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Abstract: 
Aberrant brain network development represents a putative key aetiological component in 
mental disorders, which typically emerge during childhood and adolescence. Previous 
resting-state fMRI studies have identified brain connectivity patterns reflecting 
psychopathology, but the generalisability to other samples and politico-cultural contexts has 
not been established.  
 We investigated whether a previously identified cross-diagnostic case-control and 
autism spectrum disorder (ASD)-specific pattern of resting state functional connectivity 
(RSFC) (discovery sample; children and adolescents aged 5-21 from New York City, USA; n 
= 1666) would replicate in a Norwegian convenience-based sample of youth (validation 
sample; children and adolescents aged 9-25 from Oslo, Norway; n = 531). As a test of 
generalisability, we investigated if these diagnosis-derived RSFC patterns were sensitive to 
levels of symptom burden in both samples, based on an independent measure of symptom 
burden (i.e., not diagnostic criteria).  
 Both the cross-diagnostic and ASD-specific RSFC pattern was replicated across 
samples. Connectivity patterns were significantly associated with thematically appropriate 
symptom dimensions in the discovery sample. In the validation sample, the ASD-specific 
RSFC pattern showed a weak, inverse relationship with symptoms of conduct problems, 
hyperactivity, and prosociality, while the cross-diagnostic pattern was not significantly linked 
to symptoms.   
 Diagnosis-derived connectivity patterns in a developmental clinical US sample are 
replicable in a convenience sample of Norwegian youth, however, they were not predictive of 
mental health symptoms.  
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1 Introduction  
Childhood and adolescence constitute periods of life characterised by substantial 
developmental adaptations. These include rapid physical, hormonal, brain, cognitive, and 
psychological changes, adapted to the increasing complexity of our social environment and 
expectations with age. For example, during this time, the functional networks of the brain 
undergo large-scale reorganisation and maturation (Paus et al., 2008; Power et al., 2010; 
Sydnor et al., 2021). Adolescence is also a period with a marked increase in the incidence of 
psychopathology (Kessler et al., 2007). The co-occurrence of these phenomena has led to the 
hypothesis that increased brain plasticity during this period results in increased susceptibility 
to mental illness (Paus et al., 2008). Several studies have identified plausible links between 
psychopathology in youth and resting-state functional connectivity (RSFC) derived from 
functional magnetic resonance imaging (fMRI). However, the generalisability of such 
network patterns to vulnerability for mental illness in non-clinical samples is currently not 
well demonstrated.  

In the context of generalisability and vulnerability, a related question is whether 
RSFC patterns are specific to diagnostic categories of mental disorders or shared across 
disorders. Considerable effort has been made to characterise RSFC patterns associated with 
both diagnostic syndromes and dimensional symptom scores. Transdiagnostic patterns can be 
identified by including participants with a range of (comorbid) diagnoses, or by modelling 
dimensional scores of multiple symptom domains. Using these approaches, an increasing 
number of studies have reported that RSFC patterns relating to psychopathology are 
transdiagnostic or shared across disorders (Elliott et al., 2018; Karcher et al., 2021; Kebets et 
al., 2023; Lees et al., 2021; Linke et al., 2021; McTeague et al., 2017; McTeague et al., 2020; 
Sha et al., 2019; Voldsbekk et al., 2023; Xia et al., 2018). For example, in a population-based 
sample of children (Adolescent Brain Cognitive Development cohort; ABCD), a shared 
psychopathology factor was derived and linked to RSFC using both symptom data (Karcher 
et al., 2021) and diagnostic data (Lees et al., 2021). 

The convergence of studies on a shared factor across disorders from studies using 
both symptom scores as well as binary diagnosis information supports the notion of a latent 
vulnerability factor on which the diagnostic categories represent extremes (Sprooten et al., 
2022). The above-mentioned findings linking a shared latent mental illness factor to brain 
measures are promising with regard to detecting neural signatures of psychopathology risk in 
the youth brain. However, an important question is whether these clinical RSFC patterns are 
sensitive to symptom burden and by extension putative risk in youth samples that are not 
enriched with mental disorder diagnoses.  

Recently, we estimated both diagnosis-specific and cross-diagnostic RSFC patterns in 
a clinical developmental sample. We identified a pattern specific to a diagnosis of autism 
spectrum disorder (ASD), as well as a shared patterns across attention-deficit hyperactivity 
disorder (ADHD), ASD, other neurodevelopmental disorders, anxiety, mood-disorders, and 
other diagnoses versus no diagnosis (Voldsbekk et al., 2023). In the current study we aimed 
to investigate whether these diagnosis-derived RSFC patterns are sensitive to mental health 
symptoms in a Norwegian convenience-based sample of youth. To do this, we investigated 
whether a) the cross-diagnostic and ASD-specific RSFC patterns previously identified could 
be replicated in the validation sample, and b) if these RSFC patterns could predict levels of 
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symptom burden in the validation sample. As a further test of external validity, we also tested 
whether c) the RSFC patterns previously identified could predict levels of symptom burden in 
the discovery sample.  
 
2 Methods 
2.1 Samples 
2.1.1 Discovery sample - HBN 
Children and adolescents from New York City, USA were recruited to be part of the HBN 
cohort (Alexander et al., 2017). The majority have a least one diagnosed mental disorder. In 
the previous study (Voldsbekk et al., 2023), 1880 participants in HBN took part. 1689 of 
these were in the discovery sample. Of these, 1666 had available both fMRI and symptom 
score data (symptom data was not part of the previous study). Missing values in the symptom 
data were imputed with knnimpute in MATLAB (MathWorks, 2020). For more details 
regarding MRI data cleaning and quality assurance steps, see Voldsbekk et al. (2023). The 
final sample consisted of 1666 participants (641 females, mean ± sd age: 10.91 ± 3.14, range: 
5-21). See Figure 1 for distributions of sample characteristics.  
 
2.1.2 Validation sample – Brainmint  
Children and adolescents in the Oslo region were recruited to participate in the Brains and 
minds in transition (Brainmint) study. Participants were recruited through convenience 
sampling by advertising in social media, aiming to recruit young people from the general 
population interested in contributing to a study investigating brain development and mental 
health. Per May 4th 2023, 759 participants had undergone magnetic resonance imaging (MRI) 
and 697 had responded to questionnaires. Of these, 531 had available both fMRI and 
symptom score data. No participants had missing data and so all were included in the sample 
used for the current analysis (390 females, mean ± sd age: 17.69 ± 2.83, range: 9-25). See 
Figure 1 for distributions of sample characteristics. 
 
2.2 Mental health measures 
In the previous study (Voldsbekk et al., 2023), we investigated diagnosis-derived patterns of 
RSFC in HBN (discovery sample). Diagnostic information was collected using a 
computerised version of the Schedule for Affective Disorders and Schizophrenia – Children´s 
version (KSADS) (Kaufman et al., 1997), which is a clinician-administered semi-structured 
psychiatric interview based on DSM-5. We then labelled diagnoses as belonging to either of 
these categories: “ADHD”, “ASD”, “anxiety disorders”, “mood disorders”, “other 
neurodevelopmental disorders”, “other disorders” or “no diagnosis”.  
 For testing the external validity and predictive utility of diagnosis-derived RSFC 
patterns, the current study obtained HBN symptom scores from the Strength and Difficulties 
Questionnaire (Goodman, 1997), which is a 25-item questionnaire measuring emotional and 
behavioural problems. The SDQ has five syndrome measures: emotional symptoms, conduct 
problems, hyperactivity/inattention, peer relationship problems, and prosocial behaviour. For 
this analysis, we used only the summary syndrome measures. In HBN, the SDQ items were 
parent-reported. See Figure S1 for symptom load distributions on SDQ summary measures 
across diagnostic categories in HBN. 
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Symptom scores in Brainmint were investigated using the same approach as in HBM, 
only in this sample the SDQ responses were self-reported. 
 

 
Figure 1. Sample distributions. A. Age. B. Sex. C. SDQ summary syndrome scores. HBN; Healthy 
brain network sample. Brainmint; Brains and minds in transition sample. SDQ; Strengths and 
difficulties questionnaire.  
 
2.3 MRI acquisition 
HBN MRI data were acquired at four different sites: a mobile scanner at Staten Island (SI), 
Rutgers University Brain Imaging Centre, Citigroup Biomedical Imaging Centre (CBIC) and 
Harlem CUNY Advanced Science Research Centre. A detailed overview of the MRI protocol 
is available elsewhere 
(http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/MRI%20Protocol.html). 

Brainmint MRI data were acquired at Oslo University Hospital Ullevål, using a 3.0 T 
GE SIGNA Premier scanner using a 48-channel head coil. Structural MRI data was acquired 
using an T1-weighted MPRAGE sequence (repetition time (TR): 2.526 s, echo time (TE): 
2.836 ms, flip angle (FA): 8°, field of view (FOV): 256 mm, slice thickness: 1.0 mm, number 
of slices: 1). Resting-state functional MRI (rs-fMRI) data was acquired using a T2*-weighted 
blood-oxygen-level-dependent echo-planar imaging (EPI) sequence with a TR of 800 ms, TE 
of 30 ms, multiband acceleration factor = 6, number of slices: 60, 750 repetitions and voxel 
size = 2.4 × 2.4 × 2.4 mm.  
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2.4 MRI pre-processing 
Rs-fMRI images in HBN were processed with the following pipeline. First, FSL MCFLIRT 
(Jenkinson et al., 2002) was applied for motion correction, high-pass temporal filtering, 
spatial smoothing and distortion correction. The rs-fMRI images were registered to a T1-
weighted structural image using FLIRT (Jenkinson et al., 2002) and boundary-based 
registration (Greve & Fischl, 2009). Next, for additional removal of artefacts and noise, we 
performed non-aggressive ICA-AROMA (Pruim, Mennes, Buitelaar, et al., 2015; Pruim, 
Mennes, van Rooij, et al., 2015) and FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 
2014). Estimations of temporal signal-to-noise ratio (tSNR) and mean framewise 
displacement (FD) were calculated by MRIQC (Esteban et al., 2017) and used as covariates 
in subsequent analyses. For more details, see our previous study (Voldsbekk et al., 2023). 

In Brainmint, preprocessing of rs-fMRI images were run using fMRIPrep v22.0.1 
(Esteban et al., 2019), an automated pipeline consisting of head motion correction, high-pass 
temporal filtering, spatial smoothing and distortion correction using MCFLIRT, slice-timing 
correction using 3dTshift from AFNI, registration to structural reference image using FLIRT 
and boundary-based registration, and, finally, non-aggressive ICA-AROMA. Same as for 
HBN, estimations of tSNR and FD were calculated by MRIQC (Esteban et al., 2017). 
 
2.5 Network analysis 
RSFC in HBN were derived using the Schaefer parcellation with 100 parcels and 7 networks 
(Schaefer et al., 2018). These networks include visual A, visual B, visual C, auditory, 
somatomotor A, somatomotor B, language, salience A, salience B, control A, control B, 
control C, default A, default B, default C, dorsal attention A and dorsal attention B. The 
connectivity matrix was then estimated as the L2-norm ridge regression partial correlation 
between parcel timeseries using FSLNets (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets), as 
implemented in MATLAB (MathWorks, 2020). This resulted in 4950 unique partial 
correlations (i.e., edges). 

RSFC in Brainmint were derived using the same approach as in HBN, making the 
edges comparable. 
 
2.6 Out-of-sample validation 
In the previous work (Voldsbekk et al., 2023), we used partial least squares (PLS) (Krishnan 
et al., 2011) to identify diagnosis-derived patterns of RSFC, controlling for other diagnosis 
categories using contrasts. This analysis revealed an ASD-specific pattern, as well as a cross 
diagnostic case-control pattern. 
 
2.6.1 Testing the replicability of the HBN-derived brain pattern to Brainmint 
See Figure 2 for an overview of the out-of-sample validation pipeline. First, we decomposed 
the Brainmint RSFC data by multiplying them with the brain weights estimated in the HBN 
PLS analysis. These Brainmint brain weights were then correlated with the original 
Brainmint RSFC data to get Brainmint connectivity loadings. Then, to assess whether the 
brain pattern was replicated across the two samples, we correlated the Brainmint connectivity 
loadings with HBN connectivity loadings for each latent variable (LV) using Pearson’s 
correlation. Their significance was tested using permutations (n=1000), randomly 
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shuffling the rows (participants) of the Brainmint RSFC data. We calculated p-values by 
dividing the count of permuted maximum R values (including the observed non-
permuted value) ≥ the non-permuted R values by the number of permutations. Prior to 
analysis, Brainmint RSFC data was adjusted for age, sex, tSNR and FD, same as HBN RSFC 
data prior to running PLS. As a proxy for significance, connectivity loadings were 
thresholded at Z-scores<|3| in visualisations, akin to the procedure in our previous work using 
PLS.   
 

 
Figure 2. An overview of the out-of-sample validation pipeline. RSFC; resting-state functional 
connectivity. HBN; Healthy brain network sample. Brainmint; Brains and minds in transition sample.  
 
2.6.2 Testing the predictive utility of the brain pattern  
To assess whether the brain pattern had predictive utility, we correlated the derived 
Brainmint RSFC pattern with Brainmint symptom data. Specifically, we investigated the 
Spearman’s rank correlation between diagnosis-derived brain weights and symptom 
dimensions from SDQ. To assess the reliability of the associations between brain weights and 
symptom dimensions, we ran 1000 bootstraps using resampling with replacement. Finally, as 
a test of external validity, we also ran these correlations between the HBN RSFC pattern and 
SDQ symptom dimensions in HBN.  
 
3 Results 
The correlation between Brainmint and HBN connectivity loadings was significant for both 
the cross-diagnostic pattern (r=.39, permuted p<.001; see Figure 3A) and ASD (r=.49, 
permuted p<.001; see Figure 4A), indicating that both brain patterns were replicable across 
samples. As shown in Figure 3B, the cross-diagnostic RSFC pattern implicated weaker 
connectivity within the control network, in addition to weaker between-network connectivity 
between the salience network and control network, as well as between the default mode 
network (DMN) and limbic network. In terms of symptom dimensions, this connectivity 
pattern exhibited significant positive associations with anxiety, conduct problems, 
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hyperactivity, and peer problems in HBN, as well as a negative association with prosocial 
behaviour (see Figure 3C). In Brainmint, there were no significant associations between the 
cross-diagnostic connectivity pattern and symptom dimensions (see Figure 3D).  

As shown in Figure 4B, the RSFC pattern for ASD implicated weaker within-network 
connectivity in the somatomotor network, dorsal attention (DA) network, salience network 
and DMN. In terms of symptom dimensions, this RSFC pattern was significantly associated 
with more symptoms of peer problems and hyperactivity in HBN, as well as lower degree of 
conduct problems and prosociality (see Figure 4C). In Brainmint, the ASD-specific RSFC 
pattern was associated with higher levels of prosocial behaviour and fewer symptoms of 
hyperactivity and conduct problems (see Figure 4D).  

 

 
Figure 3. Replication of the cross-diagnostic connectivity pattern from HBN to Brainmint. A. 
Pearson’s correlation of connectivity weights between samples (left) and corresponding permutation 
test (right). The dotted line marks the non-permuted R value. B. Visualisation of RSFC pattern in each 
sample. Depicted are thresholded edges (Z-scores<|3|). C. Associations between derived brain pattern 
and SDQ symptom dimensions in Brainmint. D. Associations between derived brain pattern and SDQ 
symptom dimensions in HBN. Associations with symptom dimensions are marked in bold green if 
95% confidence interval of the bootstrap distribution did not contain zero. ASD; Autism spectrum 
disorder. HBN; Healthy brain network sample. Brainmint; Brains and minds in transition sample. 
SDQ; strength and difficulties questionnaire.  
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Figure 4. Replication of the ASD-specific connectivity pattern from HBN to Brainmint. A. Pearson’s 
correlation of connectivity weights between samples (left) and corresponding permutation test (right). 
The dotted line marks the non-permuted R value. B. Visualisation of RSFC pattern in each sample. 
Depicted are thresholded edges. C. Associations between derived brain pattern and SDQ symptom 
dimensions in Brainmint. D. Associations between derived brain pattern and SDQ symptom 
dimensions in HBN. Associations with symptom dimensions are marked in bold purple if 95% 
confidence interval of the bootstrap distribution did not contain zero. ASD; Autism spectrum disorder. 
HBN; Healthy brain network sample. Brainmint; Brains and minds in transition sample. SDQ; 
strength and difficulties questionnaire.  
 
4 Discussion 
The current study aimed to investigate whether psychopathology-related RSFC patterns are 
informative of vulnerability for mental illness in undiagnosed individuals by replicating 
connectivity patterns derived in a developmental clinical sample from the US in a Norwegian 
convenience-based sample of youth. However, the RSFC pattern was only sensitive to 
symptom burden in the discovery sample. Specifically, we found that the RSFC patterns were 
associated with symptom dimensions thematically overlapping with core symptom 
characteristics in the discovery sample, while in the validation sample we found a weak, 
inverse relationship for ASD. This latter association was small, hence exhibiting low 
predictive utility at the individual level. Taken together, these results show that although 
diagnosis-derived RSFC patterns replicate across samples, their utility is greatly limited due 
to their lack of sensitivity to symptom burden. 
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 Replicability and generalisability of neuroimaging findings remain a challenge in the 
field (Botvinik-Nezer & Wager, 2022). Historically, small sample sizes and lack of 
methodological rigour have resulted in poor replication rates, possibly reflecting that many 
published findings are potential false positives (Ioannidis, 2005). To overcome such 
challenges, increasing effort has been put into developing procedures for reproducible 
science (Niso et al., 2022). With the advent of multivariate machine learning approaches in 
neuroscience, issues related to statistical power and extensive univariate testing in small 
samples have been improved (Botvinik-Nezer & Wager, 2022). However, these multivariate 
approaches come with new challenges, such as data leakage, overfitting and the need for 
sufficiently large data sets to ensure robustness (Botvinik-Nezer & Wager, 2022; Davatzikos, 
2019; Poldrack et al., 2020; Varoquaux, 2018). Although the current study aimed to 
overcome some of these challenges, we still did not obtain generalisable results. 

Generalisation of RSFC patterns related to psychopathology has been hampered by 
challenges related to the stability and reliability of RSFC results, as well as variations in 
mental health profiles across cohorts (Uddin et al., 2017). Data driven approaches to 
symptom clustering have to some degree yielded reproducible clusters or hierarchies of 
symptom structure across samples (Caspi et al., 2014). Recently, we derived brain-based 
latent dimensions of psychopathology using symptom covariance with functional brain 
networks in HBN (Voldsbekk et al., 2023). Similar brain-based dimensions of 
psychopathology were identified in ABCD, combining measures of both brain structure and 
RSFC (Kebets et al., 2023). By decomposing the HBN data using feature weights estimated 
in ABCD from Kebets et al., we found that the symptom dimensions replicated, however the 
RSFC patterns did not (Voldsbekk et al., 2023). Previous attempts at replication of brain-
symptom mapping in independent samples have shown similar findings of replicating latent 
clinical dimensions, but weak or non-replicable RSFC patterns (Linke et al., 2021). In light of 
this, it is surprising that the current study could replicate case-control and ASD-specific 
RSFC patterns from HBN to Brainmint. Even so, the clinical associations of this pattern in 
the discovery sample were not replicated in the validation sample.   

The current replication effort is conducted across two widely different samples, both 
in terms of age, sex distribution, and other demographical variables, and in their mental 
health profile. While the HBN sample consists of mainly children with diagnosed 
neurodevelopmental disorders, the Brainmint sample consists of adolescents recruited from 
the community. Some of these adolescents have elevated symptom burden and may meet the 
diagnostic criteria of a mental disorder, but this sample is not enriched with diagnoses as is 
the case with HBN. The symptom distribution is also different, with higher prevalence of 
anxiety symptoms in Brainmint, as compared to conduct problems and peer problems in 
HBN. In line with this, there is also a marked difference in the sex distribution across the two 
samples, with higher prevalence of males in HBN and the majority being female in 
Brainmint. Given these differences, it is all the more striking that the RSFC patterns 
replicated. Concomitantly, this may also explain the lack of replicable clinical associations. 
One possible explanation could be that the RSFC patterns do reflect some vulnerability to 
psychopathology, only it is not sensitive enough to be predictive in a widely different sample.  
 Consistent with the symptom load distribution in HBN across diagnostic categories, 
the RSFC pattern in HBN picked up associations with peer problems, hyperactivity, and 
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prosocial behaviour for the ASD-specific pattern and all symptom dimensions for the cross-
diagnostic pattern. This represents a sanity check that the diagnosis-derived RSFC pattern in 
HBN picks up similar associations with symptom load as the diagnosis groups they are 
modelled to represent. Reliability of mental health measures has remained a challenge in the 
field (Nikolaidis et al., 2022). Here we show that RSFC patterns derived from diagnostic 
information exhibit associations with an independent measurement of symptom load that are 
overlapping with symptom load associations observed for each diagnostic category. This 
supports that these RSFC patterns reflect something that overlaps with their corresponding 
diagnostic categories. However, this sensitivity of the RSFC pattern was not generalisable to 
Brainmint. The RSFC pattern in Brainmint picked up an inverse relationship with prosocial 
behaviour, hyperactivity, and conduct problems for the ASD-specific pattern, indicating that 
higher prosociality and lower conduct problems and hyperactivity was associated with a more 
“ASD-like” brain pattern. This finding is paradoxical and the opposite of what one would 
expect. While it is too early to conclude based on one preliminary association only, it is 
worth noting that the strength of this association was low. Similarly, there was no significant 
associations with the cross-diagnostic pattern in Brainmint. Given these weak group-level 
associations, with low predictive utility at the individual level, adding too much emphasis to 
this preliminary finding is unwarranted. Instead, this result adheres to the previous literature 
finding generalisation of RSFC results a challenge (Uddin et al., 2017). 
 Some further limitations should be noted. First, RSFC results are influenced by 
methodological choices (Sala‐Llonch et al., 2019; Shirer et al., 2015). To increase 
reproducibility of RSFC networks, we utilised an established parcellation scheme (Schaefer 
et al., 2018). Second, the two samples underwent slightly differing fMRI preprocessing 
pipelines. However, this difference should diminish, rather than inflate, any reproducibility of 
the findings across samples. Third, the symptom dimensions from SDQ were measured by 
parent-report in HBN and by self-report in Brainmint. This may have induced systematic 
variations in the data across the two samples due to differences in response style, which may 
explain why the community-based sample seemed to exhibit a higher symptom burden than 
the clinical sample. This limitation represents an important reminder that low reliability in 
mental health measures impedes scientific discovery (Nikolaidis et al., 2022) and underscores 
that the current results must be interpreted with caution. 
 
5 Conclusions 
This work demonstrates that diagnosis-derived RSFC patterns in a US developmental clinical 
sample can be extended to a Norwegian convenience-based sample of youth. Both the cross-
diagnostic and the ASD-specific RSFC patterns were found to replicate across samples. 
However, although both connectivity patterns exhibited significant associations with 
thematically appropriate symptom dimensions in both the discovery sample (HBN), they 
were not found to be sensitive to overlapping dimensions of symptom burden in the 
validation sample (Brainmint). Implications of this work is that generalisation of RSFC 
results remains a challenge. For any psychopathology-related RSFC patterns to be 
generalisable and clinically relevant, their sensitivity to symptom burden across samples 
represents a prerequisite.   
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