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Abstract 

Quantifying how difficult it is to control an emerging infectious disease is crucial to public health 

decision-making, providing valuable evidence on if targeted interventions e.g., quarantine and 

isolation, can contain spread or when population-wide controls e.g., lockdowns, are warranted.  

The disease reproduction number, R, or growth rate, r, are universally assumed to measure 

controllability because R=1 and r=0 define when infections stop growing and hence the state 

of critical stability. Outbreaks with larger R or r are therefore interpreted as less controllable 

and requiring more stringent interventions. We prove this common interpretation is impractical 

and incomplete. We identify a positive feedback loop among infections intrinsically underlying 

disease transmission and evaluate controllability from how interventions disrupt this loop. The 

epidemic gain and delay margins, which respectively define how much we can scale infections 

(this scaling is known as gain) or delay interventions on this loop before stability is lost, provide 

rigorous measures of controllability. Outbreaks with smaller margins necessitate more control 

effort. Using these margins, we quantify how presymptomatic spread, surveillance limitations, 

variant dynamics and superspreading shape controllability and demonstrate that R and r only 

measure controllability when interventions do not alter timings between the infections and are 

implemented without delay. Our margins are easily computed, interpreted and reflect complex 

relationships among interventions, their implementation and epidemiological dynamics. 

Keywords: infectious diseases; feedback control; stability margins; reproduction numbers; 

non-pharmaceutical interventions, growth rates. 

Introduction 

Understanding and quantifying the effort required to control or contain outbreaks is a principal 

goal of infectious disease epidemiology [1]. During emergent stages of a potential epidemic, 

when populations are immunologically naïve, assessments of disease controllability provide 

critical evidence on whether targeted interventions, for example contact tracing, isolation and 

quarantines, are sufficient to curb spread [2] or whether non-selective control actions, such as 

population-level lockdowns and closures, are necessary [3]. These assessments typically rely 

on mathematical models [4] that combine disease surveillance data (e.g., infection times and 
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cases) with intervention mechanisms (e.g., how isolation interrupts transmission chains), to 

estimate controllability (in some sense) and have informed the public health responses for 

influenza, measles, SARS, Ebola virus disease and COVID-19, among others [2,3,5–7]. 

Despite these applications, a systematic and rigorous definition of controllability is lacking [8–

10]. While key factors influencing the difficulty of controlling epidemics such as transmissibility, 

superspreading levels, the efficiency of contact tracing and the proportion of presymptomatic 

infections are known [1,8,11], studies generally compute the reproduction number R, or (less 

commonly) the epidemic growth rate r, under proposed interventions to measure controllability 

[12]. For example, the impact of contact tracing and presymptomatic spread on controllability 

are assessed by how they effectively change R [1,13,14]. Here we use R and r  to generally 

indicate the (constant) controlled reproduction number and growth rate subject to some control 

action or intervention. If no controls are applied, these become the popular basic reproduction 

number and intrinsic growth rate. The relationship between R and r depends on the pathogen 

generation time distribution [15], w, which describes the times between infections. 

As R=1 or r=0 defines critical epidemic stability i.e., the state where infections will neither grow 

nor wane [4], it seems reasonable to base controllability on the distance of R-1 or r-0. Stable 

epidemics have waning infections (R<1, r<0) and unstable ones (R>1, r>0) feature exponential 

growth. We therefore expect that larger R or r values signify reduced controllability, justifying 

stronger interventions, while smaller values imply augmented robustness to transmissibility 

changes or intervention relaxations. The common interpretation of these distances is that we 

must scale infections by 1/R within timeframes proportional to 1/r to reach critical stability [12]. 

This interpretation further underlies related measures of intervention efficacy such as the herd 

immunity threshold (i.e., the proportion of the susceptible population that must be vaccinated 

or acquire immunity) [4,12] and the proportion of infections that must be targeted by contact 

tracing [2] (both relate to 1-1/R), as well as the speed at which isolation or digital tracing 

[9,13,16] must be applied to suppress infections (both relate to doubling time log(2)/r). 

In this study we prove that the above interpretations are only valid under impractical and quite 

restrictive assumptions. We start by recognising that, intrinsically, an epidemic represents a 

positive feedback loop between past and upcoming infections (see Fig 1A). Interventions are 

then control actions that disrupt this loop. This reframing of the disease transmission process 

allows us to adapt tools from control theory [17] and derive what we term as the epidemic 

transfer function. This captures how incident (new) infections are generated under arbitrary 

generation time distributions and (linear) control actions in response to imported infection time 

series. We propose a rigorous controllability measure defined by the gain and delay margins 

of the epidemic transfer function, which quantify two important and distinct distances from the 
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critical stability point (see Fig 1B). If an intervention is applied to two outbreaks, for example, 

the one with the larger pair of margins is more controllable under that intervention. 

The gain margin MG is the factor by which we can scale infections (known as the gain) before 

critical stability is attained, with MG =1 demarcating critical stability [18]. An MG=2 means the 

epidemic remains controlled unless infections double (e.g., from releasing interventions or the 

emergence of more pathogenic variants), while MG=1/2 means we must halve infections (e.g., 

via more stringent interventions that reduce contact rates) to control transmission. The delay 

margin MD quantifies the lag we can afford when imposing interventions, with MD =0 delimiting 

critical stability [18]. An MD =7 indicates that if we take more than a week to intervene (e.g., to 

trace and isolate infected individuals), then we are unable to keep the epidemic controlled. 

This (MG, MD) pair framework yields a number of advantages and controllability results.  

First, our margins more accurately describe what R and r only attempt to quantify – the scale 

and speed of required control effort. Particularly, we show that the universal 1/R interpretation 

of controllability is only valid if interventions reduce infections without inducing dynamics and 

are implemented without delay. Under those conditions MG=1/R and MD is unimportant (i.e., it 

is undefined if R>1 or infinite if R<1). However, this is unrealistic given mounting evidence that 

interventions change generation time and other epidemiological distributions (which is how a 

control action induces dynamics) and that practical constraints on outbreak control inevitably 

cause lags [7,19–22]. Additionally, by interrogating our epidemic transfer function, we find that 

r only quantifies the asymptotic epidemic growth rate [23] and so neglects short-term dynamics 

(which are crucial for understanding unwanted oscillations in infections) and their interactions 

with imposed interventions. These effects belie our conventional notions of controllability.  

Second, our margin-based framework generalises and unifies earlier approaches [1,8]. We 

characterise how presymptomatic spread, transmission heterogeneities from superspreading, 

multitype epidemics (but without considering contact structures) or co-circulating variants and 

surveillance limitations (e.g., reporting delays and underreporting) all modulate controllability. 

These complexities can be commonly evaluated using our two margins, which always have 

the same interpretation. This is beneficial because R or r is not always clearly defined or even 

meaningful for some of these complexities [24,25]. Importantly, our margins yield thresholds 

of controllability under these complexities that can be directly compared to decide the relative 

effectiveness of targeted and population-level interventions. These thresholds reduce to more 

conventional 1-1/R type results under the restrictive conditions mentioned above. 

Last, our margins offer a more complete measure of controllability. Because induced dynamics 

from interventions, implementation delays and surveillance imperfections are pervasive, even 
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if proposed interventions are expected to drive R<1 or r<0, this does not reliably inform about 

the required control effort and the robustness of the epidemic once controlled by these actions. 

We find ample evidence of controlled (R<1) epidemics with MG<1/R, indicating that standard 

controllability interpretations overestimate robustness to increases in infections. We also show 

that some of these controlled epidemics possess MD=7-14 days, signifying that if the combined 

lag from surveillance and intervention delays rises above this value (e.g., due to downscaling 

of surveillance or control programmes) then the epidemic will become destabilised. Neither r 

nor R can generally expose these issues. Our methodology probes the notion of controllability 

and raises questions about the understudied rebound effects of interventions. 

Methods 

Renewal models and transfer functions 

The renewal branching process [26] is a fundamental and popular infectious disease model 

that has been applied to describe epidemics of COVID-19, pandemic influenza, Ebola virus 

disease, measles, SARS and many others [12,27].  This model defines how incident infections 

at time 𝑡, 𝑖(𝑡) depend on the reproduction number 𝑅 and incidence at earlier times 𝑖(𝜏) (𝜏 ≤

𝑡, with a limit infinitesimally before 𝑡) via the autoregressive relationship in the left of Eq. (M1).  

𝑖(𝑡) = 𝑚(𝑡) + 𝑅+ 𝑖(𝜏)𝑤(𝑡 − 𝜏)	d𝜏
!

"
, 𝐼(𝑠) =

1
1 − 𝑅𝑊(𝑠)𝑀

(𝑠).					(M1) 

We assume that 𝑅 is constant during our period of interest. As Eq. (M1) has no interventions 

and we consider initial epidemic stages, 𝑅 is the basic reproduction number. Note that 𝑅 can 

describe other (constant) effective reproduction numbers when the renewal process is a good 

approximation to later epidemic stage dynamics. Because this model is linear, we neglect non-

linear effects such as those due to the depletion of individuals that are susceptible to infection. 

Eq. (M1) includes input infections 𝑚(𝑡) that have been imported or introduced into our region 

of interest and which eventually contribute to onwards transmission [28]. Our output is 𝑖(𝑡). 

The kernel of the renewal autoregression is 𝑤(𝑡 − 𝜏), which is the probability of an infection 

being transmitted after a duration of 𝑡 − 𝜏 time units. The set of coefficients {𝑤(𝜅), 𝜅 ≥ 0} 
composes the generation time distribution of the disease [15]. This captures variability in the 

time it takes for a primary infection to cause a secondary one. The generation time distribution 

is a key characteristic of a pathogen that determines the temporal aspects of its spread via 

the convolution in Eq. (M1). We denote the mean generation time as 𝑔 = ∫ 𝜏𝑤(𝜏)	d𝜏#
" .  
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Since Eq. (M1) is a linear model, we can analyse it in the frequency or 𝑠 domain using Laplace 

transforms e.g., 𝐼(𝑠) ≝ ∫ 𝑖(𝑡)𝑒$%!	d𝑡#
"  is the transform of 𝑖(𝑡). This gives the right side of Eq. 

(M1) after some algebra with capitalised forms as the transformed version of variables from 

the time domain. We visualise this using the block diagram of Fig 1A. We propose the ratio 

𝐺(𝑠) = 𝐼(𝑠)𝑀(𝑠)$& as the epidemic transfer function (TF) that maps input importations onto 

output infections. The roots of its characteristic polynomial 1 − 𝑅𝑊(𝑠) (the denominator of 

𝐺(𝑠)) are the poles of the renewal process and completely define the stability of the epidemic 

[17]. A stable epidemic (infections decay with time given initial imports) has poles with negative 

real parts. An unstable epidemic (infections grow) has at least one pole with positive real part. 

Critical stability requires at least one pole with real part of 0, with all others negative. 

 

Fig 1: Epidemic architecture and controllability definition. Panel A shows that the renewal 

epidemic model is a positive feedback system with signals being successively fed back along 
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a loop and added to imported infections 𝑀(𝑠). The loop TF 𝐿(𝑠) (negative by convention for 

positive feedback) governs the poles of the closed loop TF 𝐺(𝑠), which completely expresses 

how imports combine with the epidemic dynamics to generate new infections 𝐼(𝑠). When we 

intervene or initiate control action, we disrupt the feedback loop via a controller 𝐾(𝑠). Panel B 

explains the concept of controllability. This is the effort needed to drive the epidemic to critical 

stability where at least one pole has a 0 real part (others must be negative). We sketch stable 

and unstable epidemics with no controller and an initial import and contrast the conventional 

notion of controllability with our control theoretic approach. Our margin pair completely and 

precisely describe how 𝐿(𝑠) can be forced to criticality in the complex plane (via scaling and 

rotation) and, crucially, emphasise that the distance of 𝐿(𝑠) from -1 measures controllability. 

The distances of 𝑟 from 0 and 𝑅 from 1 are restricted specialisations of this condition, 

The form of the characteristic polynomial of 𝐺(𝑠) confirms that the dynamics of the epidemic 

depend explicitly on 𝑅 and the generation time distribution. These are two of three quantities 

commonly used to depict the transmissibility of infectious diseases. The third is the asymptotic 

exponential growth rate of infections, 𝑟 = lim
!→#

( )*+ ,(!)	
(!

 and also emerges from Eq. (M1). Since 

𝑊(−𝑠) is equivalent to the moment generating function of the generation time distribution 

evaluated at 𝑠, we know from [15] that 𝑊(𝑟) = 𝑅$&. Interestingly, 𝑟 is also the dominant pole 

of 𝐺(𝑠). Often the growth rate is expressed as 𝑡0 = log √𝑐! , the time it takes for infections to 

(asymptotically) grow (or decline) by a factor 𝑐. At 𝑐 = 2 we get the popular epidemic doubling 

time. We compute appropriate forms of 𝐺(𝑠) and its poles for generalisations of Eq. (M1) that 

model various interventions under practical constraints in the Results. 

Generation time distributions and Laplace transforms 

The dynamics of infectious diseases are largely determined by the generation time distribution 

because 𝑊(𝑠) is the only non-constant term in the TF of Eq. (M1). We model 𝑊(𝑠) as a 

phase-type distribution, which is an expansive class built from combinations and convolutions 

of exponential distributions. This class can approximate any distribution [29] and includes the 

Erlang, exponential, deterministic (degenerate) and bimodal distributions that we examine in 

the Results. Erlang (or related gamma), deterministic and exponential distributions are used 

to model influenza, measles and COVID-19, among others [3,15,26,27]. Multimodal and 

mixture distributions are applied to diseases featuring multiple stages (which may even involve 

vectors) or pathways of transmission, such as malaria and Ebola virus disease [19,30]. 
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All phase-type distributions conform to the relations in Eq. (M2), where we use bold to denote 

vectors or matrices and 𝒙1 to denote the transpose of some row vector 𝒙. 

𝑊(𝑠) = 𝜶(𝑠𝐈 − 𝐓)$&(−𝐓𝟏1),								𝑊(0) = 𝜶𝟏1 = 1.				(M2) 

In Eq. (M2) 𝐓 is a 𝑛2 matrix of transition rates among the 𝑛 distribution states, 𝐈 the 𝑛2 identity 

matrix, 𝜶 is a row vector of length 𝑛 summing to 1 (providing weights to the states) and 𝟏 is a 

row vector of 𝑛 ones. Here 𝑛 represents the complexity of the phase type distribution relative 

to how exponential distributions are combined. A standard exponential distribution has 𝑛 = 1. 

Mixtures of phase-type distributions are also phase-type and we observe that their Laplace 

transforms evaluate to 1 at 𝑠 = 0 (equivalent to the fact that probability distributions integrate 

to 1). We find that this basic property important for computing controllability later in the Results. 

For a mean generation time 𝑔 we can construct an Erlang distribution with shape 𝑎 and scale 

𝑏 such that 𝑔 = 𝑎𝑏 by setting 𝑛 = 𝑎, 𝜶 = [1	0…0], and 𝐓 as a matrix with non-zero elements 

of 𝐓33 = −𝑏$& and 𝐓334& = 𝑏$& for 1 ≤ 𝜅 ≤ 𝑛. As a result, we obtain 𝑊(𝑠) as in Eq. (M3).  

𝑊(𝑠) =
1

(𝑏𝑠 + 1)5 ,								1 − 𝑅𝑊(𝑠) =
(𝑏𝑠 + 1)5 − 𝑅
(𝑏𝑠 + 1)5 .				(M3) 

We also find the characteristic polynomial or denominator from Eq. (M1). This has roots when 

𝑠 = 	𝑏$&X√𝑅" − 1Y, which is the formula for the growth rate as expected from [15]. Exponential 

and deterministic distributions have 𝑎 = 1 and 𝑎 → ∞, respectively. We get the roots of the 

characteristic polynomial of the exponential distribution by simply substituting in Eq. (M3). The 

deterministic distribution yields 𝑊(𝑠) = 𝑒$%6 at the limit, is equivalent to applying a delay of 

𝑔 time units and has solution to its characteristic polynomial of 𝑠 = log √𝑅
#

.  

The bimodal distribution we consider is a mixture of two Erlang distributions with state sizes 

𝑛& = 𝑎& and 𝑛2 = 𝑎2 and 𝜶 = [𝛼&	0…0, 1 − 𝛼&	0…0], which has 𝑛& − 1 and then 𝑛2 − 1 

zeros respectively. The choice of 𝛼&	defines the mixture weighting. The state matrix has size 

(𝑛& + 𝑛2)2 with 𝐓33 = −𝑏&$& and 𝐓334& = 𝑏&$& for 1 ≤ 𝜅 ≤ 𝑛& and 𝐓33 = −𝑏2$& and 𝐓334& =

𝑏2$& for 𝑛& + 1 ≤ 𝜅 ≤ 𝑛2. The 𝑏& and 𝑏2 are chosen to get mean generation time 𝑔. We obtain 

𝑊(𝑠) = 	∑ 𝛼3(𝑏7𝑠 + 1)$5$2
38&  and numerically compute roots of its characteristic polynomial. 

We can easily extend this formulation to allow higher order mixtures. The phase-type structure 

allows us to describe complex distributions without losing analytical tractability.  

Margins of stability and notions of controllability 
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In the above subsections we described the elements of the renewal epidemic model and its 

characteristic polynomial 1 − 𝑅𝑊(𝑠). Here we review the concepts of gain, phase and delay 

margin from classical control theory, which underpin our Results and provide measures of how 

distant linear systems are from critical stability [17]. The loop TF	𝐿(𝑠) = −𝑅𝑊(𝑠) (under no 

control) captures the dynamics around the loop as in the block diagram of Fig 1A. While in 

the Results we expand this 𝐿(𝑠) formulation to include a controller 𝐾(𝑠) that describes our 

epidemic intervention and investigate more generalised model architectures, the principles 

and interpretation that we detail here remain valid for all of these complexities. 

Using 𝐿(𝑠) our characteristic polynomial becomes 1 + 𝐿(𝑠) with the epidemic TF as 𝐺(𝑠) =

X1 + 𝐿(𝑠)Y−1. Poles are complex solutions to 𝐿(𝑠) = −1 + 𝑗0 where 𝑗 = √−1. We can write 

a pole as the complex number 𝜎 + 𝑗𝜔. At the critical stability point the dominant pole has  𝜎 =

0 so that 𝐿(𝑗𝜔) = −1. Control theory [17] states that the distance in the complex plane of 

𝐿(𝑗𝜔) from −1 reflects the stability properties of the process. We can describe this distance 

by the multiplicative factor (the gain), and the angular change (the phase) that respectively 

scale and rotate 𝐿(𝑗𝜔) onto −1 + 𝑗0 in the complex plane. These distances are known as the 

gain and phase margin [17] and relate to polar descriptions of complex numbers. Note that 

the other poles also contribute to the form of 𝐿(𝑗𝜔) and so influence the margins. 

The gain margin 𝑀9 ≝ |𝐿(𝑗𝜔:;)|$& is the inverse of the magnitude of 𝐿(𝑠) evaluated at 𝜔:; 

the first frequency at which the phase crosses −𝜋 radians. Here |. | denotes magnitude so 

|𝜎 + 𝑗𝜔| ≝ √𝜎2 + 𝜔2. The phase margin 𝑀: ≝ 𝜋 + Φ[(𝐿(𝑗𝜔9;)] is 𝜋 plus the phase Φ[. ] 

(in radians) evaluated at 𝜔GC, the frequency where |𝐿(𝑗𝜔)| first crosses 1 from above (known 

as gain crossover). This measures how much phase lag (i.e., clockwise rotation in the complex 

plane) can be added to 𝐿(𝑗𝜔9;) before driving the epidemic to critical stability [31,32]. Phase 

margin is not intuitive for our analyses but can be transformed into a more interpretable delay 

margin 𝑀> (e.g., in some cases 𝑀> = 𝑀:𝜔9;
$& [31]). This margin quantifies how much pure 

time delay or lag forces 𝐿(𝑠) to the critical point (lag reduces phase).  

We compute both margins using in-built functions (specifically allmargin(.)) from the MATLAB 

control system toolbox (see Data Availability). This essentially evaluates the magnitude and 

phase of 𝐿(𝑠) at every 𝑠 = 𝑗𝜔 and finds the appropriate crossover frequencies for determining 

the margins. When systems have multiple 𝜔:; or 𝜔9; crossover frequencies we consider the 

minimum margin to ensure our characterisation is robust. The gain and delay margins define 

the two ways (scaling and rotation) that we can drive our epidemic to critical stability. If we 
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multiply 𝐿(𝑠) by the scale factor 𝑀9 or the angular shift 𝑒$%?%, which is the Laplace transform 

of a pure delay of 𝑀> time units, we drive the epidemic to the critical stability point [32]. We 

compare this interpretation to more conventional epidemic measures in Fig 1B. 

Importantly, the distance of our system from stability requires specifying both the gain margin 

and the delay margin [17]. We propose this pair representation as our measure of epidemic 

controllability, which quantifies the intervention effort required to control an unstable epidemic 

or the perturbation (e.g., to disease transmissibility 𝑅) required to destabilise an epidemic that 

is already under control. We expand this definition to include various model architectures and 

interventions in the Results. Note that in control theory, a system is only formally controllable 

if inputs exist that drive it from any initial state to any desired state in finite time. Our definition 

is more relaxed and only considers what changes force epidemics to critical stability and the 

required intensity of those changes. This relates to margins (also termed relative stability) and 

aligns with the informal definition commonly applied in infectious diseases [1,10]. 

Although controllability here defines the control effort needed to stabilise infections, it does not 

measure performance. Performance depends on our control objectives i.e., what we want our 

interventions to achieve [17]. These may include desired margins but generally we may want 

our system response, 𝑖(𝑡) in this setting, to meet some desired dynamics 𝑢(𝑡). A key long-

term performance metric is the error lim
!→#

𝑖(𝑡) − 𝑢(𝑡) = lim
%→"

𝑠(𝐼(𝑠) − 𝑈(𝑠)). The second limit 

follows from the final value theorem [17]. If 𝑈(𝑠) = 𝑢𝑠$& is a desired equilibrium of infections 

(𝑢𝑠$& is the Laplace transform of a step function with amplitude 𝑢), then lim
%→"

𝑠𝐺(𝑠)𝑀(𝑠) − 𝑢 

measures accuracy. Important short-term performance measures are the peak overshoot 

max
!
𝑖(𝑡) − 𝑢(𝑡) and the level of oscillation of 𝑖(𝑡) about either 𝑢(𝑡) or the equilibrium.  

Results 

We start by expanding the framework in the Methods to explore the standard assumption that 

larger 𝑅 or 𝑟 signals a less controllable epidemic [1,10,33]. This belief is sensible as increases 

in 𝑅 cause infections to multiply more and rises in 𝑟 engender faster multiplication. In Fig 1B 

we recap these conventional notions of controllability. We prove that these universal notions 

are only true under restrictive and idealistic intervention assumptions. Extending the margins 

above, we construct a rigorous measure of epidemic controllability that accurately reflects the 

control effort needed to stabilise a growing epidemic and the robustness to perturbations of a 

controlled epidemic. To maintain analytic tractability and as we focus on deriving fundamental 

insight into controllability, we study constant 𝑅 or 𝑟 and neglect stochasticity (see Methods). 
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In later sections we discuss relaxations of these assumptions and show that our framework 

can assess how variant dynamics, presymptomatic spread, superspreading, intervention lags 

and surveillance biases all modulate controllability. 

Epidemic models, feedback control and transfer functions 

The renewal process is widely used to model acute infectious diseases and is given in Eq. 

(M1) of the Methods. There new or output infections at time 𝑡, 𝑖(𝑡) result from multiplying all 

active infections by 𝑅 with 𝑚(𝑡) as the introduced infections or input. Past infections are active 

if they can still transmit. The generation time distribution {𝑤(𝜅), 𝜅 ≥ 0} sets the transmission 

probabilities [26,27] with the active infections computed as a convolution  ∫ 𝑤(𝑡 − 𝜏)𝑖(𝜏)	d𝜏!
" . 

However, these quantities from Eq. (M1) describe uncontrolled dynamics. Here we extend this 

model to include control. We define a generic control strategy as one reducing infections to 

𝜆(𝜏) ≤ 𝑖(𝜏) so that ∫ 𝑤(𝑡 − 𝜏)𝜆(𝜏)	d𝜏!
"  is the equivalent convolution. This yields Eq. (1). 

𝑖(𝑡) = 𝑚(𝑡) + 𝑅+ 𝜆(𝜏)𝑤(𝑡 − 𝜏)	d𝜏
!

"
, 𝜆(𝑡) = + 𝑖(𝜏)𝑘(𝑡 − 𝜏)	d𝜏

!

"
.					(1) 

The controller achieves this reduction by weighting past infections by a kernel 𝑘(𝜏) with overall 

effect ∫ 𝑘(𝜏)	d𝜏 = 𝑘#
" . If this kernel only has mass at the present so 𝑘(𝑡) = 𝑘𝛿(𝑡), with 𝛿(𝑡) 

as the Dirac delta function, we get constant (memoryless) feedback control and 𝜆(𝑡) = 𝑘𝑖(𝑡). 

Generally, 0 ≤ 𝑘 ≤ 1 as control reduces infections. However, if the epidemic is already stable, 

we may set 𝑘 > 1 to assess robustness to perturbations in infections i.e., we want to find the 

largest 𝑘 that achieves critical stability. The expressions in Eq. (1) become the standard ones 

of Eq. (M1) by removing control i.e., by using a constant controller with overall effect 𝑘 = 1. 

We Laplace transform Eq. (1) (see Methods) with 𝐼(𝑠), 𝑀(𝑠) and 𝑊(𝑠) as the transformed 

infection incidence, importations and generation time distribution in the frequency or 𝑠 domain. 

Since convolutions are products in this domain, the controller satisfies Λ(𝑠) = 𝐾(𝑠)𝐼(𝑠) with 

𝐾(𝑠) as its transform. We represent these operations as the block diagram in Fig 1A, where 

we identify that, fundamentally, an epidemic involves a positive feedback loop between past 

and upcoming infections. Taking the product of blocks along the loop we obtain the loop 

transfer function (TF) as 𝐿(𝑠) in Eq. (2) below. Control aims to disrupt this loop. 

𝐿(𝑠) = −𝐾(𝑠)𝑅𝑊(𝑠), 𝐺(𝑠) =
1

1 − 𝐾(𝑠)𝑅𝑊(𝑠).					(2) 
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Using this structure, we can define transmission dynamics by the properties of the closed loop 

TF, 𝐺(𝑠) = 𝐼(𝑠)𝑀(𝑠)$&, which describes how imports drive total incidence. We can see the 

importance of 𝐿(𝑠) by noting that 𝐺(𝑠) = X1 + 𝐿(𝑠)Y$& [18]. The poles of 𝐺(𝑠) determine the 

dynamics and stability of the epidemic and are complex number solutions of 𝐿(𝑠) = −1 + 𝑗0 

(see Methods). We recover the uncontrolled epidemic TFs by setting 𝐾(𝑠) = 1, which is the 

Laplace transform of the constant controller above with 𝑘 = 1. 

We can interpret Eq. (2) by recognising that an unstable epidemic (at least one pole of 𝐺(𝑠) 
has a positive real part) successively multiplies infections along the loop. This constitutes the  

positive feedback we illustrate in Fig 1A. Interventions or control actions having magnitude 

|𝐾(𝑠)| < 1 limit this positive feedback by interfering with the loop and hence attenuating this 

multiplication. Modification of the intrinsic epidemic dynamics 𝑅𝑊(𝑠) by the controller 𝐾(𝑠) 

within the loop achieves this goal. A stable epidemic (all poles of 𝐺(𝑠) have non-positive real 

parts) is also multiplicative, but infections reduce along the loop. We can apply |𝐾(𝑠)| > 1 as 

an amplifier of infections to study the robustness of the controlled epidemic to any destabilising 

perturbations or uncertainties (e.g., surges in transmissibility or more pathogenic variants). 

There are two important corollaries of Eq. (2). First, the poles of the epidemic TF 𝐺(𝑠) are the 

roots of the characteristic polynomial 1 − 𝐾(𝑠)𝑅𝑊(𝑠). Solving this (see Methods), we find the 

epidemic growth rate	𝑟 is the dominant pole i.e., it is the major contributor to the dynamics of 

the system (see Methods for explicit calculation in the uncontrolled case) and its variations 

reflect the impact of the controller 𝐾(𝑠). Second, 𝐾(𝑠) directly regulates both the generation 

times and 𝑅. For constant controller 𝐾(𝑠) = 𝑘, the epidemic has an effective reproduction 

number of 𝑘𝑅, with related changes to its effective growth rate. These observations seemingly 

support the common paradigm of modelling interventions and assessing controllability directly 

from how 𝑅 or 𝑟 (or related parameters such as doubling times or infectiousness) change [12].  

A framework for investigating epidemic controllability  

However, these corollaries actually expose why these parameters are insufficient for defining 

controllability i.e., the effort required to stabilise an unstable epidemic, or the intensity of the 

perturbations required to destabilise a stable epidemic. Specifically, the difficulty of controlling 

the epidemic in real time also depends on its other poles (which may be oscillatory) [18] and 

only asymptotically are infections completely determined by the dominant pole 𝑟. Additionally, 

the assumption that 𝐾(𝑠) is constant and introduces no dynamics is unrealistic (e.g., isolation 
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is known to reduce generation times [20,21]) and only likely true in very limited circumstances. 

We therefore need to account for transient and intervention-induced dynamics [23,34]. 

To investigate the implications of these corollaries, we propose a new framework for defining 

epidemic controllability, which adapts classical control theory as well as generalises and more 

rigorously quantifies the interpretation frequently ascribed to 𝑅 or 𝑟. Fig 1B summarises and 

contrasts this framework to standard (albeit implicit) notions of controllability. We know from 

Eq. (2) and stability theory [17] that as 𝐿(𝑠) approaches −1 + 	𝑗0 in the complex plane the 

closed loop 𝐺(𝑠) becomes critically stable i.e., it is on the verge of instability with 𝑟 = 0. The 

gain 𝑀9 and delay 𝑀> margins [18] precisely determine the distance of 𝐿(𝑠) from −1 + 	𝑗0 

(see Methods for how to compute these and related margins) [17]. 

For stable epidemics (𝑟 < 0 i.e., all 𝐺(𝑠) poles are in the left half of the complex plane), 𝑀9 

and 𝑀> respectively measure how much we can scale up or delay infections before the system 

becomes critical [32]. Accordingly, for unstable epidemics (𝑟 > 0 i.e., at least one	𝐺(𝑠) pole 

is in the right half plane) they quantify how much we must scale down or limit delay to stabilise 

an epidemic (assuming certain conditions [17]). If an epidemic admits a margin pair  (𝑀>, 𝑀9), 

then we can multiply 𝐿(𝑠) along its loop by 𝑒$%?% or 𝑀9 respectively to force the epidemic to 

its critical stability point. Critical stability is rigorously defined as when 𝐾(𝑠) = 1 in Eq. (2) then 

𝑟 matches 𝑅 − 1 in sign and is the dominant 𝐺(𝑠) pole so 𝐿(𝑠) = −1, 𝑅 = 1 and 𝑟 = 0 all 

correspond. There is an analogous association with the effective 𝑅 and 𝑟 when some control 

is acting (𝐾(𝑠) ≠ 1). The crucial distinction we make is that the distance of 𝐿(𝑠) from −1 and 

not that of 𝑅 from 1 or 𝑟 from 0 is what actually determines controllability.  

The margins we propose to measure this distance precisely and holistically characterise the 

essence of earlier notions of control effort by quantifying the magnitude and time by which we 

must alter infections to attain the brink of stability. Stable or controlled epidemics feature 𝑀9 >

1 and 𝑀> > 0 and larger margins signify better controllability (see Fig 1B). Computing these 

for Eq. (2), we get 𝑀9 = |−𝐾(𝑗𝜔:;)𝑅𝑊(𝑗𝜔:;)|−1 [17] where 𝜔:; is the phase crossover 

frequency (see Methods). From the properties of distributions, 𝑊(0) = 1. We confirm this in 

the Methods for a universal class of phase-type generation time distributions [29] that include 

realistic models of 𝑤(𝑡) for many infectious diseases [15,27]. Accordingly, when 𝜔:; = 0, 

𝑀9 = |−𝐾(0)𝑅|−1. As critical stability occurs when 𝑀9 = 1, the critical control effort required, 

based on this gain margin, is therefore 𝐾∗ = |𝐾(0)| = 𝑅$&. 
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We show in Fig 2 for constant controllers applied to epidemics with various generation time 

distribution shapes (Fig 2A) that 𝜔:; = 0 is true and unique. For stable epidemics, we find 

𝑀> → ∞ (not shown but see Data Availability for linked code). Consequently, under these 

conditions, controllability is completely established by the magnitude of 𝑅$& (Fig 2C), which 

correlates well with the Euclidean distance in the complex plane between 𝐿(𝑠) and −1 (inset).  

When the epidemic is unstable the gain margin is also set by 𝑅$& but there may be ways of 

removing system lag that also define a dimension of control. However, if we apply a constant 

controller (so system lag does not change) with 𝑘 = 𝛼𝑅$& and 𝛼 < 1, the controlled epidemic 

has an effective reproduction number of 𝛼 and hence a controllability of 𝛼$&.  

The dominant pole and hence the effective growth rate also shifts, from being the solution of 

𝑅𝑊(𝑠) = 1, to that of (𝑘𝑅)𝑊(𝑠) = 1. As this equation is only scaled, the growth rate is now 

related to the effective reproduction number 𝑘𝑅. For gamma distribution generation times with 

parameters (𝑎, 𝑏) for example (see Methods), the growth rate changes from 𝑏$&(√𝑅" − 1) to 

𝑏$&(√𝑘𝑅" − 1) [15]. Consequently, if 𝜔:; = 0, we can completely describe the controllability 

of an epidemic using the size of reproduction numbers or growth rates. As growth rates are 

asymptotic (i.e., other poles decay in impact as 𝑡 → ∞) we can equally describe controllability 

from exponential growth models that approximate complex renewal processes (Fig 2B). Note 

that epidemics with the same controllability may have diverse responses to imports (Fig 2D). 

Our framework therefore supports the conventional definition that larger 𝑅 or 𝑟 indicates lower 

controllability but reveals that this requires 𝜔:; = 0 and that our controller is constant (i.e., 

we need 𝑘(𝑡) = 𝑘𝛿(𝑡)). Under these conditions we cannot destabilise the epidemic through 

perturbations that only add delay (or change phase). This holds for broad classes of phase-

type generation time distributions. We show next that our more generalised controllability 

definitions are necessary because these settings are strongly restrictive and not likely to occur 

in practice i.e., control actions frequently introduce dynamics (e.g., by modifying incubation 

periods, generation times and infectiousness durations [21,22]). Further, we know that delays 

to interventions, surveillance biases, presymptomatic spread and superspreading, all impact 

controllability. We demonstrate that our definitions can rigorously unify these complexities. 
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Fig 2: Epidemic controllability under ideal conditions. We assess controllability via gain 

and delay margins for epidemics subject to constant (non-dynamical) control 𝐾(𝑠) = 𝑘 with 

phase crossover frequencies of 0 (see text). Panel A shows the generation time distributions 

𝑤(𝑡) of simulated epidemics that we analyse, which have fixed mean generation time 𝑔 (taken 

from COVID-19 [3]) but feature markedly different shapes. Panel B plots the growth rate 𝑟 of 

these epidemics (colours match panel A), which is the dominant pole 𝑝 (solid) of the resulting 

TFs 𝐺(𝑠). These strongly match the dominant pole 𝑝& (dashed) of an approximating epidemic 

described by 𝑖(𝑡) = 𝑖(0)𝑒A&!. Panel C plots the gain margin 𝑀B  or critical controller 𝐾∗ that 

drives the system to the brink of instability (the delay margin 𝑀C here is infinite). The 𝐾∗ curves 

from every 𝑤(𝑡) exactly equal 𝑅$&. These curves correlate well with 𝐷 (inset), the Euclidean 
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distance between 𝐿(𝑠) and -1. Panel D demonstrates that although controllability is the same, 

transient dynamics of infections may differ (they also depend on non-dominant system poles). 

We plot incident infections 𝑖(𝑡) in response to stable numbers (main) of imported infections 

(𝑚(𝑡) = 𝑚) and to a 1-day pulse (inset) of 𝑚 imports (colours match panel A).  

Problems with existing controllability definitions 

Previously, we established conditions under which our generalised framework for assessing 

controllability reduces to the popular but informal definition applied in epidemiology. However, 

the conditions that allow this interpretation are strongly restrictive for two reasons. First, the 

only controller guaranteed to satisfy |𝐾(0)| = 𝑅−1 and have unique 𝜔:; = 0 is the constant 

𝐾(𝑠) = 𝑘. This controller seems unrealistic given that interventions not only scale infections 

but also change the distribution of generation times and other epidemiological quantities and 

hence induce additional dynamics (and poles in 𝐺(𝑠)) [20–22]. Any realistic intervention (e.g., 

social distancing or contact tracing) likely scales infections and slows them from occurring. 

We demonstrate this for the generation time distributions in Fig 2A using controllers of form 

𝐾(𝑠) = &
D
(&46%)
(&4E%)"

, which induce minimal dynamics and satisfy ∫ 𝑘(𝜏)	d𝜏 = 𝑘#
" . Here 𝐾(𝑠) can 

model interventions that change the effective reproduction number as well as the generation 

times of the epidemic. For example, if the uncontrolled epidemic has exponentially distributed 

𝑤(𝑡) with mean 𝑔 then 𝑊(𝑠) = &
(&46%)

 and the loop TF changes from $F
(&46%)

 to $F
D(&4E%)"

 i.e., 

the control scaled down infections by a factor of 8 and forced the mean generation time to 𝑎𝑏. 

This illustrates how controllers can realistically alter dynamics. Intervention-driven changes to 

generation times have been observed for malaria, COVID-19 and other diseases [19,20]. 

When 𝐾(𝑠) is applied to epidemics with 𝑅 = 4, if 𝜔:; = 0, then 𝑀9 = |−𝐾(0)𝑅|−1 = 2. This 

controller is strongly stabilising (we can double infections before critical stability), attenuating 

infections so that the effective reproduction number of the controlled epidemic is &
2
. However, 

this standard interpretation is misleading and incomplete due to the temporal variations that 

control actions may introduce. In Fig 3A we compare the resulting epidemic trajectories under 

two 𝐾(𝑠) examples. For the first (𝑏 = 2, 𝑎 = 4) the gain and delay margins together with the 

response to a stable input of 𝑚(𝑡) = 100 infections over time is consistent with Fig 2. Note 

that the 𝑔 and 𝑅 we use here are among values estimated for COVID-19. 

Strikingly, for the second case (𝑏 = &
2
, 𝑎 = 4), the response is markedly different, featuring 

oscillations and faster (transient) growth that might initially strain available resources. The gain 
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margin for these cases is still 2 (though in some instances it can fall below 2) but, importantly, 

the delay margin for one of the 𝑤(𝑡) in Fig 2A becomes finite and small (𝑀> ≈ 4.2 days). 

This effect is pronounced and this 𝐾(𝑠) can cause the overall generation time to shrink to 

roughly 2 days. Case isolation was found to cause similar shrinking for COVID-19 [21]. Smaller 

𝑀> values can occur for further 𝑤(𝑡) types under more complex controllers (not shown). As 

much is unknown about these rebound effects of interventions [22], we cannot be certain about 

realistic formulae for 𝐾(𝑠). Recent works [35] emphasise the need for collecting the data types 

that will allow precise 𝐾(𝑠) parametrisation. When such data become available, our margins 

will be best placed to assess controllability and expose any unexpected rebound effects. 

The finite delay margin is especially valuable, revealing that interactions between the epidemic 

and interventions can cause robustness losses. Real interventions always have latencies [13], 

making 𝑀> crucial. If control is applied after a 3.5-day delay, we obtain infection curves as in 

Fig 3B. There we observe that the red curve approaches instability and realise that there is a 

hard limit from 𝑀> on how late we can respond to an epidemic if we want control to work. The 

importance of delays in epidemic control is a known issue [9,16] but it is rarely factored into 

epidemic controllability directly. Our (𝑀>, 𝑀9) framework is comprehensive and exposes the 

pitfalls of measuring controllability only in terms of 𝑅 or 𝑟 (while not shown, the dominant poles 

and hence 𝑟 in Fig 3 are similar for both the finite and infinite 𝑀> scenarios). 
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Fig 3: Controllers introducing additional dynamics. We simulate epidemics that are forced 

by a constant supply of imported infections (𝑚(𝑡) = 100). Panel A shows the resulting curves 

of incidence for epidemics with generation time distributions from Fig 2 (excluding the green 

one because this becomes unstable, curves match in colour) when non-constant control 𝐾(𝑠) 
is applied. There are major discrepancies among responses to interventions (controllers) that 

induce substantial dynamics (solid) and those behaving as we would conventionally expect 

(dashed). The former show salient transients that disrupt controllability and feature finite delay 

𝑀C (and in some cases 𝑀B < 2). Conventional interpretations expect 𝑀B = 2 , 𝑀C → ∞. The 

long-term incidence 𝑖(∞) remains, however, unchanged for all our controllers. In panel B we 

apply a 3.5-day delay (𝑒$G.I% in the 𝑠 domain). This pushes the curve from panel A with finite 

𝑀C ≈ 4.2 days towards instability. The value of a two-margin description is clear. 

The second major problem with conventional definitions of controllability is that they are not 

easily computed, interpreted or compared when practicalities such as presymptomatic spread, 

superspreading, variant dynamics and surveillance imperfections (e.g., reporting delays and 

incomplete case ascertainment) occur [1,24]. In the next two sections, we expand our models 

and demonstrate that the (𝑀>, 𝑀9) framework presents a unified and interpretable approach 

to measuring and monitoring epidemic controllability under all of these complexities. No matter 

the specific model structure, the boundaries of controllability specified by our (𝑀>, 𝑀9) pair 

are directly comparable and possess exactly the same interpretation as in Fig 1. 

Surveillance limitations and presymptomatic spread 

Until now we have assumed that we can observe and apply control to all new infections. This 

is unrealistic as commonly we can only count cases or deaths, which are delayed and scaled 

versions of infections [36,37]. Here we generalise Eq. (1) and Eq. (2) to include these effects. 

We denote the proportion of infections that we observe as cases by probability 0 ≤ 𝜌 ≤ 1 and 

model the latency in observing these cases with a distribution ℎ(𝑡). Our controller acts on the 

incidence of cases 𝑐(𝑡), and 𝑖(𝑡) − 𝑐(𝑡) infections remain unobserved. This yields Eq. (3). 

𝜆(𝑡) = + 𝑐(𝜏)𝑘(𝑡 − 𝜏)	d𝜏,
!

"
					𝑐(𝑡) = 𝜌+ 𝑖(𝜏)ℎ(𝑡 − 𝜏)	d𝜏.

!

"
					(3) 

The unobserved infections continue to propagate the epidemic as they remain uncontrolled. 

We therefore construct the combined renewal model of Eq. (4) below. 

𝑖(𝑡) = 𝑚(𝑡) + 𝑅+ (𝑖(𝜏) − 𝑐(𝜏))𝑤(𝑡 − 𝜏)	d𝜏
!

"
+ 𝑅+ 𝜆(𝜏)𝑤(𝑡 − 𝜏)	d𝜏

!

"
	.					(4) 
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This collapses into Eq. (1) when reporting is perfect i.e., 𝜌 = 1 and ℎ(𝑡) has all its probability 

mass at the present (ℎ(𝑡) = 𝛿(𝑡), the Dirac delta) so that 𝑐(𝑡) = 𝑖(𝑡).  

 

Fig 4: Generalised controlled renewal model architectures. Panel A illustrates the block 

diagram of a renewal model for which only a portion of the new infections 𝐼(𝑠) are observable 

and hence can be controlled by 𝐾(𝑠). This portion 𝐶(𝑠) may model cases, deaths or any other 

time series that is mediated by a scale factor 𝜌 and a lag distribution 𝐻(𝑠). This architecture 

represents imperfect surveillance mechanisms or presymptomatic spread. Panel B shows the 

structure of a multitype, controlled renewal model describing 𝑁 infectious types or stages with 

diverse reproduction numbers 𝑅J and generation time distributions 𝑊J(𝑠). The weight 𝜖J is 

the fraction of new infections of type 𝑛. This architecture models transmission heterogeneity 

including superspreading, co-circulating variants and diseases with multiple routes for spread 

but considers the combined contributions of all types (hence contact matrices are not needed). 

Imperfect surveillance and presymptomatic spread

All types 
contribute

A

B

K̃(s) = (1 − ρH(s)(1 − K(s))

Transmission heterogeneity (superspreading) and variants

Renewal mechanism

M(s)
I(s)

RW(s)

+

1 − K(s)

+

Control

Incidence
Imports

L(s) = − RW(s)K̃(s)

repeat for  to 1 N

ρH(s) C(s)

(or e.g., 
deaths)

Cases

+ −

Observation 
mechanism

Multitype renewal 
mechanism

M(s) I(s)

ϵNRNWN(s)

+

K1(s)

+

Control 
(targeted)

IncidenceImports

Feedback 
signal

L(s) = −
N

∑
n=1

ϵnRnWn(s)Kn(s)

KN(s)

ϵ1R1W1(s)
+

+

Feedback 
signal Weights

N

∑
n=1

ϵn = 1

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted June 13, 2024. ; https://doi.org/10.1101/2023.10.10.23296471doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.10.23296471
http://creativecommons.org/licenses/by/4.0/


Both panels have closed loop TFs 𝐺(𝑠) = 𝐼(𝑠)𝑀(𝑠)$& = X1 + 𝐿(𝑠)Y−1, with loop TF 𝐿(𝑠) as 

described. See main text for details on how 𝐾(𝑠) and the 𝐾J(𝑠) define controllability. 

We again take Laplace transforms of Eq. (3) and Eq. (4) to obtain our key TFs for evaluating 

epidemic controllability in Eq. (5). We illustrate this architecture in Fig 4A and observe that we 

also obtain TFs for the observed cases easily since 𝐶(𝑠)𝑀(𝑠)$& = 𝜌𝐻(𝑠)𝐺(𝑠). 

𝐿(𝑠) = −𝑅𝑊(𝑠)(1 − 𝜌𝐻(𝑠)(1 − 𝐾(𝑠)), 𝐺(𝑠) =
1

1 + 𝐿(𝑠).					(5) 

When 𝐾(𝑠) = 1 in Eq. (5) we recover the uncontrolled epidemic TFs (see Eq. (M1)). Perfect 

surveillance means 𝜌𝐻(𝑠) = 1 and reverts Eq. (5) to Eq. (2). If we instead perform control on 

another proxy of infections, for example deaths or hospitalisations, then 𝜌 is the proportion of 

infections that lead to mortality or hospitalisation (e.g., for the incidence of deaths this includes 

the infection fatality ratio and the proportion of deaths that are observed). The distribution ℎ(𝑡) 
then models the lag from becoming infected to mortality or being admitted to hospital [37,38]. 

This formulation equally models presymptomatic and asymptomatic spread, with ℎ(𝑡) defining 

the delay between infection and presenting symptoms and 𝜌 as the proportion of infections 

that never become symptomatic. We compute our (𝑀>, 𝑀9) pair to assess how these differing 

transmission and surveillance characteristics impact controllability. Eq. (5) includes all the key 

controllability factors outlined in [1] and describes targeted interventions such as quarantine, 

contact tracing or isolation but not widescale lockdowns (we only control observed infections). 

Lockdowns and other non-selective interventions conform more closely to Eq. (2) as they act 

indiscriminately on all infections, including those that we never observe. 

We know from earlier that critical stability is achieved when 𝐿(𝑠) = −1. We substitute this into 

Eq. (5) and find that our control needs to satisfy the left side of Eq. (6). As a constant 𝐾(𝑠) =

0 represents the maximum possible control effort (i.e., all observed infections are suppressed 

completely), we insert this condition and rearrange to derive the threshold on the right side of 

Eq. (6), outlining the requirements on the surveillance noise or level of presymptomatic spread 

for the epidemic to just be controllable. A smaller |𝜌𝐻(𝑠)| causes loss of controllability and 

provides evidence that widescale interventions or surveillance improvements are needed. The 

relations of Eq. (6) are only required to hold at the 𝑠 = 𝑗𝜔 satisfying 𝐿(𝑠) = −1. 

𝐾(𝑠) = 1 −
1 − X𝑅𝑊(𝑠)Y$&

𝜌𝐻(𝑠) , |𝜌𝐻(𝑠)| ≥ y1 −
1

𝑅𝑊(𝑠)y.					(6) 
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If 𝜔:; = 0 then this requirement is met at 𝜌 ≥ 1 − 𝑅$&, as 𝑊(0) = 𝐻(0) = 1. This matches 

the critical contact tracing efficiency derived in [2] and the presymptomatic condition of [1] and 

confirms how our methodology generalises more conventional notions of controllability (it also 

relates to the herd immunity threshold though we do not consider this directly as our models 

neglect depletion of susceptibles). Eq. (6) verifies that we need both margins because 𝜔:; =

0 is not guaranteed here, even if controllers are constant. The temporal impact of imperfect 

surveillance or presymptomatic spread via 𝐻(𝑠) means that the dynamics leading to situations 

as in Fig 3 always exist. Transient dynamics are crucial and unavoidable. 

 

Fig 5: Surveillance noise and presymptomatic spread. We investigate how imperfect case 

reporting, or equivalently presymptomatic spread, limits the controllability of epidemics using 

our (𝑀C , 𝑀B) framework. Panel A shows for curves of constant 𝑅 ≥ 1 (rising from blue to red, 
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which is at 𝑅 = 5) how the reporting rate or proportion of symptomatic infections, 𝜌, reduces 

controllability. Smaller 𝜌 requires more control effort to attain critical stability i.e., a smaller 𝐾∗ 

is needed for a gain margin 𝑀B = 1. There is no reporting delay or presymptomatic distribution 

in this analysis so 𝐻(𝑠) = 1. Panel B sets 𝜌 = 1 and investigates the influence of two 𝐻(𝑠) 

distributions, 𝐻& (dashed) and 𝐻2 (solid) modelling exponential and gamma distributions. Both 

have mean lag 𝜏, 𝑅 = 2 and a controller applied that achieves 𝑀B = 2, if the phase crossover 

frequency 𝜔:; = 0. We find that as 𝜏 increases 𝑀B < 2 indicating a decline in controllability. 

This results from 𝜔:; increasing above 0 (inset). Colours in this and panels C-D match the 

generation times modelled from Fig 2A (excluding the green). Panel C confirms 𝐻(𝑠) causes 

the delay margin 𝑀C to become finite (inset, dashed or solid corresponding to panel B). This 

reduced controllability is visible from the peaked, oscillatory response in new infections 𝑖(𝑡) 

for a constant number of imports 𝑚(𝑡) (main). This effect is similar to that in Fig 3. Here dot-

dashed lines plot the response in the absence of 𝐻(𝑠). Panel D shows the combined influence 

of lags and under-reporting given the constant controller of 𝐾 = &
GF

. The inset demonstrates 

how 𝑀C falls with 𝑅 and the main shows the infection (solid) and case 𝑐(𝑡) (dashed) epidemic 

curves in response to constant imports (colours match generation time distributions).  

We verify this point in Fig 5, showing how controllability depends on 𝜌 and 𝐻(𝑠). We first set 

𝐻(𝑠) = 1 and explore the controller gain needed to get 𝑀9 = 1, which sets critical stability. 

In the absence of under-reporting, we have 𝜌 = 1 and 𝐾∗ = 𝑅$& for any 𝑅. Fig 5A shows that 

our required 𝐾∗ substantially deteriorates, highlighting that we need additional control effort to 

stabilise the epidemic as 𝜌 decreases. When 𝐾∗ = 0, the epidemic is no longer controllable 

by these targeted interventions. If we cannot improve surveillance quality or, equally diminish 

asymptomatic spread (so 𝜌 rises), then population-level controls are warranted. Strikingly, at 

𝑅 = 5 (red) , we cannot control the epidemic unless more than 80% of all new infections are 

observed (sampled) or symptomatic. Eq. (6) defines fundamental limits on controllability. 

In Fig 5B and Fig 5C  we assume perfect reporting and test the influence of delays in reporting 

or equivalently lags in infections becoming symptomatic. We investigate two ℎ(𝑡) distributions, 

𝐻&(𝑠)	and 𝐻2(𝑠) in the frequency domain, with results respectively as dashed or solid. These, 

model exponential and gamma distributed delays with means 𝜏. We apply controls that force 

𝑀9 = 2 when 𝜔:; = 0 but find in Fig 5B that our gain margin declines with 𝜏. This occurs as 

𝜔:; > 0 (inset). Fig 5C further shows that the delay margin 𝑀> becomes finite, decaying with 

𝜏 (inset). Hence, 𝐻(𝑠) reduces both the scaling and delays that the controlled epidemic can 
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robustly support. Incident infections 𝑖(𝑡) display oscillatory dynamics with substantial peaks 

(main). This contrasts the plots featuring no delay i.e., 𝜏 = 0 (dot-dashed). Colours indicate 

the 𝑤(𝑡) from Fig 2A underlying results in Fig 5B, Fig 5C and Fig 5D.  

On its own, 𝐻(𝑠) substantially reduces our controllability. At 𝜏 ≥ 4 we find that 𝑀> → 0 (and 

𝑀9 < 1) signifying that the epidemic is now unstable. Epidemics with larger 𝜏 are necessarily 

uncontrollable. We combine both 𝜌 and 𝐻(𝑠) in Fig 5D but vary 𝑅 and apply a strong controller 

that scales down cases by &
GF

. Even for this constant control we find a finite 𝑀> that declines 

with 𝑅 (inset) and large amplitude oscillations in 𝑖(𝑡) (solid, main). We also plot the observed 

cases 𝑐(𝑡) (dashed), which are the fraction of infections we can control. Both of the (𝑀>, 𝑀9) 
pair are therefore critical to accurately quantifying epidemic controllability. In Fig 5 the ranges 

of 𝜌 and 𝜏 that we explore are realistic and even better than those often reported for countries 

with good COVID-19 surveillance, which can feature smaller 𝜌 or larger 𝜏 [37,39,40]. 

Superspreading, variants and multiple infector types 

Our (𝑀>, 𝑀9) framework can also evaluate the controllability of epidemics that are composed 

of multiple infectious types or transmission routes. This models superspreading, co-circulating 

variants and pathogens with multiple pathways of spread. We unify these multitype epidemics 

using the renewal process of Eq. (7), which features 𝑁 distinct types or pathways.  

𝑖(𝑡) = 𝑚(𝑡) +{ 𝑅J+ 𝜆J(𝜏)𝑤J(𝑡 − 𝜏)	d𝜏,
!

"

K

J8&
			𝜆J(𝑡) = + 𝜖J𝑖(𝜏)𝑘J(𝑡 − 𝜏)	d𝜏

!

"
.					(7) 

We denote the reproduction number, generation time distribution and controller of the 𝑛LM type 

with subscript 𝑛. The parameters 𝜖J define the proportion of incidence associated with the 𝑛LM 

type and ∑ 𝜖J = 1K
J8& . By dividing control into 𝑁 functions, we allow for type-specific control. 

This includes non-targeted control (all 𝑘J(𝜏) are the same) and situations where some types 

are uncontrolled (those 𝑘J(𝜏) = 1), perhaps due to being unobservable. 

Specialisations of Eq. (7) can model superspreading or transmission heterogeneity (e.g., we 

set 𝑁 = 2, 𝑅& ≫ 𝑅2, 𝜖& =
&
I
 and 𝜖2 =

N
I
 to describe cases where 20% of new infections have 

substantially larger transmissibility, which aligns with data on many diseases [41]), pathogenic 

variants with differing transmissibility and generation times (e.g., with 𝑁 as the number of co-

circulating variants, although we assume early growth so that the 𝜖J are fixed [42,43]) and 

diseases with diverse transmission pathways (e.g., Ebola virus disease has sexual and non-
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sexual pathways with distinct 𝑤J(𝑡) [30]). These models do not include explicit interaction 

among types (though all types compose 𝑖(𝑡)) as this commonly requires additional cross-type 

reproduction numbers and auxiliary data (e.g., to construct contact matrices or to calculate 

epidemic thresholds) [44,45]. Such extensions are possible provided the interacting system 

can be framed as a multidimensional, linear renewal model. While we do not consider these 

extensions, if appropriately formulated our margins should remain valid. 

We take Laplace transforms of Eq. (7) to construct Eq. (8), which is amenable to our gain and 

delay margin controllability analyses. We sketch the architecture of this model in Fig 4B. 

𝐿(𝑠) = −{ 𝜖J𝑅J
K

J8&
𝑊J(𝑠)𝐾J(𝑠), 𝐺(𝑠) =

1
1 + 𝐿(𝑠).					(8) 

Using the fact that 𝑊J(0) = 1, we find that if 𝜔:; = 0 then 𝑀9 = |−∑ 𝐾J(0)𝜖J𝑅JK
J8& |−1. We 

can therefore scale the epidemic by a quantity that is a weighted sum of control, reproduction 

numbers and proportions of the contributing infectious types. As we showed in above sections, 

this condition is only likely to be met if every controller is constant (at which also 𝑀> → ∞). If 

controllers introduce dynamics, which is realistic, then we expect effects similar to Fig 3. 

Eq. (8) provides the flexibility to investigate several controllability problems. We focus on two 

questions about the limitations of targeted control for heterogeneous populations. We let 𝑁 =

2 and assume that 𝑅& ≥ 𝑅2 so that type 1 represents individuals with the more transmissible 

variant or superspreading nodes. We consider non-selective control where 𝐾&(𝑠) = 𝐾2(𝑠) =

𝐾(𝑠) and targeted control, in which only one type is controlled. We only target type 1, which 

is more transmissible, so type 2 is uncontrolled and 𝐾2(𝑠) = 1. Our first question asks under 

what conditions the targeted approach, which is often proposed as an efficient control scheme 

[11,41], fails to suppress the overall epidemic, making non-selective control unavoidable. 

For this two-type epidemic 𝐿(𝑠) = −(𝜖&𝑅&𝐾&(𝑠)𝑊&(𝑠) + 𝜖2𝑅2𝑊2(𝑠)) for targeted control and 

−𝐾(𝑠)(𝜖&𝑅&𝑊&(𝑠) + 𝜖2𝑅2𝑊2(𝑠)) for non-selective control, with 𝜖2 = 1 − 𝜖&. In both cases, 

𝜔:; = 0 and 𝑊&(0) = 𝑊2(0) = 1 (see Methods). If we only apply constant controllers, then 

𝑀> → ∞ and controllability is exclusively defined by the values of 𝑀9, which are computed as 

|𝜖&𝑅&𝐾&(0) + 𝜖2𝑅2|−1 and |𝐾(0)|$&|𝜖&𝑅& + 𝜖2𝑅2|−1. To attain some specific 𝑀9, we require 

𝐾&(0) = (𝑀B
$& − 𝜖2𝑅2)(𝜖&𝑅&)−1 and 𝐾(0) = 𝑀B

$&(𝜖&𝑅& + 𝜖2𝑅2)−1. We can combine these 

relations to get the left side of Eq. (9), which shows how much smaller 𝐾&(0) needs to be than 

𝐾(0) i.e., how much more targeted control effort is required to attain our desired 𝑀9. 
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𝐾&(0) = 𝐾(0) − �
𝜖2𝑅2
𝜖&𝑅&

� X1 − 𝐾(0)Y, 𝜖& ≥ 1 −
1

𝑀B𝑅2
.							(9) 

We plot the control efforts 𝐾∗ = 𝐾(0) and 𝐾&∗ = 𝐾&(0) from both strategies that are necessary 

to achieve critical stability (𝑀9 = 1) in Fig 6A. There we observe the limits of targeted control 

as a critical 𝜖& cut-off (dashed vertical). This follows from the positivity constraint 0 ≤ 𝐾&(0) <

1, where 1 is no control and 0 defines perfect control, in which type 2 infections are neutralised. 

We derive this for any desired gain margin on the right side of Eq. (9). Interestingly, this cut-

off does not depend on 𝑅& and, if 𝑀9 = 1, it indicates that targeted control only works when 

the proportion of superspreading nodes or type 1 variants is above 1 − 𝑅2$&. This procedure 

is easily generalised to 𝑁-type epidemics where we can control a subset 𝜒 of the types. The 

controllability cut-off then requires the uncontrolled proportion �∑ 𝜖J𝑅J𝑊J(𝑠)J∉P � ≤ 𝑀B
$&. 

 

Fig 6: Targeted control in multitype epidemics. We explore controllability and performance 

limits for epidemics that involve two distinct types, modelling superspreading or co-circulating 

variants. Panel A plots the constant control effort necessary for critical stability (𝑀B = 1) under 

a non-selective strategy with controller 𝐾∗ that reduces infections of both types (dashed) and 

a targeted strategy with controller 𝐾&∗ that only reduces infections of type 1 (solid), which has 

larger transmissibility 𝑅& ≥ 𝑅2 = 1.1. For both strategies, we vary the proportion of type 1, 𝜖&, 
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and curves are for increasing 𝑅& from blue (1.1) to red (5.5) with intermediate values in grey. 

We use a vertical line to show the 𝜖& for the commonly used 20-80 superspreading rule that 

describes realistic epidemic heterogeneity. Targeted control requires substantially more effort 

(as it must also account for the uncontrolled type 2), and the epidemic is uncontrollable if 𝜖& 

is smaller than the critical vertical line (see Eq. (9)). Panel B considers targeted controllers 

that introduce dynamics and only apply 𝐾&(𝑠) or 𝐾2(𝑠) to reduce either type 1 or 2 infections. 

We fix 𝜖&𝑅& = 𝜖2𝑅2 = 𝛼 so that all types contribute to overall transmissibility equally and both 

controllers lead to the same 𝑀B > 1. We illustrate how new infections 𝑖(𝑡) change due to both 

schemes (dashed and solid respectively), where type 1 is the faster variant possessing mean 

generation time 𝑔& ≤ 𝑔2 = 8 days. Targeting the slower type 2 leads to worse performance 

(including faster transient growth) and is sensitive to 𝑔& (curves are not grouped). 

Our second question relates to the interaction between differing generation times of the types 

and induced controller dynamics. We consider targeted control of either type or variant with 

type 1 having smaller mean generation time and hence being faster than type 2 i.e., 𝑔& ≤ 𝑔2. 

We set 𝜖&𝑅& = 𝜖2𝑅2 = 𝛼 to remove any relative transmissibility advantage between the types. 

Consequently, variations in the infections caused by the types emerge from their generation 

time distribution differences. Targeted control applies non-constant control 𝐾&(𝑠) exclusively 

to type 1 or 𝐾2(𝑠) exclusively to type 2, yielding loop TFs 𝐿(𝑠) = −𝛼(𝐾&(𝑠)𝑊&(𝑠) +𝑊2(𝑠)) 

and −𝛼(𝑊&(𝑠) + 𝐾2(𝑠)𝑊2(𝑠)). Because the controller induces additional dynamics, we are 

neither guaranteed 𝜔:; = 0 nor 𝑀> → ∞ and must evaluate the complete (𝑀>, 𝑀9) pair. 

We compute these margins and dynamical responses to constant importations in Fig 6B for 

a range of fast type 1 generation time distributions 𝑤&(𝑡) and a fixed (slow) type 2 distribution 

𝑤2(𝑡). Although 𝑀9 is the same for both schemes, controlling type 2, which may occur when 

transmission chains of slower variants are easier to interrupt, yields worse performance. The 

overshoots and oscillations are also accompanied by a finite 𝑀>, highlighting that neglecting 

the faster variant can potentially reduce robustness of the controlled epidemic to perturbations 

or equally reduce controllability below what we may expect from conventional measures based 

on reproduction numbers or asymptotic growth rates. For certain controllers (not shown) we 

also find that 𝜔:; > 0 can occur and reduce 𝑀9 for either targeted scheme. This underscores 

the importance of our two-margin solution to understanding controllability. 
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Discussion 

Measuring the controllability of an infectious disease subject to various intervention options is 

a fundamental contribution of mathematical modelling to epidemiology [4,12]. However, there 

exists no rigorous and precise definition of what controllability means [8,10] and studies have 

highlighted a need for robust analytical frameworks to better appraise the impacts of targeted 

and reactive interventions [1]. Currently, the distance from the epidemic threshold of R=1 or 

r=0 is frequently used to measure controllability. Here we have demonstrated that this notion 

of controllability, although reasonable, is idealistic and likely misleading because neither R nor 

r completely and unambiguously measures distance from stability. We proposed an alternative 

and analytic definition of this distance by reformulating the disease transmission process as a 

positive feedback loop and leveraging results from control engineering [31].  

We derived epidemic transfer functions to describe the dynamics of this loop and model how 

stabilising interventions interrupt and attenuate this positive feedback (e.g., by blocking new 

infections through quarantines). For already stable or controlled epidemics, we test robustness 

to perturbations or uncertainties that amplify infections along this loop (e.g., by relaxing any 

interventions or from pathogenic variants). This allowed us to develop stability margins that 

accurately measure the distance from stability (Fig 1) in units of the scale and speed of the 

required control efforts. The gain and delay margins are key metrics from control engineering 

[17,18], a field that studies stability and feedback problems across many dynamical systems. 

Although there is increasing interest in using tools from this field to better understand infectious 

disease spread [9,46–49], our study appears to be among the earliest to construct margins 

for epidemics and appraise existing notions of disease controllability.   

Our central contribution is a flexible method for quantifying epidemic controllability that is both 

computable and easily interpreted across many salient characteristics of infectious diseases. 

This is important for three main reasons. First, R and r can lose their meaning or comparability 

as threshold parameters when characteristics such as superspreading and multitype spread 

are included [24,50]. Second, for a given transmission model there can be numerous ways of 

constructing and defining valid epidemic thresholds and these are not always consistent when 

assessing interventions [25,45,50]. For example, when interventions change generation times 

then we can find situations where r increases yet R decreases [51]. Third, earlier frameworks 

were unable to directly include reactive or feedback effects within their measures and did not 

account for how the implementation of interventions might modify effectiveness. 

In contrast, our gain and delay margins maintain their interpretation, validity, uniqueness and 

comparability across complex disease models and explicitly reflect feedback loops intrinsic to 
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transmission and intervention. These properties allowed controllability to be measured across 

realistic generation time distributions (Fig 2), constraints on interventions (Fig 3), surveillance 

imperfections (Fig 5) and transmission heterogeneities (Fig 6). Principal insights emerging 

from this unified approach were that (i) R and r only track controllability in restrictive settings 

where interventions do not alter temporal disease characteristics and are applied instantly, (ii) 

sharp thresholds of controllability exist due to presymptomatic spread, superspreading, delays 

and under-reporting and co-circulating variants that generalise 1-1/R type results and (iii) the 

delay margin is crucial because lags along feedback loops (from both intervention delays and 

surveillance biases) can destabilise epidemics that are conventionally deemed controlled. 

While our approach rigorously incorporates many realistic epidemic complexities and extends 

earlier frameworks [1,8,10], it depends on several simplifying assumptions, which we made to 

ensure tractability and to extract general insights. Specifically, our analysis uses deterministic 

renewal models and assumes constant R or r. Although some or all of these assumptions are 

common to seminal studies and recent works on controllability thresholds [1,43], the influence 

of stochasticity in disease transmission can be substantial [7,11]. We recommend computing 

our margins to initially assess intervention impact and then using them to guide the running of 

more complex stochastic models. Our margins are only well-defined for linear systems, which 

include epidemics describable by renewal models with constant R. If R varies on the timescale 

of interventions or involves non-linear effects such as saturation or susceptible depletion, this 

assumption may be invalidated. However, we can use piecewise-constant transmissibility 

approximations and fit renewal models to each piece, to partially circumvent this issue. 

Moreover, we examine linear and reactive control actions only (i.e., convolutions of kernels 

with past infections). This improves upon many studies, where controllers simply multiply and 

reduce R or r but may not model other notable types of interventions, such as those reducing 

infections due to non-linear switching triggers or those that completely ignore feedback signals 

in favour of predetermined action [34,52]. Understanding the relative benefits of these different 

strategies is an ongoing area of research. Last, we comment that controllability here focussed 

on intrinsic epidemic dynamics and neglected the costs of actions. Including how these costs 

further constrain the realisable limits of controllability, as well as incorporating key behavioural 

effects within our feedback loops are the future directions of this research.  

In summary, we demonstrate that controllability is only completely and accurately measured 

by the distance of the loop transfer function L(s) from -1. This generalises and improves upon 

the conventionally used distances of R from 1 or r from 0, but still admits interpretable margins 

or safety factors that quantify how much we can scale infections or delay interventions to attain 

critical stability. This allows us to better evaluate when targeted interventions are insufficient 
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and hence when non-selective controls such as lockdowns are justified from the viewpoint of 

curbing transmission. We find that targeted controls fail when the dynamics of the unobserved 

or untargeted infectious population, together with constraints on surveillance and intervention 

implementation cross margin thresholds that are analytically derived from our framework. 
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