℎ(𝑡) has all its probability 

mass at the present (ℎ(0) = 1) so that 𝑐(𝑡) = 𝑖(𝑡).  

 

Fig 4: Generalised controlled renewal model architectures. Panel A illustrates the block 

diagram of a renewal model for which only a portion of the new infections 𝐼(𝑠) are observable 

and hence can be controlled by 𝐾(𝑠). This portion 𝐶(𝑠) may model cases, deaths or any other 

time series that is mediated by a scale factor 𝜌 and a lag distribution 𝐻(𝑠). This architecture 

represents imperfect surveillance mechanisms or presymptomatic spread. Panel B shows the 

structure of a multitype, controlled renewal model describing 𝑁 infectious types or stages with 

diverse reproduction numbers 𝑅𝑛 and generation time distributions 𝑊𝑛(𝑠). The weight 𝜖𝑛 is 

the fraction of new infections of type 𝑛. This architecture models transmission heterogeneity 

including superspreading, co-circulating variants and diseases with multiple routes for spread. 

Both panels have closed loop TFs 𝐺(𝑠) = 𝐼(𝑠)𝑀(𝑠)−1 = (1 + 𝐿(𝑠))
−1

, with loop TF 𝐿(𝑠) as 

described. See main text for details on how 𝐾(𝑠) and the 𝐾𝑛(𝑠) define controllability. 

Imperfect surveillance and presymptomatic spread
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We again take Laplace transforms of Eq. (3) and Eq. (4) to obtain our key TFs for evaluating 

epidemic controllability in Eq. (5). We illustrate this architecture in Fig 4A and observe that we 

also obtain TFs for the observed cases easily since 𝐶(𝑠)𝑀(𝑠)−1 = 𝜌𝐻(𝑠)𝐺(𝑠). 

𝐿(𝑠) = −𝑅𝑊(𝑠)(1 − 𝜌𝐻(𝑠)(1 − 𝐾(𝑠)), 𝐺(𝑠) =
1

1 + 𝐿(𝑠)
.     (5) 

When 𝐾(𝑠) = 1 in Eq. (5) we recover the uncontrolled epidemic TFs (see Eq. (M1)). Perfect 

surveillance means 𝜌𝐻(𝑠) = 1 and reverts Eq. (5) to Eq. (2). If we instead perform control on 

another proxy of infections, for example deaths or hospitalisations, then 𝜌 is the proportion of 

infections that lead to mortality or hospitalisation (e.g., for the incidence of deaths this includes 

the infection fatality ratio and the proportion of deaths that are observed). The distribution ℎ(𝑡) 

models the lag from becoming infected to mortality or being admitted to hospital [34,35]. 

This formulation equally models presymptomatic and asymptomatic spread, with ℎ(𝑡) defining 

the delay between infection and presenting symptoms and 𝜌 as the proportion of infections 

that never become symptomatic. We compute our (𝑀D, 𝑀G) pair to assess how these differing 

transmission and surveillance characteristics impact controllability. Eq. (5) includes all the key 

controllability factors outlined in [1] and describes targeted interventions such as quarantine, 

contact tracing or isolation but not widescale lockdowns (we only control observed infections). 

Lockdowns and other non-selective interventions conform more closely to Eq. (2) as they act 

indiscriminately on all infections, including those we never observe. 

We know from earlier that critical stability is achieved when 𝐿(𝑠) = −1. We substitute this into 

Eq. (5) and find that our control needs to satisfy the left side of Eq. (6). As a constant 𝐾(𝑠) =

0 represents the maximum possible control effort (i.e., all observed infections are suppressed 

completely), we insert this condition and rearrange to derive the threshold on the right side of 

Eq. (6), outlining the requirements on the surveillance noise or level of presymptomatic spread 

for the epidemic to just be controllable. A smaller |𝜌𝐻(𝑠)| causes loss of controllability and 

provides evidence that widescale interventions or surveillance improvements are needed. The 

relations of Eq. (6) are only required to hold at the 𝑠 = 𝑗𝜔 satisfying 𝐿(𝑠) = −1. 

𝐾(𝑠) = 1 −
1 − (𝑅𝑊(𝑠))

−1

𝜌𝐻(𝑠)
, |𝜌𝐻(𝑠)| ≥ |1 −

1

𝑅𝑊(𝑠)
|.     (6) 

If 𝜔PC = 0 then this requirement is met at 𝜌 ≥ 1 − 𝑅−1, as 𝑊(0) = 𝐻(0) = 1. This matches 

the critical contact tracing efficiency derived in [2] and the presymptomatic condition of [1] and 
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confirms how our methodology generalises more conventional notions of controllability (it also 

generalises the herd immunity threshold). Eq. (6) verifies that we need both margins because 

𝜔PC = 0 is not guaranteed here, even if control is constant. The temporal impact of imperfect 

surveillance or presymptomatic spread via 𝐻(𝑠) means that the dynamics leading to situations 

as in Fig 3 always exist. Transient dynamics are crucial and unavoidable. 

 

Fig 5: Surveillance noise and presymptomatic spread. We investigate how imperfect case 

reporting, or equivalently presymptomatic spread, limits the controllability of epidemics using 

our (𝑀𝐷, 𝑀𝐺) framework. Panel A shows for curves of constant 𝑅 ≥ 1 (rising from blue to red, 

which is at 𝑅 = 5) how the reporting rate or proportion of symptomatic infections, 𝜌, reduces 

controllability. Smaller 𝜌 requires more control effort to attain critical stability i.e., a smaller 𝐾∗ 

is needed for a gain margin 𝑀𝐺 = 1. There is no reporting delay or presymptomatic distribution 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 10, 2023. ; https://doi.org/10.1101/2023.10.10.23296471doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.10.23296471
http://creativecommons.org/licenses/by/4.0/


in this analysis so 𝐻(𝑠) = 1. Panel B sets 𝜌 = 1 and investigates the influence of two 𝐻(𝑠) 

distributions, 𝐻1 (dashed) and 𝐻2 (solid) modelling exponential and gamma distributions. Both 

have mean lag 𝜏, 𝑅 = 2 and a controller applied that achieves 𝑀𝐺 = 2, if the phase crossover 

frequency 𝜔𝑃𝐶 = 0. We find that as 𝜏 increases 𝑀𝐺 < 2 indicating a decline in controllability. 

This results from 𝜔𝑃𝐶 increasing above 0 (inset). Colours in this and panels C-D match the 

generation times modelled from Fig 2A (excluding the green). Panel C confirms 𝐻(𝑠) causes 

the delay margin 𝑀𝐷 to become finite (inset, dashed or solid corresponding to panel B). This 

reduced controllability is visible from the peaked, oscillatory response in new infections 𝑖(𝑡) 

for a constant number of imports 𝑚(𝑡) (main). This effect is similar to that in Fig 3. Here dot-

dashed lines plot the response in the absence of 𝐻(𝑠). Panel D shows the combined influence 

of lags and under-reporting given the constant controller of 𝐾 =
1

3𝑅
. The inset demonstrates 

how 𝑀𝐷 falls with 𝑅 and the main shows the infection (solid) and case 𝑐(𝑡) (dashed) epidemic 

curves in response to constant imports (colours match generation time distributions).  

We verify this point in Fig 5, showing how controllability depends on 𝜌 and 𝐻(𝑠). We first set 

𝐻(𝑠) = 1 and explore the controller gain needed to get 𝑀G = 1, which sets critical stability. 

In the absence of under-reporting, we have 𝜌 = 1 and 𝐾∗ = 𝑅−1 for any 𝑅. Fig 5A shows that 

our required 𝐾∗ substantially deteriorates, highlighting that we need additional control effort to 

stabilise the epidemic as 𝜌 decreases. When 𝐾∗ = 0, the epidemic is no longer controllable 

by these targeted interventions. If we cannot improve surveillance quality or, equally diminish 

asymptomatic spread (so 𝜌 rises), then population-level controls are warranted. Strikingly, at 

𝑅 = 5 (red) , we cannot control the epidemic unless more than 80% of all new infections are 

observed (sampled) or symptomatic. Eq. (6) defines fundamental limits on controllability. 

In Fig 5B and Fig 5C  we assume perfect reporting and test the influence of delays in reporting 

or equivalently lags in infections becoming symptomatic. We investigate two ℎ(𝑡) distributions, 

𝐻1(𝑠) and 𝐻2(𝑠) in the frequency domain, with results respectively as dashed or solid. These, 

model exponential and gamma distributed delays with means 𝜏. We apply controls that force 

𝑀G = 2 when 𝜔PC = 0 but find in Fig 5B that our gain margin declines with 𝜏. This occurs as 

𝜔PC > 0 (inset). Fig 5C further shows that the delay margin 𝑀D becomes finite, decaying with 

𝜏 (inset). Hence, 𝐻(𝑠) reduces both the scaling and delays that the controlled epidemic can 

robustly support. Incident infections 𝑖(𝑡) display oscillatory dynamics with substantial peaks 

(main). This contrasts the plots featuring no delay i.e., 𝜏 = 0 (dot-dashed).  
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Colours indicate the 𝑤(𝑡) from Fig 2A underlying results in Fig 5B, Fig 5C and Fig 5D. On 

its own, 𝐻(𝑠) substantially reduces our controllability. At 𝜏 ≥ 4 we find that 𝑀D → 0 (with also 

𝑀G < 1) signifying that the epidemic is now unstable. Epidemics with larger 𝜏 are necessarily 

uncontrollable. We combine both 𝜌 and 𝐻(𝑠) in Fig 5D but vary 𝑅 and apply a strong controller 

that scales down cases by 
1

3𝑅
. Even for this constant control we find a finite 𝑀D that declines 

with 𝑅 (inset) and large amplitude oscillations in 𝑖(𝑡) (solid, main). We also plot the observed 

cases 𝑐(𝑡) (dashed), which are the fraction of infections we can control. Both of the (𝑀D, 𝑀G) 

pair are therefore critical to accurately quantifying epidemic controllability. 

Superspreading, variants and multiple infector types 

Our (𝑀D, 𝑀G) framework can also evaluate the controllability of epidemics that are composed 

of multiple infectious types or transmission routes. This models superspreading, co-circulating 

variants and pathogens with multiple pathways of spread. We unify these multitype epidemics 

using the renewal process of Eq. (7), which features 𝑁 distinct types or pathways. 

𝑖(𝑡) = 𝑚(𝑡) + ∑ 𝑅𝑛 ∫ 𝜆𝑛(𝜏)𝑤𝑛(𝑡 − 𝜏) d𝜏,
𝑡

0

𝑁

𝑛=1
   𝜆𝑛(𝑡) = ∫ 𝜖𝑛𝑖(𝜏)𝑘𝑛(𝑡 − 𝜏) d𝜏

𝑡

0

.     (7) 

We denote the reproduction number, generation time distribution and controller of the 𝑛th type 

with subscript 𝑛. The parameters 𝜖𝑛 define the proportion of incidence associated with the 𝑛th 

type and ∑ 𝜖𝑛 = 1𝑁
𝑛=1 . By dividing control into 𝑁 functions, we allow for type-specific control. 

This includes non-targeted control (all 𝑘𝑛(𝜏) are the same) and situations where some types 

are uncontrolled (those 𝑘𝑛(𝜏) = 1), perhaps due to being unobservable. 

Specialisations of Eq. (7) can model superspreading or transmission heterogeneity (e.g., we 

set 𝑁 = 2, 𝑅1 ≫ 𝑅2, 𝜖1 =
1

5
 and 𝜖2 =

4

5
 to describe cases where 20% of new infections have 

substantially larger transmissibility [36]), pathogenic variants with differing transmissibility and 

generation times (e.g., with 𝑁 as the number of co-circulating variants, although we assume 

early growth so that the 𝜖𝑛 are fixed [37,38]) and diseases with diverse transmission pathways 

(e.g., Ebola virus disease has sexual and non-sexual pathways with distinct 𝑤𝑛(𝑡) [39]). These 

models do not include explicit interaction among types (though all types compose 𝑖(𝑡)) as this 

requires additional cross-type reproduction numbers and auxiliary data (e.g., contact matrices) 

[40]. Such extensions are possible by altering the integral within the sum in Eq. (7).  
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We take Laplace transforms of Eq. (7) to construct Eq. (8), which is amenable to our gain and 

delay margin controllability analyses. We sketch the architecture of this model in Fig 4B. 

𝐿(𝑠) = − ∑ 𝜖𝑛𝑅𝑛

𝑁

𝑛=1
𝑊𝑛(𝑠)𝐾𝑛(𝑠), 𝐺(𝑠) =

1

1 + 𝐿(𝑠)
.     (8) 

Using the fact that 𝑊𝑛(0) = 1, we find that if 𝜔PC = 0 then 𝑀G = |− ∑ 𝐾𝑛(0)𝜖𝑛𝑅𝑛
𝑁
𝑛=1 |−1. We 

can therefore scale the epidemic by a quantity that is a weighted sum of control, reproduction 

numbers and proportions of the contributing infectious types. As we showed in above sections, 

this condition is only likely to be met if every controller is constant (at which also 𝑀D → ∞). If 

controllers introduce dynamics, which is realistic, then we expect effects similar to Fig 3. 

Eq. (8) provides the flexibility to investigate several controllability problems. We focus on two 

questions about the limitations of targeted control for heterogeneous populations. We let 𝑁 =

2 and assume that 𝑅1 ≥ 𝑅2 so that type 1 represents individuals with the more transmissible 

variant or superspreading nodes. We consider non-selective control where 𝐾1(𝑠) = 𝐾2(𝑠) =

𝐾(𝑠) and targeted control, in which only one type is controlled. We only target type 1, which 

is more transmissible, so type 2 is uncontrolled and 𝐾2(𝑠) = 1. Our first question asks under 

what conditions the targeted approach, which is often proposed as an efficient control scheme 

[11,36], fails to suppress the overall epidemic, making non-selective control unavoidable. 

For this two-type epidemic 𝐿(𝑠) = −(𝜖1𝑅1𝐾1(𝑠)𝑊1(𝑠) + 𝜖2𝑅2𝑊2(𝑠)) for targeted control and 

−𝐾(𝑠)(𝜖1𝑅1𝑊1(𝑠) + 𝜖2𝑅2𝑊2(𝑠)) for non-selective control, with 𝜖2 = 1 − 𝜖1. In both cases, 

𝜔PC = 0 and 𝑊1(0) = 𝑊2(0) = 1 (see Methods). If we only apply constant controllers, then 

𝑀D → ∞ and controllability is exclusively defined by the values of 𝑀G, which are computed as 

|𝜖1𝑅1𝐾1(0) + 𝜖2𝑅2|−1 and |𝐾(0)|−1|𝜖1𝑅1 + 𝜖2𝑅2|−1. To attain some specific 𝑀G, we require 

𝐾1(0) = (𝑀𝐺
−1 − 𝜖2𝑅2)(𝜖1𝑅1)−1 and 𝐾(0) = 𝑀𝐺

−1(𝜖1𝑅1 + 𝜖2𝑅2)−1. We can combine these 

relations to get the left side of Eq. (9), which shows how much smaller 𝐾1(0) needs to be than 

𝐾(0) i.e., how much more targeted control effort is required to attain our desired 𝑀G. 

𝐾1(0) = 𝐾(0) − (
𝜖2𝑅2

𝜖1𝑅1
) (1 − 𝐾(0)), 𝜖1 ≥ 1 −

1

𝑀𝐺𝑅2
.       (9) 

We plot the control efforts 𝐾∗ = 𝐾(0) and 𝐾1
∗ = 𝐾1(0) from both strategies that are necessary 

to achieve critical stability (𝑀G = 1) in Fig 6A. There we observe the limits of targeted control 

as a critical 𝜖1 cut-off (dashed vertical). This follows from the positivity constraint 0 ≤ 𝐾1(0) <

1, where 1 is no control and 0 defines perfect control, in which type 2 infections are neutralised. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 10, 2023. ; https://doi.org/10.1101/2023.10.10.23296471doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.10.23296471
http://creativecommons.org/licenses/by/4.0/


We derive this for any desired gain margin on the right side of Eq. (9). Interestingly, this cut-

off does not depend on 𝑅1 and, if 𝑀G = 1, it indicates that targeted control only works when 

the proportion of superspreading nodes or type 1 variants is above 1 − 𝑅2
−1. This procedure 

is easily generalised to 𝑁-type epidemics where we can control a subset 𝜒 of the types. The 

controllability cut-off then requires the uncontrolled proportion |∑ 𝜖𝑛𝑅𝑛𝑊𝑛(𝑠)𝑛∉𝜒 | ≤ 𝑀𝐺
−1. 

 

Fig 6: Targeted control in multitype epidemics. We explore controllability and performance 

limits for epidemics that involve two distinct types, modelling superspreading or co-circulating 

variants. Panel A plots the constant control effort necessary for critical stability (𝑀𝐺 = 1) under 

a non-selective strategy with controller 𝐾∗ that reduces infections of both types (dashed) and 

a targeted strategy with controller 𝐾1
∗ that only reduces infections of type 1 (solid), which has 

larger transmissibility 𝑅1 ≥ 𝑅2 = 1.1. For both strategies, we vary the proportion of type 1, 𝜖1, 

and curves are for increasing 𝑅1 from blue (1.1) to red (5.5) with intermediate values in grey. 

We use a vertical grey line to show the 𝜖1 for the commonly used 20-80 superspreading rule. 

Targeted control requires substantially more effort (as it must also account for the uncontrolled 

type 2), and the epidemic is uncontrollable if 𝜖1 is smaller than the critical black line (see Eq. 

(9)). Panel B considers targeted controllers that introduce dynamics and only apply 𝐾1(𝑠) or 

𝐾2(𝑠) to reduce either type 1 or 2 infections. We fix 𝜖1𝑅1 = 𝜖2𝑅2 so there is no difference in 
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how the types contribute to overall transmissibility and both controllers lead to the same 𝑀𝐺 >

1. We show how infections 𝑖(𝑡) change due to both schemes (dashed and solid respectively), 

where type 1 is the faster variant with mean generation time 𝑔1 ≤ 𝑔2 = 8 days. Targeting the 

slower type 2 leads to worse performance and is sensitive to 𝑔1 (curves are not grouped). 

Our second question relates to the interaction between differing generation times of the types 

and induced controller dynamics. We consider targeted control of either type or variant with 

type 1 having smaller mean generation time and hence being faster than type 2 i.e., 𝑔1 < 𝑔2. 

We set 𝜖1𝑅1 = 𝜖2𝑅2 = 𝛼 to remove any relative transmissibility advantage between the types. 

Consequently, variations in the infections caused by the types emerge from their generation 

time distribution differences. Targeted control applies non-constant control 𝐾1(𝑠) exclusively 

to type 1 or 𝐾2(𝑠) exclusively to type 2, yielding loop TFs 𝐿(𝑠) = −𝛼(𝐾1(𝑠)𝑊1(𝑠) + 𝑊2(𝑠)) 

and −𝛼(𝑊1(𝑠) + 𝐾2(𝑠)𝑊2(𝑠)). Because the controller induces additional dynamics, we are 

neither guaranteed 𝜔PC = 0 nor 𝑀D → ∞ and must evaluate the complete (𝑀D, 𝑀G) pair. 

We compute these margins and dynamical responses to constant importations in Fig 6B for 

a range of fast type 1 generation time distributions 𝑤1(𝑡) and a fixed (slow) type 2 distribution 

𝑤2(𝑡). Although 𝑀G is the same for both schemes, controlling type 2, which may occur when 

transmission chains of slower variants are easier to interrupt, yields worse performance. The 

overshoots and oscillations are also accompanied by a finite 𝑀D, highlighting that neglecting 

the faster variant can potentially reduce robustness of the controlled epidemic to perturbations 

or equally reduce controllability below what we may expect from conventional measures based 

on reproduction numbers or asymptotic growth rates. For certain controllers (not shown) we 

also find that 𝜔PC > 0 can occur and reduce 𝑀G for either targeted scheme. This underscores 

the importance of our two-margin solution to understanding controllability. 

Discussion 

Measuring the controllability of an infectious disease subject to various intervention options is 

a fundamental contribution of mathematical modelling to epidemiology [4,12]. However, there 

exists no rigorous and precise definition of what controllability means [8,10] and studies have 

highlighted a need for robust analytical frameworks to better appraise the impacts of targeted 

and reactive interventions [1]. Currently, the distance from the epidemic threshold of R=1 or 

r=0 is frequently used to measure controllability. Here we have demonstrated that this notion 

of controllability, although reasonable, is idealistic and likely misleading because neither R nor 

r completely and unambiguously measures distance from stability. We proposed an alternative 
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and analytic definition of this distance by reformulating the disease transmission process as a 

positive feedback loop and leveraging results from control engineering.  

We derived epidemic transfer functions to describe the dynamics of this loop and model how 

stabilising interventions interrupt and attenuate this positive feedback (or for stable epidemics 

we test robustness to perturbations that amplify infections along this loop). This allowed us to 

develop stability margins that accurately measure the distance from stability (Fig 1) in units of 

the scale and speed of required control efforts. The gain and delay margins are key metrics 

from control engineering [17,18], a field that studies stability and feedback problems across 

dynamical systems. Although there is increasing interest in using tools from this field to better 

understand infectious disease spread [9,41–44], our study appears to be among the earliest 

to construct margins for epidemics and appraise existing notions of disease controllability.   

Our central contribution is a flexible method for quantifying epidemic controllability that is both 

computable and easily interpreted across many salient characteristics of infectious diseases. 

This is important for three main reasons. First, R and r can lose their meaning or comparability 

as threshold parameters when characteristics such as superspreading and multitype spread 

are included [24,45]. Second, for a given transmission model there can be numerous ways of 

constructing and defining valid epidemic thresholds and these are not always consistent when 

assessing interventions [25,45,46]. For example, when interventions change generation times 

then we can find situations where r increases yet R decreases [47]. Third, earlier frameworks 

were unable to directly include reactive or feedback effects within their measures and did not 

account for how the implementation of interventions might modify effectiveness. 

In contrast, our gain and delay margins maintain their interpretation, validity, uniqueness and 

comparability across complex disease models and explicitly reflect feedback loops intrinsic to 

transmission and intervention. These properties allowed controllability to be measured across 

realistic generation time distributions (Fig 2), constraints on interventions (Fig 3), surveillance 

imperfections (Fig 5) and transmission heterogeneities (Fig 6). Principal insights emerging 

from this unified approach were that (i) R and r only track controllability in restrictive settings 

where interventions do not alter temporal disease characteristics and are applied instantly, (ii) 

sharp thresholds of controllability exist due to presymptomatic spread, superspreading, delays 

and under-reporting and co-circulating variants that generalise 1-1/R type results and (iii) the 

delay margin is crucial because lags along feedback loops (from both intervention delays and 

surveillance biases) can destabilise epidemics that are conventionally deemed controlled. 

While our approach rigorously incorporates many realistic epidemic complexities and extends 

earlier frameworks [1,8,10], it depends on several simplifying assumptions, which we made to 
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ensure tractability and to extract general insights. Specifically, our analysis uses deterministic 

renewal models and assumes constant R or r. Although some or all of these assumptions are 

common to seminal studies and recent works on controllability thresholds [1,38], the influence 

of stochasticity in disease transmission can be substantial [7,11]. We recommend computing 

our margins as an initial step to quantifying the impacts of interventions, which can then guide 

the running of more complex stochastic models. Our margins are also only well-defined for 

linear systems, which include any epidemics represented by renewal models with constant R. 

If R varies on the timescale of interventions or involves non-linear effects such as saturation, 

this assumption may be invalidated. However, we can use piecewise-constant transmissibility 

approximations and fit renewal models to each piece, to partially circumvent this issue. 

Moreover, we examine linear and reactive control actions only (i.e., convolutions of kernels 

with past infections). This improves upon many studies, where controllers simply multiply and 

reduce R or r but may not model other notable types of interventions, such as those reducing 

infections due to non-linear switching triggers or those that completely ignore feedback signals 

in favour of predetermined action [30,48]. Understanding the relative benefits of these different 

strategies is an ongoing area of research. Last, we comment that controllability here focussed 

on intrinsic epidemic dynamics and neglected the costs of actions. Including how these costs 

further constrain the realisable limits of controllability, as well as incorporating key behavioural 

effects within our feedback loops are the future directions of this research.  

In summary, we demonstrate that controllability is only completely and accurately measured 

by the distance of the loop transfer function L(s) from -1. This generalises and improves upon 

the conventionally used distances of R from 1 or r from 0, but still admits interpretable margins 

or safety factors that quantify how much we can scale infections or delay interventions to attain 

critical stability. This allows us to better evaluate when targeted interventions are insufficient 

and hence when non-selective controls such as lockdowns are justified from the viewpoint of 

curbing transmission. We find that targeted controls fail when the dynamics of the unobserved 

or untargeted infectious population, together with constraints on surveillance and intervention 

implementation cross margin thresholds that are analytically derived from our framework. 

Methods 

Renewal models and transfer functions 

The renewal branching process [27] is a fundamental and popular infectious disease model 

that has been applied to describe epidemics of COVID-19, pandemic influenza, Ebola virus 

disease, measles, SARS and many others [12,28].  This model defines how incident infections 

at time 𝑡, 𝑖(𝑡) depend on the disease reproduction number 𝑅 and incidence at earlier times 
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𝑖(𝜏) (𝜏 ≤ 𝑡, with a limit infinitesimally before 𝑡) via the autoregressive relationship in the left of 

Eq. (M1). We assume that 𝑅 is constant over the period that we investigate.  

𝑖(𝑡) = 𝑚(𝑡) + 𝑅 ∫ 𝑖(𝜏)𝑤(𝑡 − 𝜏) d𝜏
𝑡

0

, 𝐼(𝑠) =
1

1 − 𝑅𝑊(𝑠)
𝑀(𝑠).     (M1) 

Eq. (M1) also includes infections 𝑚(𝑡) that have been imported or introduced into our region 

of interest. The kernel of the autoregression is determined by 𝑤(𝑡 − 𝜏), which is the probability 

of an infection being transmitted after a lag of duration 𝑡 − 𝜏. The set of coefficients {𝑤(𝜅), 𝜅 ≥

0} composes the generation time distribution of the disease [15].  

Since Eq. (M1) defines a linear model, we can analyse it in the frequency or 𝑠 domain using 

Laplace transforms e.g., 𝐼(𝑠) ≝ ∫ 𝑖(𝑡)𝑒−𝑠𝑡 d𝑡
∞

0
 is the transform of 𝑖(𝑡). We get the right side 

of Eq. (M1) after some algebra with capitalised forms as the transformed version of variables 

from the time domain. We can visualise this formulation from the block diagram of Fig 1. The 

ratio 𝐺(𝑠) = 𝐼(𝑠)𝑀(𝑠)−1 defines an epidemic transfer function. The roots of the characteristic 

polynomial 1 − 𝑅𝑊(𝑠) are the poles of the system and completely define the stability of the 

epidemic [17]. Characterising these poles for generalised versions of 𝐺(𝑠) that model different 

control schemes and intervention practicalities forms the subject of the main text. 

The epidemic dynamics therefore depend explicitly on both the reproduction number and the 

generation time distribution, which are two of three key quantities often used to describe the 

transmissibility of infectious diseases. The third, which is the asymptotic growth rate of new 

infections 𝑟 = lim
𝑡→∞

d log 𝑖(𝑡) 

d𝑡
 , also emerges from our formulation. Since 𝑊(−𝑠) is equivalent to 

the moment generating function of the generation time distribution evaluated at 𝑠, we know 

from [15] that 𝑊(𝑟) = 𝑅−1. Interestingly, this is also the dominant pole of 𝐺(𝑠). We convert 

the growth rate into 𝑡𝑅 = log √𝑅
𝑟

, the time it takes for infections to (asymptotically) grow (or 

decline) by a factor of 𝑅. If we replace 𝑅 by 2 we obtain the epidemic doubling time. 

Generation time distributions and Laplace transforms 

The dynamics of infectious diseases are largely determined by the generation time distribution 

since 𝑊(𝑠) is the only non-constant component of the transfer function in Eq. (M1). We model 

𝑊(𝑠) as a phase-type distribution, which is an expansive class built from combinations and 

convolutions of exponential distributions that can approximate any distribution [32]. Erlang, 

exponential, deterministic (degenerate) and bimodal distributions that we consider in the main 
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text are all special phase-type distributions conforming to the relations in Eq. (M2). Erlang (or 

related gamma), deterministic and exponential distributions are often used to model influenza, 

measles and COVID-19, among others [3,15,27,28]. Multimodal and mixture distributions are 

commonly applied to diseases featuring multiple stages (which may even involve vectors) or 

pathways of transmission, for example malaria and Ebola virus disease [19,39]. 

𝑊(𝑠) = 𝜶(𝑠𝐈 − 𝐓)−1(−𝐓𝟏′),        𝑊(0) = 𝜶𝟏′ = 1.    (M2) 

We use bold to denote vectors or matrices. In Eq. (M2) 𝐓 is a 𝑛2 matrix of the transition rates 

among the 𝑛 distribution states, 𝐈 the 𝑛2 identity matrix, 𝜶 is a row vector of length 𝑛 summing 

to 1 (providing weights to the states) and 𝟏′ is the transpose of a row vector of 𝑛 ones. Mixtures 

of phase-type distributions remain phase-type and we see that their Laplace transforms are 

always 1 at 𝑠 = 0 (equivalent to the fact that probability distributions integrate to 1). We find 

this basic property important for computing controllability in the main text. 

For a mean generation time of 𝑔 we can obtain an Erlang distribution with shape 𝑎 and scale 

𝑏 such that 𝑔 = 𝑎𝑏 by setting 𝑛 = 𝑎, 𝜶 = [1 0 … 0], and 𝐓 as a matrix with non-zero elements 

of 𝐓𝜅𝜅 = −𝑏−1 and 𝐓𝜅𝜅+1 = 𝑏−1 for 1 ≤ 𝜅 ≤ 𝑛. As a result, we obtain 𝑊(𝑠) as in Eq. (M3).  

𝑊(𝑠) =
1

(𝑏𝑠 + 1)𝑎
,        1 − 𝑅𝑊(𝑠) =

(𝑏𝑠 + 1)𝑎 − 𝑅

(𝑏𝑠 + 1)𝑎
.    (M3) 

We also find the characteristic polynomial or denominator from Eq. (M1). This has roots when 

𝑠 =  𝑏−1( √𝑅
𝑎

− 1), which is the formula for the growth rate as expected from [15]. Exponential 

and deterministic distributions have 𝑎 = 1 and 𝑎 → ∞, respectively. We get the roots of the 

characteristic polynomial of the exponential distribution by simply substituting in Eq. (M3). The 

deterministic distribution yields 𝑊(𝑠) = 𝑒−𝑠𝑔 at the limit, is equivalent to applying a delay of 

𝑔 time units and has solution to its characteristic polynomial of 𝑠 = log √𝑅
𝑔

.  

The bimodal distribution we consider is a mixture of two Erlang distributions with state sizes 

𝑛1 = 𝑎1 and 𝑛2 = 𝑎2 and 𝜶 = [𝛼1 0 … 0, 1 − 𝛼1 0 … 0], which has 𝑛1 − 1 and then 𝑛2 − 1 

zeros respectively. The choice of 𝛼1 defines the mixture weighting. The state matrix has size 

(𝑛1 + 𝑛2)2 with 𝐓𝜅𝜅 = −𝑏1
−1 and 𝐓𝜅𝜅+1 = 𝑏1

−1 for 1 ≤ 𝜅 ≤ 𝑛1 and 𝐓𝜅𝜅 = −𝑏2
−1 and 𝐓𝜅𝜅+1 =

𝑏2
−1 for 𝑛1 + 1 ≤ 𝜅 ≤ 𝑛2. The 𝑏1 and 𝑏2 are chosen to get mean generation time 𝑔. We obtain 

𝑊(𝑠) =  ∑ 𝛼𝜅(𝑏𝑘𝑠 + 1)−𝑎𝜅2
𝜅=1  and numerically compute roots of its characteristic polynomial. 

We can easily extend this formulation to higher order mixtures. The phase-type structure 

allows us to describe complex distributions without losing analytical tractability.  
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Margins of stability and notions of controllability 

In the above subsections we described the elements of the renewal epidemic model and its 

characteristic polynomial 1 − 𝑅𝑊(𝑠). Here we review the concepts of gain, phase and delay 

margin from classical control theory, which underpin our results in the main text and provide 

measures of how distant linear systems are from stability [17]. The loop transfer function is 

𝐿(𝑠) = −𝑅𝑊(𝑠) and describes the dynamics around the loop as shown in the block diagram 

of Fig 1A. In the main text we expand this 𝐿(𝑠) formulation to include some controller 𝐾(𝑠) 

and other system architectures but the general principles that we detail here remain valid.  

When 𝐿(𝑠) = −1 + 𝑗0 our closed loop TF 𝐺(𝑠) = (1 + 𝐿(𝑠))
−1

 just becomes unstable (i.e., 

it is infinite) with 𝑗 = √−1. We can describe the distance of 𝐿(𝑠) from this critical stability point 

in terms of the multiplicative factor i.e., the gain, and the angular change i.e., the phase, that 

respectively scales and rotates 𝐿(𝑠) onto −1 + 𝑗0. These distances are termed the gain and 

phase margin [17] and relate to the polar description of a complex number. The gain margin 

𝑀G ≝ |𝐿(𝑗𝜔PC)|−1 is the inverse of the magnitude of 𝐿(𝑠) evaluated at 𝜔PC the first frequency 

at which the phase crosses −𝜋 radians. We can therefore multiply our feedback loop signals 

by the factor 𝑀G to drive the epidemic to the critical stability point [31]. 

The phase margin 𝑀P ≝ 𝜋 + Φ(𝐿(𝑗𝜔GC) is the phase Φ(. ) evaluated at the frequency 𝜔GC at 

which the gain of 𝐿(𝑠) crosses 1 and added to 𝜋. We can rotate the phase of the loop by 𝑀P 

to drive the system to the critical stability point [31]. The phase margin is not intuitive for our 

epidemic analyses but can be transformed into the more interpretable delay margin 𝑀D. This 

measures how much lag or pure delay forces 𝐿(𝑠) to the critical point (lag tends to decrease 

phase). If we multiply 𝐿(𝑠) by 𝑒−𝑠𝑀D  we attain critical stability. We compute all margins (using 

in-built functions from the MATLAB control system toolbox. Note that for systems with multiple 

gain and phase crossover frequencies we use the minimum margin to ensure stability. 

Importantly, the distance of our system from stability requires specifying both the gain margin 

and one of either the phase or delay margin [17]. We propose this pair representation as our 

measure of epidemic controllability, which quantifies the effort required to control an unstable 

epidemic or the perturbation required to destabilise an epidemic that is already under control. 

This is different from the formal definition of controllability in control theory, which says that a 

system is controllable if inputs exist to drive it from any initial state to any desired state in finite 

time. Our definition only considers what inputs can force epidemics to critical stability and the 
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required intensity of those inputs. This relates to margins (also termed relative stability) and 

corresponds directly to the informal definition commonly applied in infectious diseases [1,10]. 

Although controllability here defines the control effort needed to stabilise infections, it does not 

measure performance. Performance depends on our control objectives i.e., what we want our 

interventions to achieve [17]. These may include desired gain and delay margins but generally 

we may want to stipulate characteristics of the system response, 𝑖(𝑡) in our setting, to some 

desired dynamics 𝑢(𝑡). One key performance measure is the ability to accurately track 𝑢(𝑡), 

set by the steady state error lim
𝑡→∞

𝑖(𝑡) − 𝑢(𝑡) = lim
𝑠→0

𝑠(𝐼(𝑠) − 𝑈(𝑠)). The second limit follows 

from the final value theorem [17]. If 𝑈(𝑠) = 𝑢𝑠−1 is our desired equilibrium of infections, then 

lim
𝑠→0

𝑠𝐺(𝑠)𝑀(𝑠) − 𝑢 defines accuracy. Other important measures of performance are the peak 

overshoot max
𝑡

𝑖(𝑡) − 𝑢(𝑡) and the level of oscillation of 𝑖(𝑡) about 𝑢(𝑡) or the equilibrium. 
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